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Abstract—Information or data aggregation is an important
part of nearly all analysis problems as summarizing inputs from
multiple sources is a ubiquitous goal. In this paper we propose
a method for non-linear aggregation of data inputs that take the
form of non-normal fuzzy sets. The proposed shape-preserving
fuzzy integral (SPFI) is designed to overcome a well-known
weakness of the previously-proposed sub-normal fuzzy integral
(SuFI). The weakness of SuFI is that the output is constrained
to have maximum membership equal to the minimum of the
maximum memberships of the inputs; hence, if one input has
a small height, then the output is constrained to that height.
The proposed SPFI does not suffer from this weakness and,
furthermore, preserves in the output the shape of the input sets.
That is, the output looks like the inputs. The SPFI method is
based on the well-known Choquet fuzzy integral with respect to
a capacity measure, i.e., fuzzy measure. We demonstrate SPFI
on synthetic and real-world data, comparing it to the SuFI and
non-direct fuzzy integral (NDFI).

Keywords—Fuzzy Integral; Choquet Integral; Capacity Mea-
sure; Fuzzy Measure; Aggregation; Fusion

I. INTRODUCTION

Information aggregation is a basic operation in several
areas: machine learning, signal processing, distributed sensing,
robotics, crowd-sourcing, etc. In this paper, we address a
type of aggregation that has been studied in several previous
works [1–6]: the Choquet fuzzy integral (CFI) with respect
to a capacity measure (CM)—more popularly called a fuzzy
measure, at least in this venue. The combination of the CFI
and CM produces a non-linear aggregation method that is
essentially a compressed parameterization of a set of linear
convex sums (LCS), one for each possible ranking order of
the inputs. Whereas there are n! possible rank orderings of
n inputs, the CFI/CM parameterizes the associated n! LCSs
using (2n − 2) free parameters. To illustrate the efficiency of
the CFI/CM aggregation as compared to that of n! LCSs, we
show the compression ratio in Fig. 1. At only 10 sources, there
are already > 104× more terms in n! LCSs than that of the
(2n − 2) terms in the CFI/CM. Section I-A describes CMs in
more detail and Section I-B then details how the CFI can be
used to aggregate inputs with respect to a CM.

While numerous applications of the conventional CFI/CM
have been written about, this paper specifically addresses the

2 3 4 5 6 7 8 9 10
Number of inputs

100

101

102

103

104

105

C
om

pr
es

si
on

 ra
tio

Fig. 1: Compression ratio (n ·n!) : (2n− 2) of the number of
terms in all possible rankings of n sources compared to the
number of free parameters in the CFI/CM.

extension of CFI/CM aggregation to inputs that take the form
of fuzzy sets (FS). Much has been written on how to extract
intervals and FSs from data in real-world problems [7, 8],
and numerous CFI extensions to address FS inputs have been
proposed [6, 9–13]. An unsolved problem in this regard is
non-normal FS inputs, or inputs that do not have a height—
i.e., maximum membership—equal to 1. One extension in
particular that addresses non-normal FS inputs is the sub-
normal fuzzy integral (SuFI). But SuFI is plagued by a major
weakness, the output FS has a maximum membership value
equal to the minimum of the maximum memberships of all
inputs. That is, the “shortest” input drives the maximum
membership of the output. Figure 2 illustrates this problem
for an extreme example of aggregating two FSs, A and B. Set
A has a maximum membership of 0.1; even if set A is given
zero weight in the aggregation, the SuFI result is limited to
a height of 0.1, producing the orange membership function
labeled Cg(A,B). Intuitively, the aggregation of these two
sets if A has zero weight should be exactly B. Hence, we
propose in this paper a shape-preserving fuzzy integral (SPFI)
that addresses the weakness of SuFI.

Section II introduces the proposed SPFI. Some synthetic and
real-world examples are presented in Section III and then we
conclude. We now continue by presenting a brief introduction
to CMs and CFIs, formally presenting the notation used
throughout this paper.
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Fig. 2: Example of a two-input fuzzy integral where the weight
on set A is zero. This illustrates how B is cut-off where alpha-
cuts of A do not exist.

