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Abstract. Current cooperative positioning with 

Global Navigation Satellite System (GNSS) for 

connected vehicle application mainly uses 

pseudorange measurements. However the 

positioning accuracy offered cannot meet the 

requirements for lane-level positioning, 

collision avoidance and future automatic driving, 

which needs real-time positioning accuracy of 

better than 0.5m. Furthermore, there is an 

apparent lack of research into the integrity issue 

for these new applications under emerging 

driverless vehicle applications. In order to 

overcome those problems, a new Extended 

Kalman Filter (EKF) and a multi-failure 

diagnosis algorithm are developed to process 

both GNSS pseudorange and carrier phase 

measurements. We first introduce a new 

closed-loop EKF with partial ambiguity 

resolution (PAR) as feedback to address the low 

accuracy issue. Then a multi-failure diagnosis 

algorithm is proposed to improve integrity and 

reliability. The core of this new algorithm 

includes using Carrier phase based Receiver 

Autonomous Integrity Monitoring (CRAIM) 

method for failure detection, and the double 

extended w-test detectors to identify failure. A 

cooperative positioning experiment was carried 

out to validate the proposed method. The results 

show that the proposed closed-loop EKF can 

provide highly accurate positioning, and the 

multi-failure diagnosis method is effective in 

detecting and identifying failures for both code 

and carrier phase measurements.    
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Introduction 

To improve road transportation safety and 

efficiency, cooperative positioning by sharing 

Global Navigation Satellite System (GNSS) 

information among multi-vehicles has started 

to attract more attention in recent years (Alam 

and Dempster 2013; Bauernfeind et al. 2013; 

Stephenson et al. 2014). While the 

conventional GNSS positioning such as the 

differential GPS (DGPS) has been studied 

widely, the distinguished characteristics of 

cooperative positioning approach is the use of 

vehicle to vehicle (V2V) and vehicle to 

infrastructure (V2I) communications, for 

example the vehicle ad hoc networks (VANETs) 

(Alam and Dempster 2013; Stephenson et al. 

2012, 2013). Liu et al. (2014) and Muller et al. 

(2014) addressed the issues in cooperative 

positioning with DGPS. Basnayake et al. (2011) 

used code and Doppler measurements to 

implement cooperative positioning. Those are 

rather simple cooperative positioning approach 

without the requirement of ambiguity 

resolution, but they sacrifice the high accuracy 

achievable from carrier phase measurements, 

so that the positioning accuracy and integrity 

cannot meet the requirements for lane-level 

positioning that requires positioning accuracy 

of better than 0.5m, lane departure warning, 

collision avoidance and future automatic 

driving for intelligent transportation 

applications (Stephenson et al. 2014).  

In order to improve positioning accuracy in 

transport related applications several advanced 

approaches based on carrier phase 

measurements have been proposed (Liu et al. 

2013; Schuster et al. 2012). Although GPS has 

been used for different civil positioning and 

navigation applications for more than three 
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decades, the integer ambiguity resolution still 

remains a major challenge for carrier phased 

based solutions (Hofmann et al. 2008; Wang 

2012). There are no known approaches that can 

estimate both real-valued navigation 

parameters and integer ambiguities at the same 

time. The prominent approaches perform a 

float estimate in the first step of least squares 

(LS) estimation, then use an integer fixing 

algorithm, such as the Least squares 

AMBiguity Decorrelation Adjustment 

(LAMBDA) to fix ambiguities (Teunissen and 

Verhagen 2009; Verhagen and Li 2012). 

However, those methods may degrade the 

accuracy because they failed to consider the 

dynamics and stochastic models of moving 

objects such as vehicles, thus complicating the 

integration with Extended Kalman Filtering 

(EKF) (Eugenio and Mirko 2013). An 

open-loop approach was proposed in several 

relative kinematic positioning applications 

(Wolfe et al. 2007) in which the EKF provides 

float ambiguity solutions, and then the 

LAMBDA method is used to fix them to 

integer values. However, this approach 

requires that the float ambiguities are 

sufficiently close to the exact integers, 

otherwise, the LAMBDA approach will not be 

able to fix ambiguities and the overall 

navigation accuracy will be degraded.  

In addition to the accuracy, the positioning 

integrity and reliability are other important 

parameters. In aviation applications the 

integrity theory is derived, while in geodesy 

the reliability theory is employed (Knight et al. 

