
Role of interactions in a dissipative many-body localized system

Benjamin Everest,1, 2 Igor Lesanovsky,1, 2 Juan P. Garrahan,1, 2 and Emanuele Levi1, 2

1School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
2Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems,

University of Nottingham, Nottingham NG7 2RD, UK

Recent experimental and theoretical efforts have focused on the effect of dissipation on quantum
many-body systems in their many-body localized (MBL) phase. While in the presence of dephasing
noise such systems reach a unique ergodic state, their dynamics is characterized by slow relaxation
manifested in non-exponential decay of self-correlations. Here we shed light on a currently much
debated issue, namely the role of interactions for this relaxation dynamics. We focus on the ex-
perimentally relevant situation of the evolution from an initial charge density wave in the presence
of strong dephasing noise. We find a crossover from a regime dominated by disorder to a regime
dominated by interactions, with an accompanying change of time correlators from stretched expo-
nential to compressed exponential form. The strongly interacting regime can be explained in terms
of nucleation and growth dynamics of relaxing regions - reminiscent of the kinetics of crystallization
in soft matter systems - and should be observable experimentally. This interaction-driven crossover
suggests that the competition between interactions and noise gives rise to a much richer structure
of the MBL phase than anticipated so far.

I. INTRODUCTION

Many-body quantum systems in the presence of
quenched disorder undergo a transition between an er-
godic phase and a many-body localized (MBL) phase1–5.
While the transport properties of the MBL phase are
still debated6 it is generally accepted that it is charac-
terized by a slow growth of entanglement entropy7–10,
and ergodicity breaking which has been observed in nu-
merical studies5,11,12 and experiments13–16. Some non-
ergodic aspects of the MBL phase have also been argued
to be present with translation invariance17,18.

While most literature has focused on closed quantum,
the imperfect isolation of the cold atomic ensembles used
in recent experimental observations of MBL calls for an
understanding of the effect of dissipation on the MBL
phase19,20. In Ref.21 a chain of interacting fermions
in contact with an infinite temperature dephasing bath
was studied numerically. At conditions where the closed
system would be in the MBL phase, a slow approach
to the infinite temperature state was observed in the
open system, characterized by a stretched exponential
decay of self-correlations. Stretched exponential behav-
ior was confirmed analytically in Ref.22 in terms of a
non-interacting (Anderson) system valid for large disor-
der. Similarly, in Ref.23 the scaling properties of the same
system were studied in the large disorder limit, finding
independence of the dynamics from interactions.

A central question is therefore whether interactions
play any role in the relaxation to the ergodic state due
to dephasing in an otherwise MBL system. Here we ad-
dress this question by studying the dissipative dynamics
of a disordered XXZ chain in its MBL phase21. Our main
result is that depending on the interaction strength the
system explores two different regimes within the MBL
phase. We show that in the dynamics of an initial spin-
density wave, depending on interaction strength, there
is a crossover from a disorder dominated regime to an

interaction dominated regime, whose observable signa-
ture is a change of behaviour of self-correlators from a
stretched exponential to a compressed exponential de-
pendence with time. This latter behaviour is due to nu-
cleation and growth of relaxing regions. A crossover of
this sort is often a manifestation of non-equilibrium and
aging behaviour in soft matter and glassy systems, see
for example24–27.

II. MODEL

We consider a paradigmatic MBL system, the disor-
dered XXZ chain in a spinless fermions description,

H = J

N∑
l=k

(
ĉ†k ĉk+1 + ĉ†k+1ĉk

)
+V

N∑
k=1

n̂kn̂k+1 +

N∑
k=1

hkn̂k,

(1)

where we denote with ĉ†k the fermion creation operator,

with n̂k = ĉ†k ĉk the number operator, and the random
field hk ∈ [−h, h] is independently drawn for each site
from a uniform distribution. This model exhibits an
MBL transition for hc/J ' 7.25,10,28.