A. Capacity measures

A measurable space is the tuple (X,Ω), where X is a set
and Ω is a σ-algebra or set of subsets of X such that

P1. X ∈ Ω;
P2. For A ⊆ X , if A ∈ Ω, then Ac ∈ Ω;
P3. If Ai ∈ Ω, then

⋃∞
i=1Ai ∈ Ω.

A CM is a set-valued function, g : Ω → [0, 1], with the
following properties:

P4. (Boundary conditions) g(∅) = 0 and g(X) = 1;
P5. (Monotonicity) If A,B ∈ Ω and A ⊆ B, g(A) ≤ g(B).

If Ω is an infinite set, then there is also a third property
guaranteeing continuity; in practice and in this paper, Ω is
finite and thus this property is unnecessary. The CM values
of the singletons, g({xi}) = gi are commonly called the
densities.

Arguably, the most popular CM, i.e., fuzzy measure, is
the Sugeno λ-measure, which has the attractive property of
being able to be defined completely by the values of the
densities. The λ-measure has the following additional property.
For A,B ∈ Ω and A ∩B = ∅,

gλ(A ∪B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), (1a)

where it can be shown that λ can be found by solving [14]

λ+ 1 =

n∏
i=1

(
1 + λgi

)
, λ > −1. (1b)

More recent works on CMs have proposed learning CMs from
training data [15].

B. Choquet integrals

There are many forms of the fuzzy integral; see [14]
for detailed discussion. In practice, FIs are mostly used for
evidence fusion [1–6]. They combine sources of information
by accounting for both the support of the question (the
evidence) and the expected worth of each subset of sources (as
supplied by the CM g). Here, we focus on the fuzzy Choquet
integral (CFI), proposed by Murofushi and Sugeno [16, 17].
Let h : X → R be a real-valued function that represents the

evidence or support of a particular hypothesis.1 The discrete
(finite Ω) Choquet integral is defined as∫

C

h ◦ g = Cg(h) =

n∑
i=1

h(xπ(i)) [g(Πi)− g(Πi−1)] , (2a)

= wT
πhπ, (2b)

where π is a permutation of X , such that h(xπ(1)) ≥
h(xπ(2)) ≥ . . . ≥ h(xπ(n)), Πi = {xπ(1), . . . , xπ(i)}, and
g(A0) = 0 [11, 18]. At (2b), we have simply reformulated
(2a) as the dot-product of the vectors wπ and hπ , where

hπ =
(
h(xπ(1)), h(xπ(2)), . . . , h(xπ(n))

)T
, (3a)

wπ =
(
g(Π1), (g(Π2)− g(Π1)), . . . , (1− g(Πn−1))

)T
.

(3b)

The insight of (2b) is that the CFI with respect to the CM
is a collection of n! linear-order statistics on h, one for each
possible sort order of the evidence h. The elements of wπ are
simply the weights of each evidence value, as represented by
the gain in the CM up through the lattice. More details of the
properties of CFIs and fuzzy integrals in general can be found
in [11, 18, 19].

Example 1. As a simple example, let us consider three
sources, A, B, and C, each providing respective evidence, hA,
hB , and hC . The CM for these sources is shown in Fig. 3(b),
e.g., g({A}) = 0.1 and g({A,B}) = 0.95. If hA = 0.1,
hB = 0.01, and hC = 0.9, then the CFI at (2) is

Cg(h) =hCg({C}) + hA(g({A,C})− g({C}))
+ hB(1− g({A,C})),

=0.9 ∗ 0.8 + 0.1 ∗ (0.9− 0.8) + 0.01 ∗ (1− 0.9),

=0.731.

In this example, wπ = (0.8, 0.1, 0.1)T and hπ =
(0.9, 0.1, 0.01)T .

In some cases, the evidence h cannot, or should not, be
represented simply by numbers; h would be better represented
as an interval-valued or FN-valued function—or, as we will
argue later, by a general FS. An example is the survey
question, “How many bottles of wine should I purchase for
the reception?” Many people would answer this question with
an interval, e.g., “between 20 and 30,” or a FN, e.g., “about
25.” Furthermore, there is much work on how to extract
intervals and fuzzy sets from data in real-world problems
[7, 8]. Extensions of the fuzzy CFI have been proposed for
both interval-valued, fuzzy number-valued, and normal non-
convex integrands [6, 9–13], which we now discuss.