2010b). Currently, most of the integrity 

monitoring methods for GNSS are based on 

code measurements, for example, the well 

known Receiver Autonomous Integrity 

Monitoring (RAIM) algorithms (Lin et al. 

2014; Sabatini et al. 2013). The Advanced 

RAIM (ARAIM) (Walter et al. 2014) and 

Relative RAIM (PRAIM) (Yun and Kee 2014) 

were also proposed recently with the 

development of the new generation GNSS. 

However, until today they are still mainly 

based on code measurements without taking 

the advantages of using carrier phase 

measurements. A carrier phase based RAIM 

method (CRAIM) has been proposed recently 

(Feng et al. 2009) which can also be applied in 

Precise Point Positioning (PPP) (Jokinen et al. 

2012). However, the proposed CRAIM method 

is only used to detect a failure rather than 

identify it. Hewitson and Wang (2007, 2010) 

present the detection, identification, and 

adaptation (DIA) procedure using w-test. 

However, the DIA procedure is aimed for code 

measurements using least-squares method 

rather than carrier phase based EKF filter. 

Meanwhile, current research on integrity and 

reliability is mainly based on the single failure 

assumption. However, a key problem to solve 

in cooperative systems is that there are many 

nodes, thus increasing the chances of multiple 

failures. 

In order to improve the performance of 

cooperative positioning, two innovative 

approaches are proposed. First, a new 

closed-loop EKF is designed, which differs 

from traditional ones because the Partial 

Ambiguity Resolution (PAR) is performed 

separately from dynamic EKF filter. This 

allows the improvement in positioning 

accuracy while avoiding the necessity to fix 

the whole ambiguity vector in the closed-loop. 

Second, a new multi-failure diagnosis 

algorithm based on modified CRAIM and 

double extended w-test is further proposed to 

improve integrity and reliability, which is 

efficient for multi-failure detection and 

identification for carrier phase measurements. 

The authors intend to address the above issues 

when carrier phase measurements are used to 

deliver cooperative positioning in connected 

vehicle applications. The effectiveness of the 
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algorithm is demonstrated by designing a V2V 

cooperative positioning experiment using a 

GNSS reference station, an electric train and a 

road vehicle. 

 

 

New closed-loop EKF approach for 

cooperative GNSS positioning 

The cooperative positioning of vehicles has 

been addressed by using differenced code 

techniques (Liu et al. 2014; Muller et al. 2014), 

which offer a simpler implementation. However, 

this means sacrificing the higher accuracy 

available from carrier phase measurements. In 

the following, we will present a new closed 

EKF for cooperative positioning based on 

GNSS raw measurements containing both code 

and carrier phase. 

 

 

EKF design for cooperative GNSS positioning 

The double difference (DD) technique among 

receivers and satellites is chosen since it can 

balance processing complexity, practicality and 

performance for real time implementation. By 

taking differences between two GNSS 

satellites ( p , s ) and two receivers ( r , m )  

on frequency j , the DD code  and carrier 

phase equations can be written as (Hofmann et 

al. 2008; Wang 2012) 

,

ps ps ps ps ps

rm j rm j rm rm rmP I T e                 (1) 

, ,

ps ps ps ps ps ps

j rm j rm j rm rm j rm j rmI T N              (2) 

where , , , , ,( ) ( )ps p s p s

rm j r j r j m j m jP P P P P     is the 

code DD on frequency j , and 

,

ps

rm j , , , ,( ) ( )p s p s

r j r j m j m j        represents the 

carrier phase DD. The symbol ps

rm  represents 

the combination of geometric distances between 

receivers and satellites, ps

rmI  represents the 

ionosphere delay with coefficient 
2

1( / )j j   , j  is the wavelength for 

frequency j , ps

rmT  represents the troposphere 

delay, ,

ps

rm jN  is the DD ambiguity, and ps

rme  

and ps

rm  are error terms. In order to processing 

DD observations, the extended Kalman filtering 

(EKF) algorithm is adopted because it is 

efficient and suitable for real-time positioning 

with a large number of states and observations.  

In order to address the issues as discussed in 

the introduction a new closed-loop EKF filter is 

designed as shown in Figure 1. Due to the high 

dynamic feature, a high order dynamics model 

is used in the EKF filter. The EKF is in charge 

of generating a float estimate; the state vector 

includes position b , velocity b , acceleration 

b  and float ambiguities ,

ps

rm jN . Starting from 

the float estimate, the partial ambiguity 

resolution (PAR) based on LAMBDA (Liu et al. 