Following21 we couple the system to an infinite tem-
perature Markovian dephasing bath. At weak coupling
between system and bath, the dynamics can be described
by a Lindblad quantum Master equation29,30

ρ̇(t) = −i [H, ρ(t)] + γ

N∑
k=1

[
n̂kρ(t)n̂k −

1

2
{n̂k, ρ(t)}

]
,

(2)
where ρ is the system’s density matrix and γ ≥ 0 sets the
coupling to the bath. Eq. (2) has the advantage of being
experimentally relevant, as it can be derived from micro-
scopic principles for experiments on both cold fermionic31

and bosonic32 gases in the lowest band of an optical lat-
tice. The decoherence is caused by off-resonant scattering



2

of photons forming the lattice potential, and the dissipa-
tion rate γ is controlled by the detuning and intensity
of the trapping laser. Eq. (2) conserves fermion number
and in what follows we focus on the half-filling sector.

III. RATE EQUATION DESCRIPTION

For times t � 1/γ, there are two situations described
by the Master equation (2) which may be reduced to a
classical rate equation. The first is the limit of large
dephasing, γ � J33–36. The second is that of large inter-
actions and/or large longitudinal fields, V, h� J23. This
effective dynamics describes the evolution of the diagonal
elements of the density matrix pα. If we express these in
terms of the probability vector |p〉 =

∑
α pα |α〉, where

|α〉 are the N !/(N/2)!2 Fock states in the half-filling sec-
tor (see also23) Eq. (2) reduces to

∂τ |p〉 =

N∑
k=1

Γk

[
ĉ†k ĉk+1 + ĉ†k+1ĉk − P̂k

]
|p〉 (3)

where Pk = n̂k + n̂k+1−2n̂kn̂k+1. Eq. (3) describes clas-
sical hopping of particles on the lattice, with a rescaled
time τ = J2γt/h2, cf.22,23. The rate for hopping between
site k and k + 1 is given by

Γk =
h2

γ2 + [V (nk+2 − nk−1) + ∆hk]
2 , (4)

where ∆hk = hk+1 − hk
37 and nk = Tr(n̂k |p〉) is the

total probability of having an excitation on site k. In
the following we will fix the energy scale to γ = 1. The
rates Γk are configuration-dependent, see Fig. 1(a). In
the dynamics described by Eq. (3), the rates Γk act as a
kinetic constraint33, as often encountered in systems with
complex relaxation like glasses38: the form of the rates
Γk does not determine the properties of the stationary
state, but rather the relaxation pathways.

The rates Γk are random through the field hk. Their
distribution P (Γ) depends on the strength of the inter-
actions and on the specific configuration under consid-
eration. The analytical expression of P (Γ) is given in
Appendix A and plotted in Fig. 1(b) for various values
of V for the configurations of the left column of Fig. 1(a).
When V < 2h, the distribution is bimodal, with a peak
at Γ/h2 = 1 from values of the field such that ∆hk = ±V ,
[cf. Fig. 1(a)], and another peak at values Γ/h2 ∼ 4/(3h)2

(for V � 2h). The form of P (Γ) changes qualitatively
when V > 2h when ∆hk = ±V is not accessible, and the
distribution P (Γ) becomes unimodal retaining only the
slower peak, which for V � 2h is centered at Γ ∼ V −2.
The qualitative change of P (Γ) already hints at the dif-
ferent dynamical regimes depending on the strength of
the interactions.

FIG. 1. Panel (a) shows the dependence of the classical hop-
ping rates Γk on the configuration. We denote with • and ◦
respectively the occupied and empty states. In panel (b) the

normalized probability density function of rates
√

2/V P (Γ)
is displayed for different values of the interactions and h = 10.
The unnormalized distribution is depicted in the case V = 0.

IV. DISTINCT DYNAMICAL REGIMES
WITHIN THE MBL PHASE

To explore the relaxation dynamics we focus on the
case in which the initial state is the charge density wave
(CDW) state, where the corresponding probability is
|p(τ = 0)〉 = |◦ • ◦ • ... ◦ •〉, with ◦, • denoting empty
and occupied sites, respectively. This is relevant for
recent experiments13–16, where ergodicity properties of
were studied via the evolution of an initial CDW quanti-
fied by the imbalance

I(τ) =
2

N

∑
k

(−1)knk =
4

N

N∑
k=1

〈n̂k(τ)n̂k(0)〉 − 1, (5)

which gives a direct readout of the self-correlations and
thus accounts for the ergodicity properties of the system.

