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Abstract

A systematic expression quantifying the wave energy skgwhenomenon as a function of the mechanical charac-
teristics of a non-isotropic structure is derived in thisdst A structure of arbitrary anisotropy, layering and getm

ric complexity is modelled through Finite Elements (FEs)gled to a periodic structure wave scheme. A generic
approach for iiciently computing the angular sensitivity of the wave slessfor each wave type, direction and fre-
guency is presented. The approach does not involve any diifiiszentiation scheme and is therefore computationally
efficient and not prone to the associated numerical errors.
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1. Introduction

Understanding complex wave phenomena is of paramount axpae for the successful application of ultrasonic
techniques within the non-destructive testing (NDT) arahiedical fields. Accurate andfeient modelling of elas-
tic wave propagation complex phenomena in composite strestplay a crucial role in the development of robust
algorithms for damage detection and localization. One @ftiost prominent of these phenomena is the so-called en-
ergy skewing (see Fig.1), induced by the angular divergbateeen the phase and group velocities for non-isotropic
configurations. Wave skewing results in a non-uniform thetion of energy along the wavefront. An inaccurate
description of the skewingfkect in the computational models and NDT algorithms can wedlult in an incorrect
prediction of damage location [1, 2] and type.

Directional dependence of the wave slowness characteristinon-isotropic structures has been well discussed
and investigated by several researchers. In [3] the autter®nstrated a material anisotropy-based, beam-steering
scheme for electronically steering an acoustic beam ovamngte larger than 70in a TeQ crystal. The idea was
based on the pronounced angular dependency of the wavengkangjle in the same material. Wave beam steering
through the employment of phased array transducers [4] s @iscussed within the context of several applications
including biomedical imaging [5], structural health maming [6, 7, 8] and acoustic applications [9]. With regard

to layered cellular composites, the researchers in [10,12]Lderived wave propagation models based on Bloch'’s
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theorem in order to show how band-gaps and strong acoustitsifog can be féected by structural anisotropy in
periodic lattice structures.

Calculation of the wavefront curve has formed the basis fostmesearchers in order to quantify wave steering
effects. The wave skewing angle has been calculated by a nufrdaghors through a variety of approaches, including
the application of a Fresnel approximation to the wave pgagian problem [13], derivation through the propagating
group velocities in two orthogonal directions within thenpa[14], as well as through a Finite fPérentiation (FD)
approach [15]. To the best of the author’s knowledge, theriirently no expression directly quantifying the wave
skewing éfect as a function of the mechanical characteristics of timeisatropic structure.

The principal objective and contributing novelty of thigdy is the derivation of a systematic and robust expression
relating the wave energy skew angle to the material chaistits of the composite structure under investigation. A
robust FE-based approach fdfieiently computing the angular sensitivity of the wave phaskocities for each
wave type, direction and frequency is presented. The cereidstructure can be of arbitrary layering and material
characteristics as FE modelling is employed. The exhibsigteme is able to compute the wavenumber angular
sensitivity (and subsequently the energy skew angle) bgraening and post-processing a single solution of the
system. This overcomes the drawbacks of the currently eredl&D approaches.

The paper is organized as follows: In Sec.2 a general expreisderived for the angle of the propagating energy
wavefront as well as the skew angle between the phase ang gedocities for each wave type as a function of
the wavenumber angular sensitivity. In Sec.3 a direct esgioa of the wavenumber sensitivity with respect to the
direction of propagation is derived within a FE modellingntext. Numerical case studies validating the computationa

scheme are presented in Sec.4. Conclusions on the exhitbt&dare eventually drawn in Sec.5.

2. Calculation of the wave energy skew angle

Slowness curves are particularly useful for visualizing threction of the group velocity (see Fig.1). On the
other hand, the velocity of the wavefront (defined as thedagiuray velocity vectors along all directions starting
from the origin) in the direction normal to the wavefront isokvn as the phase velocity. In an anisotropic material,
the phase and group velocities are generalfjedént [16] and a clear distinction between the two should bdem
to ensure that the correct velocity profile is employed wheriggming health monitoring with an ultrasonic device.
The physical dference between the phase and group velocities can be d=sbgitconsidering a propagating wave
packet (see Fig.1). The wavefronts remain normal to the kzes¢ velocity directiod (or equivalently, parallel to
the transducer surface exciting the packet), however dueaterial anisotropy the wave packet skews away from
the normal direction by an angle and instead travels along a shifted ray path. The velocitthefwave packet
envelope is given by the group velocity. It has been well documented [14] that the group velocityveis always
perpendicular to tl?we tangent of the slowness curve. Moredvs reminded that the slowness of a wavean be

expressed asy, = —.
Ww



When the angular rate of change for each propagating wavieailq is known (see Sec.3), the skew anglg
can be determined through geometric considerations. IriF&grepresentation of an infinitesimal change of angle
do and correspondingly of slowness,dis drawn. In the same figure the angle of the tangent to thensss/with
respect to the horizontalis shown. As vectocy is perpendicular to the drawn tangent eszdforms an anglé to the

horizontal, the skew anglg, can be determined as

/s

bw=5-0-¢u 0<b<n (1a)
¢W=3_2”_9_¢W x<0<2n (1b)