Let I(R) = {ū ⊂ R|ū = [u−, u+], u− ≤ u+} be the
set of all closed intervals over the real numbers. Dubois and
Prade [20] showed that if a function φ is continuous and non-
decreasing, then, when defined on intervals, φ produces an
interval, the endpoints of which are equal to the function val-
ues on the lower and upper bound of the individual intervals,

1Generally, when dealing with information fusion problems it is convenient
to have h : X → [0, 1], where each source is normalized to the unit-interval.



viz., φ(ū) = [φ(u−), φ(u+)]. This approach benefits us in
computing CFIs for intervals as they are continuous and non-
decreasing. Let h̄ : X → I(R), where h̄i = h̄(xi) = [h−i , h

+
i ]

is the interval-valued integrand (evidence). The CFI on h̄ is∫
h̄ ◦ g =

[∫
h− ◦ g,

∫
h+ ◦ g

]
, (4)

where the output
∫
h̄ ◦ g is itself interval-valued.

Now, let Ĥ : X → FS(R) be a non-convex, normal FS-
valued integrand.2 Hence, the height of each FS in Ĥ is 1.
Using the Extension Principle [21], the CFI of Ĥ w.r.t. g is
then defined as(∫

Ĥ ◦ g
)

(a) = sup
α∈[0,1]

{
a ∈

∫
αĤ ◦ g

}
, (5)

where αĤ = [αh−, αh+] are the closed intervals of the
level-cuts of the members of Ĥ at α. Note that αĤ
is not necessarily one continuous interval, but a set of
intervals (or a discontinuous interval) formed by taking
the level-cut of each Ĥi ∈ Ĥ [22]. Hence αĤ =
{[(αĤ1)−, (αĤ1)+], . . . , [(αĤn)−, (αĤn)+]} and αh− =
{(αĤ1)−, . . . , (αĤn)−} (and similarly defined for αh+).
Equation (5) can thus alternatively be written as(∫

Ĥ ◦ g
)

(a) =
⋃

α∈[0,1]

α

[(∫
αĤ ◦ g

)
(a)

]
, (6a)

=
⋃

α∈[0,1]

α

[(∫
αh− ◦ g

)
(a),

(∫
αh+ ◦ g

)
(a)

]
, (6b)

where a is the independent variable of the CFI; a ∈ R for the
CFI.

The problem with the CFI at (5) is that it is undefined for
sub-normal FS inputs, that is, there are values of α for which
α-cuts do not exist in all the inputs. To combat this problem,
we previously proposed extensions to the FIs for sub-normal
FSs, called SuFI and NDFI [5, 6, 13].

Let H : X → FS(R) be a general FS-valued integrand.
The sub-normal FI (SuFI), defined as(∫

H ◦ g
)

(a) = sup
α∈[0,β]

{
a ∈

∫
αH ◦ g

}
, (7a)

β =

n∧
i=1

Height(Hi), (7b)

simply computes (5) up to the minimum height of any input
FS and then stops. Figures 2 and 6 illustrate SuFI’s weakness;
it does not maintain the shape of the inputs and one low
membership input can severely impact the aggregation result
(even if that input has zero-weight in the aggregation).

Hence, we proposed the non-direct FI (NDFI), which in-
stead computes FI aggregation on the (vertical) membership
values, rather than the (horizontal) alpha-cuts.

2Note that this includes fuzzy numbers, as well.

II. SHAPE-PRESERVING FUZZY INTEGRAL

Let βi = Height(Hi) indicate the height of FS input Hi.
Then, the shape-preserving FI (SPFI) is calculated by(∫

H ◦ g
)

(a) = b sup
α∈[0,1]

{
a ∈

∫
αNorm(H) ◦ g

}
, (8)

where Norm(H) = {Norm(H1), . . . ,Norm(Hn)} is the set
of normalized evidence in H . The normalizing function acts
upon the membership function of Hi as

Norm(Hi)(x) = Hi(x)/Height(Hi), (9)

which simply scales Hi to a height of 1, making it a normal
FS. Hence, the calculation to the right of the equals sign at
(8) is simply a FI of FNs. The scaling factor b at (8) is the
height of the result, calculated as

b =

n∑
i=1

Height
(
Hθ(i)

)
[g(Θi)− g(Θi−1)] , (10a)

= wT
θ (Height(Hθ)) , (10b)

where θ(i) is a sorting function of H (nominally, from greatest
to least) and Θi =

{
Hθ(1), . . . ,Hθ(i)

}
. Essentially, the height

b is the result of a FI of the heights of the evidence, where
the sorting is determined by a relation on H . This begs the
question, how is this sorting done?