In Fig. 2 we report our results on the imbalance, ob-
tained by realising Eq. (3) via kinetic Monte Carlo, aver-
aged over disorder, Ī. The decay of Ī becomes slower for
increasing interactions. We quantify this slowing down
by defining the saturation time T such that Ī(T ) = e−2.
As shown in Fig. 2(a) we observe two different regimes:
For V < 2h the saturation time shows little dependence
on V , while for V > 2h it increases with increasing inter-
action, signalling a slowdown of the dynamics. The inset
shows that in the region V < 2h, while T is approx-
imately independent of V , the shape of the relaxation
function depends on the strength of the interaction.

Our data is well fitted by the function Ī(τ) ∼
exp

[
− (τ/T )

β
]
. This form is motivated by the analytical

arguments below. The results on the exponent β and the
time-scale T are reported in Fig. 2(b)-(c). We find that
at V ' 2h the relaxation of the imbalance switches from
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FIG. 2. The data presented are for a chain of length N = 1000 unless otherwise specified and are averaged over 10000
realizations of the disorder. Standard errors are always below the lines width. Panel (a) shows the dependence of the relaxation
time I (T ) = e−2 on the interactions V for various values of the disorder h. In the inset the relaxation dynamics is displayed
for h = 10, and different values of V < 2h. In panel (b) the dependence of the exponent β on V is displayed for various values
of h. The crossover between β < 1 and β > 1 at V ' 2h is highlighted by a vertical line. The analytical values obtained for
large and vanishing V are displayed as solid lines in the relevant regimes. In the inset the dependence of the exponent β on
V/h for h = 10 is displayed for various lengths of the chain alongside the effect of a small particle loss κ = 10−4γ is displayed.
Panel (c) shows the time-scale T in function of V for different values of h. The analytical value in the limit of strong interaction

T = 0.32V 4/3 is shown. In the inset the comparison between the small particle loss limit κ = 10−4γ (red), and the κ = 0 case
(black dashed) is displayed.

a stretched exponential behavior (β < 1) to a compressed
exponential behavior (β > 1) (see Fig. 2(b)). Despite
the rapid increase in β at V ' 2h which suggests a sharp
acceleration of the dynamics, the increase in the time-
scale T combines to give the slowing down observed in
Fig. 2(a). The minimum in T at V ∼ 0.3h, and the large
V behavior are compatible with the results in22. A finite
size study for the exponent β is shown in the inset of
Fig. 2(b). Although in the stretched exponential regime
(V < 2h) finite size effects have a marginal impact, in
the compressed exponential regime (V > 2h) they cause
a saturation of the exponent to lower values. The origin
of this behavior will become clear below.

The two regimes of stretched and compressed expo-
nential decay, for V � 2h and V � 2h, respectively, can
be argued as follows. When V � 2h the dynamics is
dominated by disorder, and we can set V = 0. In this
case the long time dynamics is characterized by large por-
tions of the chain in which the system has relaxed (giv-
ing null contributions to the imbalance), with isolated
non-relaxed pairs of neighboring sites corresponding to
the largest ∆hk. The approach of I(τ) to equilibrium is
then determined by those sites. Their dynamics can be
studied by focusing on, say, sites k and k+1 with a single
excitation between them with relaxed neighbors serving
as a bath. That is, we set nk′ to the stationary average
1/2 for k′ > k + 1 or k′ < k. This setting is sketched in
Fig. 3(a). We calculate the population as nk ≡ Tr(n̂k |p〉)
where the Tr operator is the trace, or sum, of the proba-
bilities of the state i.e. Tr |p〉 =

∑
α pα. We consider the

two sites in the initial configuration (k, k + 1) = (1, 0),
and since the dynamics conserves the number of excita-
tions we can set p↑↑ = p↓↓ = 0. The evolution of nk is
given as

ṅk = Tr(n̂kp̂k+1∂τ |p〉), (6)

such that, using Eq. (3), we obtain

ṅk = Γk−1(nk−1 − nk) + Γk(nk+1 − nk). (7)

As anticipated we set nk+2 and nk−1 to their relaxed
value nk−1 = nk+2 = 1/2, such that we can write the
equations for the sites under consideration as

ṅk = Γk−1

(
1

2
− nk

)
+ Γk (nk+1 − nk) ,

ṅk+1 = Γk (nk − nk+1) + Γk+1

(
1

2
− nk+1

)
.