2013) is used to produce the fixed subset 
1N  

and the unfixed subset 2|1N , which is used to 

fix the relative baseline vector b . The partially 

fixed ambiguity 
PARN  and the fixed baseline 

b  are then fed back to the EKF filter to narrow 

down the solution in the following steps. The 

relative velocity b  and acceleration b  can 

also be improved by the ambiguity resolution. 
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Fig. 1 New closed-loop architecture approach   

According to the above discussion, the state 

vector X in a closed-loop EKF filter is 

expressed as 

,

T
ps

rm jX N   b b b                 (3) 

where b , b  and b  represent the position, 

velocity and acceleration vector respectively. 

,

ps

rm jN  represents the float ambiguities. 

Based on the cooperative dynamic model, the 
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matrix form of the system state equation is 

given by 

1k k kX FX G   w                      (4) 

where 
1kX 
 represents the state vector at epoch 

1k  , F  represents the system dynamic 

matrix, G  is the system noise matrix, and kw  

is the system noise vector with the covariance 

matrix Q . The state in the dynamic model can 

be adjusted by the matrix F  and 
kGw . In a 

constant acceleration motion model, F  is 

written as 

3 3 3 3

3 3 3 3

3 3

0 0

0 0

0 0 0

0 0 0 n n

I I

I I
F

I

I

 

 





 
 
 
 
 
 

             (5) 

where n nI   represents a n n  identity matrix, 

the zero matrices are of appropriate size, and  

n  is the number of the DD ambiguities.  

  The DD code and carrier phases given in (1) 

and (2) can be linearized from the EKF of 

cooperative positioning as 

k k k kZ H X  v                        (6) 

where kZ  represents the measurement vector 

and kX is the state vector. The kH  is the 

measurement matrix and kv  represents the 

measurement noise with covariance matrix R .  

According to the state equation (4) and the 

observation equation (6), cooperative 

positioning can be calculated by the recursive 

EKF equations (Feng et al. 2009). For the initial 

estimation of 0X , The Bancroft algorithm is 

used to initialize the relative position 0b  with a 

meter level error. A least-squares adjustment is 

further used to reduce the initial positioning 

error. The initial ambiguities 0N can be roughly 

obtained as 

,

,

ps ps ps
rm j rm jps rm

rm j

j j

N
   

 


                 (7) 

where all of the symbols are defined in (2) and 

the residual atmospheric delays are disregarded. 

The initial state covariance Q  is defined as 

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0
N

Q









 
 
 

  
 
 
 

b

b

b

                (8) 

where 2
b

, 2
b

, 2
b

 and 2

N
  are the position, 

velocity, acceleration and ambiguities error 

variance respectively. The measurement noise 

covariance R  of the DD is given as  

0

0

c

p

R
R

R

 
  
 

                        (9) 

where cR  and pR  are noise covariance matrix 

of code DD and carrier phase DD respectively, 

which is given as  

2

1 0.5 0.5

0.5 1
, ,

0.5

0.5 0.5 1

l lR l c p

 
 
  
 
 
 

  (10) 

where 2

c  and 2

p  are defined as the variance 

of the DD code and carrier phase respectively. 

 

 

Partial ambiguity resolution 

According to the practical applications of 

LAMBDA method, the probability of 

successfully fixing all the ambiguities is often 

low, especially in harsh environments. 

Furthermore, fixing all the ambiguities is 

unnecessary when a large number of satellites 

are visible. Thus the partial ambiguity 

resolution is used in the closed-loop EKF.  

Once the PAR has been achieved, the 

resolution result 1 2|1[ ]PARN N N  is used to 

remove the ambiguous states from the state 

vector of EKF. It is also used to fix the relative 

baseline. The fixed baseline and its covariance 

are 

 1

PARNNN
P P N N 

b
b b -               (11) 
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PAR

1

NNN N
P P P P P 

bb b bb|N
               (12) 

where 
NN

P , 
N

P
b

 and P
bb

 are the 

corresponding sub-block of estimated state 

variance matrix P . Then b  and 
PARN

P
b/

are 

used recursively to update the state vector and 

covariance of EKF filter for the next epoch. 