In the conventional fuzzy integral at (2a), the sorting is done
such that h(xπ(1)) ≥ h(xπ(2)) ≥ . . . ≥ h(xπ(n)). The sorting
function θ in (10a) similarly seeks to sort the inputs H from
greatest to least. While there are numerous works on ordering
FSs, in this work we order based on the center of mass of the
core of each normalized FS. Let C = {c1, . . . , cn} be these
centers-of-mass, where c1 is the center-of-mass of the core of
Norm(H1), etc. Then, θ sorts so that cθ(1) ≥ cθ(2) ≥ . . . ≥
cθ(n). In the sequel to this work, we will explore other possible
orderings of H , but the proposed center-of-mass approach is
simple to implement and, as you will see, it works well in
practice.

Example 2. Consider the three FSs {A,B,C} in Fig. 3(a) as
input evidence H to the SPFI. The CM g for this example is
shown in Fig. 3(b).

The first step of SPFI is to normalize the evidence, as
shown in Fig. 3(c), and then perform the CFI at (5) on these
normalized sets, the result of which is labeled as SPFInorm.
Finally, the height of the final result is calculated by the FI
on the heights of the input evidence. The respective heights
of A, B, and C are 1, 0.8, and 0.5 and the respective core
centers-of-mass are cA = 1, cB = 3 and cC = 9. Hence, the
height calculation at (10a) with respect to the CM shown in
view (b) is

b = 0.5 ∗ 0.8 + 0.8 ∗ (0.85− 0.8) + 1 ∗ (1− 0.85) = 0.59,

where, equivalently, if one wished to use the vector calculation
at (10b), then wθ = (0.8, 0.05, 0.15)T and Height(Hθ) =
(0.5, 0.8, 1)T . The final result of the SPFI is shown in
Fig. 3(a). This example shows that the SPFI is able to preserve
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Fig. 3: Example 1 illustrating the SPFI on three input sets.

the aggregated shape of the three FS inputs, while giving
what we consider to be a reasonable answer, say “a medium
membership in a little less than 8.”

We now contrast the SPFI example with the result that
would be obtained with SuFI and NDFI. Figure 4 illustrates
these results. As we previously showed, SuFI is unable to
produce an output at memberships greater than the lowest
height evidence H; here, that is 0.5. While, for this example,
SuFI and SPFI results are not that different, if we adjust the
CM to put more weight on inputs A and B, we see significant
difference—see Fig. 5. As this figure shows, the SuFI result
is cut-off at a height of 0.5. The SPFI result successfully
aggregates the three sets, maintaining the shape of the inputs
while giving a result that accurately depicts that the CM is
putting higher weight on inputs A and B.

The NDFI result for Example 2 is significantly different
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Fig. 6: Demonstration of a two-input SuFI where the weight
on set A is incremented from 0.2 to 0.8. While not as drastic
as in Fig. 2, this shows how the aggregation is cut-off above
the height of A, i.e., α > 0.5.

than the SuFI and SPFI results. This is because the NDFI is
fundamentally a different type of aggregation. The NDFI result
shows strong membership in C, as is represented in the CM;
however, there is also some membership shown down in the
region of A and B. We hesitate to say that the NDFI is wrong,
as we have shown its utility in previous works [5] and will
show that it has its strength for a certain type of problem later,
but we argue that the SPFI result is the most interpretable of
the three algorithms.

III. EXPERIMENTS

A. Synthetic Example

Consider the two FS inputs, A (blue) and B (red), shown in
Figs. 6 and 7. In this example, we show a simple aggregation
between these two sets with the intention of illustrating how
the SPFI better preserves the shape of the high weight inputs.
In this example, we adjust the CM as to put more (or less)
weight on each set. Hence, the output should look more like
the set that has the highest weight. Figure 6 shows the output
of the SuFI algorithm. As this illustration shows, even if the
weight on A is 0.2, and thus wB = 0.8, the output FS is cut-
off at the height of A. Furthermore, the output doesn’t even
look like B.