(8)

We are interested in the local imbalance Ik = nk+1 − nk
which can be obtained by integrating

İk = −2ΓkIk +
Γk+1 − Γk−1

2
− (Γk+1nk+1 − Γk−1nk) .

(9)
In this case, the rates in Eq. (4) depend only on the dif-
ference of the random fields on the sites they are connect-
ing. The rates associated to two contiguous links (e.g.,
Γk and Γk+1) are therefore not statistically independent,
since they both depend on the field on the site they share,
but those of links further apart are. When solving Eq. (9)
we can treat Γk−1 and Γk+1 as independent. As an ap-
proximation we set them equal when averaging over the
disorder Γk−1 = Γk+1 = Γ′, leading to

Īk(τ) =

∫
dΓkdΓ′P (Γk,Γ

′) e−(2Γk+Γ′)τ , (10)

where P (Γk,Γ
′) is the joint probability reported in Ap-

pendix A. A numerical integration of Eq. (10) gives a
stretched exponential behavior. In Fig. 2(b) the results
on β obtained by fitting are compared with the numer-
ical data in the weak interaction regime, showing good
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agreement. In fact the local imbalance is a good approxi-
mation of the imbalance in the regime we are considering.
This is because non-relaxed links are far-apart enough to
be considered independent, and they give the same aver-
age contribution.

In the opposite limit V � 2h, in contrast, the first
step costs V + ∆hk when starting from the CDW state.
This sets the time-scale τ ∼ V 2 to observe transitions
of the kind ... ◦ • ◦ • ◦ •... → ... ◦ • ◦ ◦ • •.... We re-
fer to these as nucleation events, happening at homo-
geneous rate Γn ' 2(h/V )2. After a nucleation event
has occurred relaxation can proceed via transitions like
...◦•◦◦••...→ ...◦◦•◦••..., whose rates are independent
of V [see e.g. Fig. 1(a)]. This dynamics is conveniently
described by the following coarse-grained approximation.
Since the imbalance is a quantity with a period of two
sites it is natural to divide the chain in the following
way: (1, 2)|(3, 4)|...|(N − 1, N)|. We focus then on a set
of new degrees of freedom labeled by the contribution
that the pairs of original sites bring to the imbalance:
|◦•〉 → |1〉, |◦◦〉 → |0〉,|••〉 → |0〉, and |•◦〉 → |−1〉. The
CDW configuration corresponds to the |1, 1, 1, 1, ..., 1, 1〉
state, and a nucleation event creates either two 0 sites or
a -1 site as shown in Fig 3(b). In what follows we will
focus on the case in which two 0 sites are created. Once
a nucleation has happened the events |0, 1〉 ↔ |−1, 0〉,
and |1, 0〉 ↔ |0,−1〉 are possible with the non-interacting
rate Γk = h2/(1+∆h2

k). This pair of reversible processes
implies that the 0 sites can be treated as random walk-
ers, which when moving away from each other create a
growing region of −1 sites. The site dependent differ-
ences between these rates are small for the time-scales
we are considering (V � 2h), and we will assume a con-
stant rate Γe. When averaged over random realizations
the extension of the region between the 0 sites expands
following the law Ḡe(τ) ∼

√
Γeτ , contributing with net

zero imbalance since the sites falling in this region are
now equally likely to be a 1 or −1. This growth dynamics
together with the initial nucleation events - reminiscent
for example of a crystallization process - is well described
by the so-called Avrami law39–43. Here we give a sketch
of the derivation in our case. The average number of nu-
cleation events up to a given time ν̄(τ) can be found by
integrating ˙̄ν = NΓn/2. Not accounting for overlap of
the expanded regions, the total number of transformed
sites can be expressed as

N̄ (τ) =

∫ τ

0

dt ˙̄ν(t)Ḡe(τ − t). (11)