The new closed-loop approach differs from 

traditional LS method and the open-loop EKF 

method because a PAR algorithm is performed 

separately from the EKF filter. This avoids the 

necessity of fixing the whole ambiguity vector 

in the closed-loop. The PAR used in the 

feedback can improve the navigation accuracy 

and also ensure the smooth operation of the 

EKF in case of no fixed ambiguities.  

 

 

New multi-failure diagnosis algorithm for 

cooperative positioning 

Integrity reflects the ability to detect, identify 

and eliminate failures for continuous operation, 

which has become increasingly important in 

positioning systems especially in critical 

applications such as connected vehicles (Knight 

et al. 2010b). In aviation, the integrity theory is 

derived where the alarm time, continuity, 

integrity risk, etc. are emphasized. In geodesy, 

the reliability is employed where the internal 

and external reliability are more of concern. 

Although cooperative positioning for 

multi-vehicles is not identical to aviation or 

geodesy applications, essentially, to implement 

positioning integrity and reliability, the failure 

diagnosis including failure detection and 

identification should be resolved. 

 

New multi-failure diagnosis approach 

The research of failure diagnosis for carrier 

phase based positioning is still rare. Recently a 

CRAIM method is proposed to detect failure of 

carrier phase (Feng et al. 2009; Jokinen et al. 

2012), but it cannot yet identify the failure. For 

failure identification a DIA procedure using 

w-test has been presented (Hewitson and Wang 

2007, 2010). However, this method is aimed for 

code based positioning using least-squares 

model, rather than carrier phase based EKF 

model. Another problem is that the w-test was 

originally derived for single failure 

identification rather than multi-failure. However, 

in practical applications, the multi-failure 

diagnosis is required. 

  We propose a new multi-failure diagnosis 

algorithm based on the closed-loop EKF to 

detect and identify multiple failures of carrier 

phase based positioning. The new algorithm 

integrates a modified CRAIM and a newly 

extended w-test method, which is shown in 

Figure 2. First, the CRAIM method is modified 

for failure detection, in which a different test 

statistic is used to avoid confusion for the final 

judgment. Then two detectors using extended 

w-test are designed to identify failure of both 

code and carrier phase observations. Since the 

w-test was originally derived for single failure 

identification, a new approach is presented to 

extend the w-test for multi-failure.  

EKF filter    

Modified

CRAIM

Extend w-test

for code

Extend w-test

for carrier

Adjus-

tment
?k Ds T

N

Y
Integrity

flag

Pos

Vel

Acc

PAR 

Ambiguity solution

Fixed 

baseline

N PARN b

Novel closed-loop EKF to improve accuracy

Novel multi-failure algorithm to improve integrity

Fig. 2 New multi-failure diagnosis approach based on 

closed-loop EKF 

In this new approach, the PAR algorithm, the 

modified CRAIM, and the double extended 

w-test detectors are integrated to the 

closed-loop EKF, as shown in the Figure 2. The 
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role of each part is necessary and 

complementary to improve the accuracy and 

integrity for cooperative positioning. The PAR 

module increases the ambiguity resolution 

success rate, thus improving the accuracy and 

reliability for closed-loop processing. The 

modified CRAIM and the extended w-test are 

designed to detect and identify multiple failures. 

This approach not only improves the 

positioning integrity and reliability, but also has 

the advantages of computational efficiency and 

preserving the redundancy of the adjustment. 

The new algorithm is elaborated as following. 

 

 

The modified CRAIM for failure detection 

A vital factor for integrity monitoring is the 

innovation sequence of the EKF kr , which can 

be used to calculate test statistics values. At 

epoch k , it is expressed as  

| 1k k k k kZ H X  r                      (13) 

where | 1k kX   represents the predicted EKF 

state vector. The kr  provides the most relevant 

information for integrity monitoring, which is 

similar to the residual in the RAIM method. 

However, the measurement noise of DD 

observation is no longer independent as is 

shown in (10).  

In the CRAIM method, the weighting matrix 

kW  is used to de-correlate the dependence. 

Three different test statistics are carried out: the 

total test statistics aT , code only cT  and carrier 

phase only pT , which are given as (Feng et al. 

2009; Jokinen et al. 2012) 

1T

a k k kT W  r r                       (14a) 

1T

c ck c ckT R r r                       (14b) 

1T

p pk p pkT R r r                      (14c) 

where ckr  and pkr  are the subsets of kr , 

corresponding to code and carrier phase DD. 