Let us now examine the behavior of the SPFI algorithm,
shown in Fig. 7. In this case, when the weight on A is large
(as shown in the lower right of the figure), the output set looks
like set A, whereas if the weight on A is small (as shown in
the upper left of the figure), the output set looks like B. This
illustration clearly shows the strength of the SPFI aggregation.
We now turn to an example with real-world data.

B. Age at death estimation

Consider the real-world example, first presented in [5], in
forensic anthropology of estimating the age-at-death of human
skeletal remains. Table I shows eight aging methods, each
providing an interval estimation of age-at-death of skeletal
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Fig. 7: Demonstration of SPFI for the same sets shown in
Fig. 6. This shows that our proposed method maintains a more
preferred aggregate shape of the two inputs.

TABLE I: Input for Age-at-Death Example [5, 6]

Aging Method Quality Est. Age Reliability
Pubic Symphysis (PS) 0.6 35–39 0.57

Auricular Surface (AS) 0.8 35–39 0.72
Ectocranial Sutures-vault (ESv) 0.2 25–74 0.59

Ectocranial Sutures-lateral (ESl) 0.5 23–63 0.59
Sternal Rib Ends (SRE) 0.5 33–42 0.75

Endocranial Sutures (ES) 0.4 35–39 0.51
Proximal Humerus (PH) 0.3 37–86 0.44

Proximal Femur (PF) 0.7 25–76 0.56

remains. The bones used in each of these methods is assigned
a Quality by the forensic anthropologist between 0 and 1,
describing the condition of the sample. The Reliability of each
test is shown in the last column; this reliability score is used
to populate the densities of the FM gi. The remaining entries
of the FM are computed by the Sugeno λ-measure.

Each aging method is mapped to an interval FS, where the
interval is the estimated age-at-death and the height is the
quality of the measurement, shown in Fig. 8(a). So, the width
of the interval indicates the uncertainty in the measurement,
while the height indicates the membership of that measurement
in the set of ‘estimated age-at-death’ as given by the quality
of the bone sample. These intervals are then fused to produce
an aggregate FS of the membership of each age at death.

Figure 8(b) shows the output of the three FI-based aggrega-
tions. The NDFI is our previously proposed algorithm, which
was built specifically for the age-at-death problem. As we have
stated before, the strength of the NDFI approach is that it
shows a clear high membership around 35 years old, while
also showing the lower confidence regions surrounding that
more certain estimate. The SPFI and the SuFI both indicate
an interval of 35 to 72 years, the only difference being the
membership over that interval. The membership of the SuFI
is driven simply by the lowest membership interval in the set
of inputs, i.e., the ESv aging method. The SPFI membership is
truly an aggregate of all the memberships of the interval inputs
according to the weights derived by the reliability scores and
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Fig. 8: Example showing estimation of skeleton age-at-death.
Aging methods shown in Table I.

subsequent FM.
For this specific problem, age at death estimation, we

believe that the NDFI is the preferred tool. First, the NDFI
was specifically designed for this problem. Second, a result of
the first point, the NDFI shows nicely the areas in which the
aging methods agree and how much they agree (weighted by
the reliability score). In contrast, the SPFI and SuFI simply
return interval-based sets that don’t provide a more detailed
view of the regions where the methods agree and disagree.
We do not see this as a weakness of the SPFI, but simply
as a result of how the SPFI was designed—as an aggregation
scheme which produces output that preserve the shapes of the
inputs. For the specific age at death estimation problem, the
NDFI is the preferred aggregation scheme.

IV. CONCLUSION

This paper proposed a new method, called SPFI, for non-
linear aggregation of non-normal fuzzy sets with the intention
of having the output of the aggregation preserve the shape of
the inputs. We showed through synthetic examples that this
method addresses a major weakness in the previously leading
algorithm, SuFI.

Future work in this area will focus on further developing this
method for real-world problems and proposing an efficient way
for representation and aggregation of non-convex fuzzy sets
(convex fuzzy sets are computationally efficient to represent
by simply storing the intervals at each alpha-cut).
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