This dynamics is sketched in Fig. 3(c) for a single ex-
panding region of transformed sites. Overlaps can be
excluded by assuming the increment in transformed sites
dN̄tr is proportional to dN̄ multiplied by the probability
of not having an already transformed site (1− 2N̄tr/N),
giving

2N̄tr(τ)

N
= 1− exp

[
−2

3

√
Γe

(
h

V

)2

τ
3
2

]
. (12)

Initializing our dynamics in the untransformed state the
imbalance at a given time is given by Ī(τ) = 1 −
2N̄tr(τ)/N , leading to the compressed exponential be-
havior with exponent β = 3/2 observed in Fig. 2(b).
Equation (12) also yields the functional dependence of
the time-scale T ∼ (V/h)4/3 for large V/h, which is con-
firmed by our numerical results in Fig. 2(c).

This picture breaks when the distance between nucle-
ation events becomes comparable to the system length.
In this case we can consider the expansion of a nucle-
ated region as instantaneous and the imbalance as fully
relaxed after a single nucleation event. In a single real-
ization we can then model the imbalance as I(τ |τ ′) =
1− θ(τ − τ ′), where τ ′ is the time at which the first nu-
cleation event happens. The probability of nucleation at
this time is given as π(τ ′) = N exp

(
−Nτ ′/V 2

)
/V 2, such

that the imbalance averaged over realizations is

Ī(τ) =

∫
dτ ′ π(τ ′) I(τ |τ ′) = exp

(
−Nτ
V 2

)
. (13)

This is the origin of the strong size dependence of the
dynamics for large V , such as the saturation of the ex-
ponent β to 1 in the inset of Fig. 2(b) for e.g. a system
of length N = 10.

FIG. 3. (Colors online) In panel (a) the non-interacting limit
is displayed: The focus is on the sites k and k+ 1, while sites
k−1 and k+ 2 serve as a bath in the relaxed state. Two con-
tiguous rates are statistically correlated since they share the
value of an on-site random field. In panel (b) the two possible
effects of a nucleation event are displayed. Panel (c) shows
a cartoon of the nucleation and expansion of a transformed
region in the strongly interacting limit. The transformed and
untransformed regions are depicted respectively in red and
blue.

V. PARTICLE LOSS

We finish by considering another situation that can
occur experimentally, that of particle loss. This corre-
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sponds to the processes |•〉 → |◦〉, which can be mod-
elled in our effective description by adding to the r.h.s.
of Eq.(3) the operator

h2

J2γ
κ

N∑
k=1

(ĉk − n̂k) , (14)

where κ is the loss rate. Loss acts to relax the local
imbalance to 0 in a non-collective manner. For κ �
γJ2h−2 the imbalance decays as I ≈ e−κt, and none of
the above features survive. In contrast, for κ . γJ2h−2

only the nucleation-expansion dynamics is significantly
modified: decay can act as a nucleation event, and is
dominant when κ � γJ2/V 2. This affects marginally
the value of the compressed β, but results in a saturation
of the time scales T , T for large enough V , see insets of
Fig. 2(b)-(c).

VI. CONCLUSION

We have considered the effect of interactions on the dy-
namics of a MBL system subject to dephasing noise. We
found two relaxation regimes, one dominated by disorder,
and one dominated by interactions. The physical mani-
festation is a crossover in the decay of time correlators,
from stretched to compressed exponential in time. While
the stretched exponential regime was expected for weak
interactions21,22, the crossover to compressed exponential
is novel. Our effective classical approximation suggests
that this regime would also exist with particle loss. This
latter behaviour is due to nucleation and growth dynam-
ics dominating relaxation, a regime which should display
strong finite size effects. The above described dynam-
ics should be observable in current experiments on MBL
under controlled noise.
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Appendix A: Probability density function of the
rates Γ

Here we obtain analytically the distributions of rates
P (Γ) depicted in Fig. 1(b). We consider the rate associ-
ated with a fermion hopping in an “interacting” config-

FIG. 4. The function gV (∆h) as defined in Eq. (A1) is shown
for h = 10, and V = 8.