The
cR  and pR  are defined in (9). The 

weighting matrix kW  takes into account the 

covariance, the measurement noise and their 

correlations of measurement residuals, which is 

given as 

| 1

T

k k k k k kW H P H R                    (15) 

where 
/ 1k kP 

 represents the variance matrix of 

the predicted EKF state vector | 1k kX  . 

However, in practical applications 
cT  and 

pT  only reflect the change of kr  as
cR  and 

pR  are set in advance. Yet they have a great 

impact on cT  and pT ; thus those different 

detection results may cause confusion for the 

final judgment.  

Thus a modified CRAIM method is proposed, 

where only the total test statistics similar to (14a) 

is calculated, which is defined as 
1T

k k k ks W  r r                          (16) 

where ks  follows a 2  distribution with a 

degree of freedom n  that equals to the number 

of measurements. It can be either a central or 

non-central 2  distribution depending on the 

absence or presence of failure. Therefore, the 

corresponding threshold DT  can be determined 

for a given probability of false alarm FAP , that 

is 2 ( ,0)
FAD PT n . If ks  is greater than DT , it 

is assumed that failures exist, and vice versa. 

 

 

The extended w-test for multi-failure 

identification 

Similar to the definition of the w-test statistics 

for least squares model (Hewitson and Wang 

2007, 2010), two w-test statistics for the EKF, 

i.e. ciw  and piw , are  presented for code DD 

and carrier phase DD respectively, which can be 

deduced as 

1

1 1
, ,

T

i l lk
li T

i l lk l i

e R
w l c p

e R W R e



 
 

r
         (17) 

where subscript l c represents the code DDs 

and l p represents the carrier phase DDs. The 
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ie  represents a unit vector, in which if the i th 

component has a value of ‘1’ means that the 

i th measurement is being tested. The
lR  

( ,l c p ) is the measurement noise covariance 

matrix defined in (9), and 1

lR  ( ,l c p ) 

represents the weight matrix of the 

measurements. The lkW  ( ,l c p ) is the subset 

of kW  that is defined in (15), which represents 

the variance covariance of the innovation 

sequence lkr  ( ,l c p ). 

  When no failures exist, liw   ( ,l c p ) 

should be a standard normal distribution, 

whereas a non-central normal distribution 

shows the presence of a failure. When giving 

the significance level  , then 

 /2 0,1liw N ,   ,l c p              (18) 

Therefore, the test threshold can be calculated 

by /2(0,1)
FAlw PT N  using false alarm FAP . 

If li lww T , then a failure is detected in either the 

i th code DD ( l c ) or the i th carrier phase 

DD ( l p ). 

In the practical applications, correlations are 

often found in the test statistics, especially in 

carrier phase DD where there is a strong 

correlation. Due to the correlation, a failure in 

the DD measurement is likely to cause too 

many iw  exceeding the test threshold, thus 

creating difficulty in distinguishing the real 

failure. The degree of correlation in test 

statistics liw  and ljw  is determined through 

the correlation coefficient 
1 1

,
1 1 1 1

T

i l lk l j

l ij
T T

i l lk l i j l lk l j

e R W R e

e R W R e e R W R e


 

   



, 

 ,l c p                             (19) 

The two test statistics are fully correlated when 

,l ij  is equal to one, and they are completely 

uncorrelated when ,l ij  is equal to zero. The 

greater the correlation between two test 

statistics, the more difficult it is to separate the 

corresponding measurements.  

The w-test is originally derived for single 

failure identification. Knight et al. (2010a, 

2010b) extended the w-test to the case of two 

failures, but the amount of failures needs to be 

known in advance, which is not realistic. An 

extended w-test method is proposed for 

multi-failure in Hewitson and Wang (2006). 

However, it is based on a least squares model 

for code measurements only rather than using 

EKF model for carrier phase measurements. 

A new extended w-test is improved to 

identify multiple failures for both code and 

carrier phase DD based on the closed-loop EKF. 

In the extended w-test approach, the influence 

due to the correlation of the test statistic of 

identified failure on the remaining statistics is 

removed. A reduced subset of test statistics is 

obtained. The algorithm to reduce the w-test 

statistics is given as 

, 1, 1,max max, , ,t li t li t l liw w w l c p         (20) 

where ,t liw  is the reduced w-test statistics of 

the i th DD observation at the current iteration t . 

