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The missing mushrooms: searching for fungi in ancient human dietary analysis  1 

Abstract 2 

Fungi are a common part of modern human diets, but are rarely discussed in an archaeological 3 

context. Power et al. (2015) published data on bolete spores in human tooth calculus, suggesting 4 

that Upper Palaeolithic peoples ate mushrooms. Here we briefly consider the likelihood of 5 

mushroom consumption in the past, and examine whether or not stable isotopes may provide a way 6 

of seeing this in archaeological populations. We also consider the complexities of fungal stable 7 

isotopes using our own data and that from the literature. We conclude that fungi are highly variable 8 

isotopically, and are an additional dietary factor that should be considered when trying to interpret 9 

‘terrestrial’ carbon isotope signatures combined with relatively high nitrogen isotope values in 10 

humans and other animals. Substantial mushroom ingestion could, in some cases, result in isotope 11 

values that may be interpreted as considerable meat consumption. 12 

 13 

1. Introduction 14 

In April 2015 Power et al. (2015) published a paper on microremains in Palaeolithic human tooth 15 

calculus from El Mirón cave, Spain. The press release that accompanied the paper emphasised the 16 

finding of bolete mushroom spores, and postulated that Palaeolithic hunter-gatherers could have 17 

been eating fungi under the title ‘the oldest evidence for mushrooms used as a food source’ (Anon, 18 

2015). Fungal fruitbodies (sporocarps) are the macro-structure of a fungus that produces the 19 

reproductive structures (Spooner and Roberts, 2005), and are here referred to as mushrooms. They 20 

are a common food item in many modern human diets, yet they are rarely included when 21 

archaeological foodstuffs are being discussed. Here we highlight that mushrooms should be included 22 

in such discussions and examine another potential line of evidence for mushroom eating – that of 23 

stable isotope analysis of δ
15

N and δ
13

C from bone collagen in archaeological skeletons. Anomalous 24 

bone collagen stable isotope values with apparently terrestrial δ
13

C and relatively high δ
15

N have 25 

been reported from a number of sites and species, and we suggest that fungus may play a part in 26 

explaining these results. 27 

1.1 The potential importance of mushrooms 28 

Mushrooms are consumed by modern Homo sapiens throughout the world. Different cultures favour 29 

different species, and the quantity of mushrooms eaten can vary enormously, e.g. in 2007 estimated 30 

consumption of mushrooms in China was 1,226,551 metric tons, while in Belarus it was 6,800 tons 31 
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(McCarty, 2010), equating to 0.93 kg and 0.71 kg per person respectively (population data from 32 

Worldbank.org). The quantity of fresh and processed mushrooms consumed by any single individual 33 

will vary according to taste, but in America it has been estimated to be 1.36 kg per person per year 34 

(Hoyle, 2014) and in Germany 3.2 kg per person (Lelley, 2014). Mushrooms are proteinaceous, low in 35 

fat and ergosterol (the functional equivalent of cholesterol), and contain useful dietary nutrients 36 

(McCarty, 2010), such as sulphur (see supplementary information).  Ancient texts mention 37 

mushrooms (e.g. Theophrastus c.371-c.287 BC (Sharples and Minter, 1983)) and their hallucinogenic 38 

and poisonous properties are also widely known from ethnographic studies (Stephenson, 2010). As 39 

soft-bodied organisms mushrooms are very rarely found on archaeological sites and those taxa that 40 

have been recovered are often woodier and may or may not have been collected to be eaten (e.g. 41 

bracket fungi from the Neolithic Italian village of ‘La Marmotta’ (Bernicchia et al., 2006)). However, a 42 

few examples do suggest consumption, in addition to the spores identified as those from bolete and 43 

agaric mushrooms by Power et al. (2015). Oetzi the Copper Age ‘iceman’ from the European Alps 44 

was carrying the birch polypore Piptoporus betulinus (Peintner and Pöder, 2000), which could have 45 

been ingested as a vermifuge (Capasso, 1998). Puffballs Bovista nigrescens and Calvatia utriformis 46 

have been found on UK archaeological sites and may have been used for culinary or medicinal 47 

purposes (Watling and Seaward, 1976). These are rare exceptions to the archaeological invisibility of 48 

mushrooms and there is little tangible evidence of the edible mushrooms that people are much 49 

more likely to have encountered and eaten. In the temperate zone mushrooms are often available 50 

from early summer through into the winter, although peak occurrence of fungal fruiting bodies is 51 

during the autumn and some animals may become mushroom specialists at this time of year (e.g. 52 