uration, namely the ones depicted in the left column of
Fig. 1(a). In particular we will focus on the bottom case
in the left column of Fig. 1(a), where the interaction V
comes with a plus sign in the rate, the other case being
trivially deducible by this case. The “non-interacting”
cases can be extracted easily from the results below by
setting the interactions V = 0. The quantity of interest
is the rate for a hopping event involving sites k and k+1
(which we normalize by h2 for simplicity), corresponding
to

gV (∆hk) ≡ Γk
h2

=
1

1 + (∆hk + V )
2 ,

g−1
V (Γk)± = V ±

√
1

Γk
− 1,

(A1)

where ∆hk = hk+1 − hk. In Eq. (A1) we made the in-
verse function explicit since it will be used below. Since
we focus on a single rate we will drop the site dependency
for all the quantities at hand. The rates Γ are random
variables, since they depend on the difference of the ran-
dom field on two contiguous sites. The distribution of
the difference ∆h can be easily extracted form the ran-
dom fields’ one since both hk and hk+1 are identically
distributed with the same probability between −h and
h.

p(∆h) =
1

4h2
(2h− |∆h|) , with ∆h ∈ [−2h, 2h] .

(A2)
From this distribution the distribution of rates P (Γ) can
be defined as

P (Γ) =
∑

s∈{+,−}

∣∣∣∣dg−1
V (Γ)s
dΓ

∣∣∣∣ p(g−1
V (Γ)s), (A3)

the boundaries being

Γ ∈
[

1

1 + (2h+ V )2
, 1

]
. (A4)

The index s in Eq. (A3) is summed over the inverse func-
tions in the region under consideration. Considering the
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case where V < 2h, as depicted in Fig. 4 the inverse func-
tion is multivalued in the region ∆h ∈ [−2h, 2h− 2V ], so
that in Eq. (A3) we have to sum on both the solutions
(namely g−1

V (Γk)±). In the region ∆h ∈ (2h− 2V, 2h]

on the other hand the inverse function is single-valued
having as single contribution the branch g−1

V (Γk)+. The
probability density for the rates Eq. (A3) is defined then
as

P (Γ) =
1

8h2Γ
3
2

√
1− Γ

2h−
∣∣∣V +

√
1
Γ − 1

∣∣∣ if 1
1+(V+2h)2 ≤ Γ < 1

1+(V−2h)2

4h−
∣∣∣V −√ 1

Γ − 1
∣∣∣− ∣∣∣V +

√
1
Γ − 1

∣∣∣ if 1
1+(V−2h)2 ≤ Γ ≤ 1.

(A5)

In the case V > 2h the function g−1
V (Γk) is never multi-

valued in the region of parameters considered. This re-
sults in a probability density function which is defined by
the first line of Eq. (A5).

The joint probability P (Γk,Γ
′) used in Eq. (10) is more

involved and cumbersome to write in a closed form. We
can though express it in a form that allows for direct
numerical integration. Calling hk, hk+1, h

′ the random
fields on respectively the k, k + 1, and relaxed sites (see
main text for an explanation) we can define

P (Γk,Γ
′) =

1

8h3

∫ h

−h
dhk dhk+1 dh

′ δ

(
Γk −

h2

1 + (hk+1 − hk)2

)
δ

(
Γ′ − h2

1 + (h′ − hk+1)2

)
. (A6)

This expression can be readily plugged into Eq. (10) giv- ing the results presented in Fig. 1(b) in the main text.
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Rev. B 93, 094205 (2016).

24 L. Cipelletti, S. Manley, R. C. Ball, and D. A. Weitz,
Phys. Rev. Lett. 84, 2275 (2000).

25 L. Cipelletti, L. Ramos, S. Manley, E. Pitard, D. A. Weitz,
E. E. Pashkovski, and M. Johansson, Faraday Discuss.
123, 237 (2003).

26 P. Falus, M. A. Borthwick, S. Narayanan, A. R. Sandy,
and S. G. J. Mochrie, Phys. Rev. Lett. 97, 066102 (2006).

27 B. Ruta, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda,
P. Bruna, V. M. Giordano, and M. Gonzalez-Silveira,
Phys. Rev. Lett. 109, 165701 (2012).
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