The 1,t liw   is the test statistics of the i th DD 

observation at the previous iteration 1t  . The 

1,maxtw  is the maximum value of the test 

statistics at the previous iteration 1t  . The 

max,l li  is the correlation coefficient between 

1,t liw 
 and 1,maxtw  . Using this algorithm, the 

influence of the largest failure on the remaining 

statistics can be removed iteratively.  

  The extended w-test procedure proposed is 

shown in Figure 3. The first failure is identified 

using (17), where the largest test statistic 

exceeding the test threshold lwT  is identified as 

the failure. Then for i=1: nl , where nl is the 

current number of code DD statistics or carrier 

phase DD statistics, the influence of the 

identified failure on the other statistics is 

estimated and then subtracted using (20). The 

process is iterated until no more failures are 

identified. For multi-failure cases, the extended 

w-test is computationally more efficient. Rather 

than simply removing highly correlated 
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measurements, the redundancy and geometry of 

the initial adjustment are preserved, as sufficient 

redundancy and geometric strength are 

important in ensuring correct identification. 

W-test using Equation 17

?li lww T

Identify               , flag it as failure 

For i=1:      ,calculate        using Equation 20

subtract influence on current statics

, ?t li lww T

For i=1:      ,calculate

and estimate influence on other statics 

NoYes

Yes

No

1,maxsw 

1,max max,t l liw  nl

,t liwnl

Remove identified failure, set n n 1l l 

End

End

Fig.3 Processing of extended w-test 

 

 

Demonstration results and analysis 

In order to demonstrate the approach proposed, 

the cooperative GNSS positioning experiments 

were carried out at the Nottingham Geospatial 

Institute (NGI) of the University of Nottingham. 

Two vehicles and one GNSS reference station 

are used. Vehicle A is an electric train, whose 

running track has been scanned with high spec 

laser scanner to a resolution of 2mm. Vehicle B 

is a road vehicle, which moves simultaneously 

with vehicle A within a relative distance of 100 

meters. The GNSS reference station, vehicle A 

and B constitute a situation for cooperative 

positioning, as shown in Figure 4. Both the 

vehicles A and B are equipped with Leica GS10 

GNSS receivers, which can provide dual 

frequency code and carrier phase GPS and 

GLONASS data. For vehicle A the previously 

scanned track is used as the “true” reference, 

while for vehicle B the high performance INS 

(Applanix POS/RS with Honeywell C-IMU), 

wheel odometer and Leica Nova TS50 data are 

integrated to provide a position solution. 

NGI Reference station

Vehicle A Vehicle B

xyz pos
Rinex

xyz pos
Rinex

VRS
RTCM

VRS
RTCM

 

Fig. 4 Cooperative navigation system 

In the experiment, vehicle B uses the 

observations (code and carrier phase) of the 

reference station and its own measurements to 

perform the code and carrier phase DD. Once an 

absolute position of vehicle B can be obtained, 

it will share its absolute position and some raw 

RINEX information with vehicle A. Suppose 

vehicle A cannot form a V2I situation with the 

reference station due to a blockage or other 

reasons, it will then use the shared information 

from vehicle B, together with its own observed 

RINEX data to carry out cooperative 

positioning. The absolute position of vehicle A 

is calculated based on this V2V system.  

The sampling frequency of the raw data for 

vehicle A and vehicle B is 20Hz so that different 

cooperative positioning performance can be 

analyzed at different sampling rate and delay. 

The cutoff angle of visible satellites is set to 20°, 

FAP  is chosen as 5%. The series of common 

visible satellites is shown in Figure 5. As can be 

seen, satellite 28 appears at 55s while satellite 

22 becomes unavailable from 69s. From 69s to 

180s the set of visible satellite is [1 3 11 14 19 

28 32], and ordered by elevation from high to 
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low the sequence is [11 1 32 19 14 3 28], thus 

satellite 11, whose elevation is the largest, is 

chosen as the priori satellite. 
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Fig. 5 Common visible satellites 

The new closed-loop EKF approach is 

quantified by comparing three popular methods. 