Avila et al., 1999) - however the extent of this ‘fungi season’ is in part controlled by changes in 53 

climate, and this season is currently lengthening in Europe (Kauserud et al., 2012). Indeed in Europe 54 

some species ‘fruit’ all year round (such as truffles and many bracket fungi). Mushrooms can yield 55 

between 160-250g protein from a dried kg of fruiting bodies (de Román et al., 2006), and dried 56 

mushrooms can last for several seasons, potentially extending their dietary impact over a much 57 

longer period. The drying of mushrooms is not exclusive to humans, for example several North 58 

American squirrel species are known to dry and cache fungi for later consumption (Stephenson, 59 

2010). Mushrooms are likely to have been a frequent component in past human diets, but as yet 60 

they are not often included in such discussions. Stable isotope analysis provides one way of 61 

investigating the role of such invisible foods, although in the case of fungi their potential impact on 62 

δ
15

N and δ
13

C values may be highly complex.  63 

 64 
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2.0 Mushrooms and stable isotopes 65 

As mushrooms are highly proteinaceous (e.g. crude protein ranging from 16.5-59.4% dry matter 66 

(Kalač, 2009)) they have considerable potential to affect body δ
15

N values in their consumers. Recent 67 

work has demonstrated that dietary δ
15

N systems are complex with many possible contributors to 68 

the results seen in archaeological material (e.g. Müldner and Richards, 2007; Szpak, 2014). Here we 69 

encourage researchers to consider mushrooms as another factor within this complexity. Mushrooms 70 

have a wide range of isotope values as illustrated by nearly 1000 stable isotope values for worldwide 71 

fungi plotted in Figure 1. This shows that worldwide nitrogen values range from δ
15

N -7.1‰ to 72 

+21.8‰ and δ
13

C values range from -31.7‰ to -19.0‰. However, not all species will be present in a 73 

single region (although many taxa have a very wide geographic distribution) and more importantly, 74 

not all taxa are edible, although only a small minority of mushrooms are really poisonous to humans 75 

(Ramsbottom, 1953). Few studies of fungal stable isotopes have been undertaken in Europe, with 76 

the exception of work in the Scandinavian forests (e.g. Taylor et al. 1997), in France (e.g. Zeller et al. 77 

2007) and on UK waxcaps (Hygrocybe spp., Griffith, 2004). Almost no studies, with the exception of 78 

the truffle analyses of Zeller et al. (2008), have focussed on taxa that are edible to humans. To 79 

illustrate this, Figure 2 plots data for some common European edible mushrooms. These data are 80 

from the same sources as Figure 1 but also include our own data from North West England – mainly 81 

sampled from Mere Sands Wood nature reserve during October 2013 (see supplementary 82 

information for full details of these previously unpublished analyses). Figure 2 demonstrates that 83 

there is very wide variation, with δ
15

N values ranging from -1.1‰ to 12.5‰ and δ
13

C from -28.6‰ to 84 

-21.1‰. Six species have values δ
15

N >8‰, ceps, wood hedgehog, horse mushroom and the truffles. 85 

There are replicate data for several species: notably the chanterelle has a very narrow range of 86 

carbon values, but nitrogen values that differ by 7‰ (δ
15

N 0.7‰ to 7.7‰, and δ
13

C from -26.6‰ to -87 

25.2‰ n = 5), while the wood hedgehog has only a 0.6‰ difference in nitrogen, but a 3.2‰ 88 

difference in carbon values (δ
15

N 8.6‰ to 9.2 ‰ and δ
13

C from -28.6‰ to -24.5‰, n = 3). 89 

  90 

2.1 Archaeological examples 91 

Typically, the trophic level effect for δ
15

N is expected to be between +3 and +5‰ (Bocherens and 92 

Drucker, 2003). The highest δ
15

N values recorded from human bone collagen are typically around 93 

the +20‰ range but values over +15‰ are usually interpreted as relatively high and evidence for 94 

significant marine mammal intake. Such consumption would also result in relatively high δ
13