It is straightforward to deduce that

<

Figure 1: lllustration of the group velocity being perpendar to the wave slowness curve for a non-isotropic strectd wave energy skew angle

¥ is thus formed. An infinitesimal change of angkeahd slownessgis also shown. The angleis formed between the horizontal and the tangent.
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which after expanding the sine and cosine terms using theopppte identities and employing infinitesimal angles

approximations can be written as

(k + dk)(sin® + cos@)dd) — ksing

1aN6) = | Goss - (k+ K (Cosd — SINE)d) ®)
Dividing the above expression by c8x{d, eventually gives
tanag—k +k
tan@) = ————— (4)
dk
ktang — —
de

A number of numerical and analytical techniques can be usammpute the directional wavenumbd(g) (see
Appendix A for the one used in this work). The following sectiprovides a concise expression for the angular

e .dk
wavenumber sensitivity expre35|%13.



3. Angular sensitivity of the wave phase velocity in an anidoopic composite

A periodic segment of a composite panel having arbitrargetdzg and material characteristics is hereby con-
sidered (see Fig.2) with,, Ly its dimensions in thex andy directions respectively. The structural segment can be
modelled using a conventional FE package and the mass #ings$ matrices of the segméfit K can be computed
in a straightforward manner. A periodic structure wave sohiean be employed in order to numerically determine

the propagating wavenumbegg and the corresponding mode shapgsor each propagating wave mode type as
exhibited in Appendix A.

drB

Figure 2: Caption of a FE modelled composite layered panel

It is noted that matriceKk = R*KR andM = R*MR in Eq.(A.6) are Hermitian therefore their resulting eigen-
values are real and the set of eigenvectors will be orthdgdfigenvalue sensitivity for standard eigenproblems is
an established result in modern literature [17, 18] that bl employed in the present work. The eigenproblem in

Eq.A.6 can be dierentiated with respect to the angle of wave propagatigiiing

(6K oM ) 0w
W

90 gy | g MXw=0 )

[K - AWM]
After multiplying the above expression by}, and making use of the mass normalization of the eigenmodes th

following expression can be derived for the angular senfitof the computed eigenalues

0w oK oM
E (69 *Wae)w ©
In case of repeated eigenvalues being detected, the sapgkpression should be modified according to the findings
in [19, 20]. Taking into account th&tl andK have no angular dependence, the above expression can e/

provide a more generic angular eigenvalue sensitivity @sgion

0w 0K +OM (6R* 6R) T (6R* oR

90 = W%XW_AWXW%XW— o0 KR+R Ka— o0 + M% Xw (7)
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For the wavenumber sensﬂw%—kgw the following expression stands

Ok _ Okw O 0w (8)
89~ Owy OAy 00

while the inverse of the group velocitgﬁ can be computed [21, 22, 23] directly through the results sihgle
Ww
eigenvalue solution (that is avoiding FD for one more timgjiltferentiating the eigenproblem in Eq.A.6 with respect

to ky, deriving

0 (9)

oR* dww ., A
( [K - w2M]R + R*[K — wM]——Z Wa—K:VRMR Xw + R*[K - wM]Rak::—

and by multiplying the above expression Xy and taking advantage of the orthogonality propertiesgh@ term
W

W
can be directly obtained as

2
g_kw - Ww (10)
(o}
v ( [K - w2M]R + R*[K — sz] )
Eventually (taking into account thagf ) Eq.8 can therefore provide a direct expression of the langu
W
wavenumber sensitivity for any propagatlng Wave typand direction of propagatiahat angular frequenay,,
OR* oR OR* oR
KR+ R"K— | Xw — 4 MR + R*M—
O ( a6 a6 ) WXW( 26 26 ) an
00 R*
(6 [K - w2M]R + R*[K - sz] )

. . . . R R .
Itis noted thaR is a direct function ok, andd, therefore theg?w and%—g terms are straightforward [24] to compute.
The global stifness matriXk of the structural segment is formed by adding the loc@tingss matrices of individual