The first method is the prominent LS which 

performs a float estimate in the first step then a 

LAMBDA to fix ambiguities (Verhagen and Li 

2012), the second method is the normal EKF 

approach proposed in several relative kinematic 

positioning applications (Wolfe et al. 2007), and 

the third method uses differenced code based 

EKF techniques (Muller et al. 2014). The 

variance of the code measurements 2

c  is set to 

4m2 and the variance of the carrier phase 

measurement is set to 0.0009m2. 

 The results of the cooperative positioning 

are shown in Figure 6. The top panel shows the 

absolute positions of vehicle A (electric train), 

road vehicle B  and the reference station. The 

position of the road vehicle is achieved by the 

new EKF using DD between the reference 

station and vehicle B. The position of the train 

is derived from the shared information of the 

road vehicle position plus the relative position. 

In the bottom panel, the relative position of 

vehicle A and B is calculated by the new EKF, 

LS, normal EKF and code EKF respectively. 

Their results are compared with the reference 

(the subtraction between the GNSS/INS tightly 

coupled results of vehicle B and the previously 

scanned track of vehicle A). The cooperative 

positioning results of vehicle A using those 

methods are shown in the top panel of Figure 7, 

and their errors are shown in the bottom panel. 

As can be seen, the new EKF is very consistent 

with the reference results, which is significantly 

better than others.  

The mean errors (3D) of the new EKF vs. 

other methods for vehicle A is shown in Table 1. 

As can be seen, centimeter-level positioning 

accuracy can be obtained from cooperative 

positioning using the new EKF. For the LS 

method, only decimeter-level accuracy can be 

obtained. Compared with the normal EKF, the 

positioning error of new EKF is significantly 

reduced (0.023m vs. 0.083m using dual 

frequency signal and 0.218 vs. 0.675 using 

single frequency signal). This is due to the 

normal EKF requiring that the float ambiguities 

are sufficiently close to the exact integers, 

otherwise, the LAMBDA will not be able to fix 

ambiguities and the positioning accuracy will be 

degraded. It is also can be seen that the code 

based EKF is the worst because it sacrifices the 

higher accuracy available from carrier phase 

measurements. Meanwhile, the performance of 

the dual frequency test is significantly higher 

than the single frequency test for all the 

methods. This is due to that the success rate for 

dual frequency carrier phase ambiguity fix is 

higher than single frequency (99.48% vs. 

79.67% using the new EKF).  
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Fig. 6 Results of cooperative positioning. Absolute (top) 

and relative positions (bottom) for vehicle A and B 
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Fig. 7 Cooperative results of vehicle A using different 

methods. Positioning results (top) and their errors 

(bottom) 

Table 1 Mean errors in meters using different methods 

Solution New 

EKF 

LS Normal 

EKF 

Code 

EKF 

L1+L2 0.032 0.127 0.083 0.579 

L1 0.218 0.832 0.675 1.146 

  The positioning results for using different 

sampling rates are also compared, which is 

shown in Table 2. As can be seen, the 

performance at 10Hz and 20Hz is similar, where 

both are slightly better than 1Hz. This shows 

that in vehicle applications, high sampling rate 

usually contributes little in improving the 

positioning performance, On the contrary it 

increases the data transfer and recalculation 

burden. 

Table 2 Mean errors in meters using new EKF  

Solution 1Hz 10Hz 20hz 

L1+L2 0.032 0.028 0.027 

L1 0.218 0.203 0.205 

  In order to validate the performance of 

multi-failure diagnosis for new EKF 

cooperative positioning, two failures are 

artificially added to the code and carrier phase 

measurements. Results show that good 

performance were obtained in both V2I (vehicle 

B vs. reference station) and V2V (vehicle A vs. 

vehicle B) tests. The V2V tests using single 

frequency data at 1Hz is used for demonstration 

here.  

First, two step failures of 25m are added to 

the code measurements of satellites 19 and 32 

between 100s and 120s. The failure diagnosis 

results are shown in Figures 8 and 9, and Table 

3. In the top panel of Figure 8, it can be seen 

that the step failure of code measurements can 

be detected immediately by the proposed 

CRAIM method. The 1st iteration of the w-test 

for code DDs is shown in the middle panel of 

Figure 8. As can be seen, due to the correlation 
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of the statistics, two failures induced the code 

DDs of satellites 1, 19 and 32  exceed the 

threshold, where the largest is the 32nd satellite 

(5.325m as shown in Table 3). The first iteration 

of the w-test for the carrier phase DDs is shown 

in the bottom panel of Figure 8, which indicates 

that the failures of code DDs has no influence 

on the statistics of the carrier phase DDs. 