C values, 95 

but interpretation of diet is more difficult when relatively high δ
15

N values are accompanied by 96 
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relatively low δ
13

C values. Müldner and Richards (2007) examined a number of reasons for 97 

unexpectedly high δ
15

N values (but relatively low δ
13

C) in human bone collagen from Roman and 98 

Medieval York, concluding that omnivore meat, bird eggs, marine molluscs, freshwater fish and/or 99 

manuring could have contributed to this profile. However, mushrooms, a food source that may be 100 

15
N enriched but with a ‘terrestrial’ (i.e. relatively low) δ

13
C signal were not considered, yet Figures 1 101 

and 2 demonstrate that mushrooms can also fall into this isotopic range. In addition to humans, 102 

individuals of several herbivore taxa such as red deer, Cervus elaphus (Stevens et al., 2006) and 103 

woolly mammoths, Mammuthus primigenius (Fox-Dobbs et al. 2008) have been found to have 104 

higher than predicted δ
15

N values when compared to their assumed diet of vegetation, and 105 

mushrooms may also have a role here.  106 

 107 

A rare example of fungal stable isotopes being considered in an archaeological context is work by 108 

Hamilton et al. (2009) which attempted to model the potential input of mushrooms into pig diets in 109 

the Neolithic - but the evidence base for the fungal data was very limited. While the work focussed 110 

on the contribution of mushrooms to δ
13

C, the model also included δ
15

N. This was based on 111 

mushrooms being 1‰ to 3‰ higher in δ
15

N than plant foods, which may be realistic if animals do 112 

not discriminate between fungal taxa. However humans and other animals will target mushrooms 113 

that are palatable, including some taxa that have particularly high δ
15

N (e.g. truffles), and the means 114 

of the edible fungi shown in Figure 2 are 7.9‰ for δ
15

N (n=43) and -25.4‰ for δ
13

C (n=43). Later 115 

work (Hamilton and Thomas, 2012; Millard et al. 2013) has also focussed on the effect of fungi on 116 

δ
13

C values rather than δ
15

N in pigs. Here we emphasise that δ
15

N values may also be influenced by 117 

mushrooms, and indeed this may lead to a trophic effect if people are consuming animals such as 118 

pigs and deer which eat large quantities of mushrooms at certain times of year (Hohmann and 119 

Huckschlag, 2005; Pokorny et al., 2004). Overall, the data shown in Figure 2 suggests that nitrogen 120 

isotope values in edible mushrooms vary between those expected of legumes up to those present in 121 

freshwater fish (Schoeninger and deNiro, 1984).   122 

 123 

2.2 Isotopic complexity in Fungi 124 

In parallel to science-based archaeology, there has been a significant increase in the application of 125 

stable isotopes within fungal ecology over the last few decades (Griffith, 2004). This has focussed 126 

largely, but not exclusively, around the fields of ecosystem ecology and food web studies. Stable 127 

isotopes have the potential to quantify nutrient transfers in fungi, but the complex nature of isotope 128 

pathways has meant that there are still considerable gaps in knowledge.  This isotopic complexity in 129 
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mushrooms is not surprising given that the fungi are usually considered to comprise an independent 130 

Kingdom, with the main edible fungi being found in two different fungal Phyla (Margulis and 131 

Chapman, 2009). Part of this complexity may arise because different fungal species can feed at 132 

different trophic levels within a food web and this will impact isotope fractionation (Steffan et al., 133 

2015). The majority of work has focussed on nutrient cycling and has examined isotope fractionation 134 

in fungal sporocarps in the context of their ecosystem. Natural abundance stable isotope studies 135 

utilise the fact that the majority of biogeochemical processes fractionate against the heavy isotopes 136 

resulting in measurable differences in stable isotope ratios. Trophic strategies have been examined 137 

using carbon and nitrogen isotopes, with apparent differences between saprophytic and mycorrhizal 138 

fungi (edible fungi can be found in both groups).  Hobbie et al. (2012) demonstrated mycorrhizal 139 

fungi to be relatively enriched in 
15

N but depleted in 
13

C compared to saprotrophic taxa in the same 140 

habitat which they attributed to variations in elemental exchange processes. However, this 141 

difference is highly dependent both on the substrate and the species. This makes it complex to 142 

separate isotopic effects due to fungal processing from those caused by variations in the substrate. 143 

The isotope effects of decomposition, for example, have had comparably less attention and are less 144 

well understood as a result (Henn and Chapela, 2000).  Even within the same fruiting body there can 145 

be appreciable differences (± 2 ‰) in 
15

N enrichment. For example, Taylor et al. (1997) 146 

demonstrated higher δ
15

N values in caps vs. the stem (stipes) in four different taxa including the fly 147 

agaric Amanita muscaria (Taylor et al., 1997; see also the supplementary data in this study). Handley 148 

et al. (1996) also found caps had higher δ
15

N values compared with stems on specimens from 149 

Scotland, and they also observed differences in enrichment after rain, in which N values were 150 

lowered, but the enrichment of cap vs. stem remained. Isotope values may differ between the same 151 

species from the same site, although they may also be very similar across sites. For example,  in our 152 

data from North West England (see SI) the birch polypore, despite being from two different 153 

localities, had very similar values, while the common bonnet results from the same locality differed 154 

in δ
15

N by 3.3‰ (δ
13

C -21.1‰, δ
15

N 3.7‰; δ
13

C -22.8‰, δ
15

N 0.4‰). Sulphur isotope values on the 155 

same samples range from 3.2‰ to 7.9‰ and appear to have a negative relationship with δ
13

C 156 

values, suggesting they reflect local habitat substrate conditions (see SI). While these differences will 157 

affect the overall isotope composition of a particular fruiting body, they are unlikely to affect the 158 

dietary choices of a vertebrate forager. Therefore, understanding the role of mushrooms in human 159 

diets will be highly complex, but they should at least be considered, particularly for those sites 160 

where groups or individuals appear to have anomalous dietary values. For example, UK waxcap data 161 

(n=112) illustrate that some edible fungi can be very highly enriched in 
15

N (mean = 15.4‰) and 162 

depleted in 
13

C (mean = -28.6‰) (Griffith, 2004 and pers. comm).  163 
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As the cell walls of mushrooms are chitinous, there is a question about the bioavailability of the 164 

protein (and therefore the 
15

N) that they contain. The widely eaten mycoprotein Fusarium 165 

venetatum (the main ingredient in Quorn
TM

) is not a mushroom, but is reported to be higher in 166 

digestible protein than beef (www.mycoprotein.org), indicating that at least some types of fungal 167 

proteins are digestible by humans. Unrelated studies on rats demonstrated that animals fed purely 168 

on mushrooms resulted in little or no weight gain, but that protein was absorbed from the fungi 169 

(Longvah and Deosthale, 1998), while stable isotope analyses of small marsupials (bettongs and 170 

bandicoots) demonstrated that δ
15

N in faecal samples was derived from the consumption of fungi 171 

(McIlwee and Johnson, 1998). A further isotope example is the increase in caesium-137 in both deer 172 

and wild boar flesh following Chernobyl, an increase that resulted from the animals consuming fungi 173 

that bioaccumulated the radioactive isotopes (Hohmann and Huckschlag, 2005; Avila et al., 1999),  174 

clearly showing that nutrients within fungi can be utilized by mammals.    175 

 176 

3.0 Conclusion 177 

Overall, mushrooms are likely to have formed part of the diet of archaeological populations 178 