However, it can detect the outliers of satellites 

14, 22 and 28, due to the changing of visible 

satellites as shown in Figure 5. The second 

iteration of w-test for code DDs and w-test for 

carrier phase DDs are shown in Figure 9. It can 

be seen that the code DD of the satellite 19 has 

the biggest test statistic (3.526m as shown in 

Table 3), so this satellite is considered as the 

second failure in this phase. As no more test 

statistics are seen to exceed the threshold in the 

third iteration, the iteration is ended and the 

code DDs of the satellites 32 and 19 are 

considered as failures from the first two 

iterations.    
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Fig. 8 Step failure diagnosis on code measurements. 

Detection result (top), the 1st iteration of w-test for code 

DDs (middle) and carrier phase DDs (bottom) 
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Fig. 9 The second iteration results of step failure 

diagnosis on code measurements. Code DDs (top) and 

carrier phase DDs (bottom) 

Table 3 Results of code DDs at 120s  

i 
DD 

pairs 
maxij  1,iw  2,iw  3,iw  

1 11,1 0.280 3.343 1.955 0.978 

2 11,3 0.092 0.921 0.512 0.285 

3 11,14 0.114 1.166 0.613 0.320 

4 11,19 0.249 4.680 3.526 0.000 

5 11,28 0.149 1.683 0.889 0.411 

6 11,32 0.279 5.325 0.000 0.000 
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  For further tests, two slips events of 25 cycles 

are added to the carrier phase measurements of 

the satellites 19 and 32 between 100s and 120s. 

The integrity monitoring results are shown in 

Figures 10 and 11, and Table 4. Similar to the 

analysis of code measurement results, the 

multi-failure of carrier phase measurements can 

also be detected efficiently with the proposed 

CRAIM method. Meanwhile, the failures of 

satellites 19 and 32 can be identified through 

the iteration of the extended w-test proposed in 

this study. Furthermore, by comparing Tables 3 

and 4, it can also be seen that the correlation 

coefficients of carrier phase DD is larger than 

code DD, which means that the failure 

identification of carrier phase DD is more 

difficult when compared with code DD. 

Nevertheless, the proposed multi-failure 

diagnosis method is efficient for both code 

measurements and carrier phase measurements.  
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Fig. 10 Step failure diagnosis on carrier phase 

measurements. Detection result (top), the first iteration of 

w-test for code DD (middle) and carrier phase DD 

(bottom) 
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Fig. 11 The second and third iteration results for carrier 

phase DDs. The second iteration (top) and third iteration 

(bottom) 

Table 4 Results of carrier phase DD at 120s 

No. 
DD 

pairs 
maxij  1,iw  2,iw  3,iw  

ph1 11,1 0.986 2.162 1.955 0.275 

ph2 11,3 0.788 0.735 0.051 1.353 

ph3 11,14 0.566 0.825 0.747 0.304 

ph4 11,19 0.985 2.722 2.259 0.000 

ph5 11,28 0.719 1.232 1.170 0.475 

ph6 11,32 0.590 3.932 0.000 0.000 
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Conclusion 

Cooperative GNSS positioning for 

multi-vehicles has achieved encouraging results 

in recent years. However, most research is based 

on sharing code measurements rather than 

carrier phase measurements. Under these 

circumstances, the positioning accuracy and 

integrity cannot meet the high performance 

requirements of future ITS such as connected 

vehicles or autonomous driving applications. In 

order to overcome these problems, a new EKF 

and a multi-failure diagnosis algorithm are 

developed to process GNSS pseudorange and 

carrier phase measurements. First, a new 

closed-loop EKF with PAR as feedback to 

address the low accuracy issue is introduced. A 

multi-failure diagnosis algorithm is then 

proposed to improve the integrity and reliability. 

The core of this new algorithm includes using 

modified CRAIM method for failure detection, 

and the double extended w-test detectors to 

identify failures. The effectiveness is 

demonstrated by a cooperative positioning 

experiment using a GNSS reference station, an 

electric train and a road vehicle. High accuracy 

cooperative positioning results have been 

achieved, and the multi-failure diagnosis 

algorithm is validated for both the code and 

carrier phase measurements.  
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