(especially given the opportunity they provide to be dried and eaten year-round), but as they are 179 

rarely preserved on sites they are often overlooked. Stable isotope analysis may provide some 180 

insight into their consumption. Perhaps just as important are the possible effects of mushrooms on 181 

δ
15

N and δ
13

C values when anomalous results are found in humans and in non-human taxa 182 

(especially when those taxa are known fungivores). In cases with high δ
15

N and low (terrestrial) δ
13

C 183 

values in archaeological populations, we suggest that mushroom consumption should be considered, 184 

alongside other more commonly invoked explanations as described by Müldner and Richards (2007).   185 

Although stable isotope analysis has been successfully used to identify fungal food sources in some 186 

mammals (e.g. McIlwee and Johnson, 1998) the complexity of human diets, combined with the 187 

range of fungal isotopic compositions described above,  means that it may be unrealistic to expect to 188 

find an unambiguous ‘fungal signal’ in archaeological populations. However, further research on 189 

edible taxa is required to help clarify these complexities.  190 

 191 
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Figure Captions 294 

Fig 1. Published worldwide fungi δ
15

N and δ
13

C values. Data from Mayor et al. (2009, n = 843), Zeller 295 

et al. (2008 and pers. comm., n = 25), our data (n = 11, mean of fly agaric plotted (see supplementary 296 

information)), and waxcap summary statistics from Griffiths et al. (2004 and pers. comm, mean + SD, 297 

n = 112). 298 

 299 

 300 

  301 
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Fig 2. Stable isotope data for commonly edible fungi. Data from Mayor et al. (2009), Zeller et al. 302 

(2008 and pers. comm) and this study (see supplementary information). Scientific names: Cep 303 

Boletus edulis, Chanterelle Cantharellus cibarius, Shaggy ink cap Coprinus comatus, Wood hedgehog 304 

Hydnum repandum, Chicken of the woods Laetiporus sulphurous, Oyster mushroom Pleurotus 305 

ostreatus, Horse Mushroom Agaricus arvensis.  306 

 307 

 308 

 309 

  310 
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Supplementary Information 311 

Information on sample collection and analysis, plus results of stable isotope analysis for C, N and Sr 312 

for fungi from North West England. 313 

 314 

O’Regan et al. Supplementary information: measurements of stable isotope chemistry from fungal 315 

fruiting bodies collected in North West England. 316 

Methods 317 

Samples 318 

Samples were collected from three locations in Northwest England in October 2013. Mere Sands 319 

Wood Nature Reserve is in Rufford, Lancashire (53.6355
o
N, 2.8371

o
W) and is a series of former sand 320 

quarries surrounded by wood and heathland. Hadden Wood, Wirral, Cheshire is a plantation of 321 

largely coniferous woodlands (53.2707
 o

N, 3.0246
 o

W), and Willaston Garden, Wirral, Cheshire is a 322 

suburban garden with largely deciduous shrubs and trees (53.2922
 o

N, 3.0067
 o

W). Eleven fruiting 323 

bodies were collected in total, eight from Mere Sands Wood, two from Hadden Wood and one from 324 

Willaston Garden (table 1). In the case of taxa that are difficult to reliably identify on just fruiting 325 

body morphology spore colour and microscopic examination of spore size and morphology was used 326 

to confirm the identifications. 327 

Drying and analysis 328 

All samples were dried at between 50-100 
o
C, initially in a domestic fan oven and later a standard 329 

drying oven. Work by Taylor et al. (1997) demonstrated that there were no significant differences in 330 

δ
15

N when samples were dried at temperatures between 40-105
o
C. Samples were weighed into tin 331 

capsules for analysis with additional V2O5 as a combustion aid for the sulphur analysis. δ
13

C analyses 332 

were performed by combustion in a Costech ECS4010 Elemental Analyser (EA) on-line to a VG 333 

TripleTrap (plus secondary cryogenic trap) and Optima dual-inlet mass spectrometer, with δ
13

C 334 

values calculated to the VPDB scale using a within-run laboratory standard (BROC2) with expected 335 

delta values of –27.48‰ (calibrated against CH7, IAEA). Replicate analysis of well-mixed samples 336 

indicated a precision of + <0.1‰ (1 SD). %C analyses were calibrated against an Acetanilide 337 

standard. δ
15

N and δ
34

S analyses were performed by Continuous Flow Isotope Ratio Mass 338 

Spectrometry (CFIRMS). The instrumentation is comprised of an Elemental analyser (Flash/EA) 339 

coupled to a Thermo Finnigan Delta
Plus

 XL isotope ratio mass spectrometer via a ConFlo III interface. 340 

δ
15

N and δ
34

S values were calibrated using an in-house reference material BROC-2 with expected 341 
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delta values of +1.5‰ (calibrated against N-1 and N-2, IAEA) for N and expected delta values of 342 

11.7‰ (calibrated against S-1 and S-2, IAEA) for S. Carbon, nitrogen and sulphur isotope ratios (δ
13

C, 343 

δ
15

N and δ
34

S) are reported in per mil (‰) relative to VPDB, AIR and VCDT standards respectively. 344 

The 1σ reproducibility for mass spectrometry controls for these analyses were δ
15

N = ± 0.06‰, δ
13

C 345 

= ± 0.10‰ and δ
34

S = ± 0.20‰ respectively.  346 

Results 347 

The results of the δ
15

N, δ
13

C and δ
34

S analyses are shown in Table S1. The results demonstrate 348 

considerable variability with δ
15

N ranging from -2.6‰ to 8.6‰, δ
13

C from -26.7‰ to -21.1‰ and 349 

δ
34

S from 3.2‰ to 7.9‰.  350 

 351 

Table S1. Stable isotope data for modern fungi from three localities in North West England. 352 

Sample Common name Species location δ
13

C δ
15

N δ
34

S 

F10 Birch Polypore 
Piptoporus 

betulinus 
Mere Sands Wood -22.1 -1.8 3.9 

F11 Birch Polypore 
Piptoporus 

betulinus 
Hadden Wood, Wirral -23.0 -1.6 3.2 

F2 Clouded Funnel 
Clitocybe 

nebularis 
Mere Sands Wood -23.8 -2.6 5.2 

F4 Common Bonnet 
Mycena 

galericulata 
Mere Sands Wood -21.1 3.7 3.9 

F6 Common Bonnet 
Mycena 

galericulata 
Mere Sands Wood -22.8 0.4 5.4 

F1 Common Funnel 
Clitocybe 

gibba 
Mere Sands Wood -23.5 -2.6 3.6 

F7 Conifer Tuft 
Hypholoma 

capnoides 
Hadden Wood, Wirral -23.2 3.1 3.4 

F8 Fly Argaric stem 
Amanita 

muscaria 
Mere Sands Wood -26.7 2.1 7.9 

F5 Fly Argaric cap 
Amanita 

muscaria 
Mere Sands Wood -25.3 4.0 6.2 

F3 Honey Fungus 
Armillaria 

mellea 
Mere Sands Wood -24.7 2.4 5.2 

F12 Horse Mushroom 
Agaricus 

arvensis 
Willaston Garden -22.5 8.6 3.8 

F9 Oyster Mushroom 
Pleurotus 

osteatus 
Mere Sands Wood -24.8 -1.1 3.6 

 353 
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 354 

There is an indication of a negative relationship between δ
13

C and δ
34

S within the data, albeit non-355 

significant (Spearman’s r = -0.38, p=0.23), which may indicate that sulphur is reflecting local habitat 356 

conditions (see Fig. S1).  357 

 358 

 359 

Figure S1. δ
13

C plotted against δ
34

S for the fungi in Table S1.  360 

 361 
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