FEs as

N
K=>"%p with &CP2eee23 —y, (12)
p=1
with N the total number of FEs and the superscripk@fdenoting the exact positioning kf within it. The remaining

entries inK} are null. The individual FE dtiness matrices can be computed as

1 1 1
kp = f f f BT CoBIJ| dndédu (13)
-1J-1J-1

with J the Jacobian an the shape function derivative matrices of the element,edylis the elastic sfiness matrix



at the material principal axis which can contain up to 21 petelent coicients (for a triclinic material), input as

Co=
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(14)

If a revolution anglef is considered between the material principal axis and ffexiive transformed coordinate

system, then the transformed elasti€feiss matrix (rotated abomtixis) can be calculated as [25]

C=T1CT T (15)
with T~* being the inverse of the coordinate transformation maixigrgby
cod(—£) Sirf(=¢) 0 0 0 2 costé) sin(=¢)
Sirf(=¢) coF(-¢&) 0 0 0 —2cosf£)sin(=¢)
0 0 1 0 0 0
T'= (16)
0 0 0 costé) -—sin(=¢) 0
0 0 0 sinEé)  cosEé) 0
—cosEé)sin(=¢)  cosEé)sin-£) 0 0 0 cod(~¢£) — sirf(=¢)

Eventually, substituting Eq.11 into Eq.4 and subsequenttyEq.1 provides a generic expression of the energy skew

angle for each wave type as

IR dR IR AR
T * _ _ T * _
XW(60 KR +R Kag)x"" AWXW(@O MR+RM69)XW
tang R IR + Ky
X}, [K — w2M]R + R*[K — w2 M] —— | Xw
g Okw Ok
Yw =5 — 6 -arctan OR* R OR* R (7
T * - _ L * -
XW(ag KR+RK69)XW AWXW(69MR+RM69)XW
kw tang R 3R
XVT“(akW [K - w2M]R + R*[K — wﬁ,M]%)xw

which quantifies the wave energy skewing as a direct funatfdhe mechanical characteristics of the layered struc-

ture. It is reminded that the above expression is valid ferd< « (see Eq.1 for the remaining quadrants).

4. Numerical case studies

In order to validate the accuracy of the above presentedaphr an orthotropic graphite-epoxy monolithic struc-

ture is modelled through FEs and the characteristics of tbastic waves propagating within the structure are com-

puted in a broadband frequency range. The mechanical dbasdics of the structure are given through the following
6



elastic stifness matrix )
94 74 82 O

74 13 91 0
82 91 34 0
0O 0 0 36
0O 0 0 0 72
0O 0 0 0 0 42)

Co = 10° N/m?

©O O o o o

while the density of the structure js=1600kgm?® and its thickness if=1mm. The dimensions of the modelled
periodic segment alg,=L,=10mm with a mesh comprising 10 elements in each directioa.rébults on the slowness
curves as well as on the energy skew angles are presenteddrBind 4 at frequencies of 0.1MHz and 0.5MHz
respectively. The results are compared to a FD scheme [Mich the group velocity at a given wave propagation

direction is determined as

0wy . Wy — Wwl
— = lim —— 18
6kw Wy = Ww1 kv\fz - kw]_ ( )
while a similar finite central dierence scheme is employed for calculating the angular digmee of the frequency
at which a certain wavenumber occurs

doww _ lim ww(K) lo,+60/2 —ww(K) lo,-s0/2 (19)
00  66—-0 00

Acceptable values fab,, andsd should be derived through a relative error convergence/stitth wy,, — wy; andsé
gradually diminishing until the relative fierence in the acquired results is inferior to a defined taleza

It is stressed that the scheme proposed in this work is aldertgpute the wavenumber angular sensitivity (and
subsequently the energy skew angle) by determining andpgrosessing a single solution of the system. This over-
comes the two primary drawbacks of FD approaches; the firsglibat FD schemes require multiple solutions of the
system for computing each gradient (more accurate FD scheunoh as centered second and higher order ones ask for
three or five solutions for computing just a single gradiemt)e second drawback that is overcome by the presented
approach is that the variable perturbation for a FD schermeldibe determined through a solution convergence study
which also requires multiple solutions of the system undeestigation. When it comes to large industrial models
comprising an important number of elements, FD schemesharefore expected to be computationally cumber-
some. In that case the approach presented herein is deeme@ppoopriate, providing simultaneoufi@ency and
accuracy advantages.

The results in Figs.3 and 4 unveil the intense angular, #aquand wave-type dependence of the slowness curves
for the three propagating elastic waves. The,3tve velocity appears to converge towards thephase velocities
in the 'stiffer’ direction of the structure. The intense variation of ¢éimergy skewingfect is also demonstrated in the
same figures with the maximum skew angle being greater thafos%ll wave types. Due to the symmetry of the
slowness curves all skew angles ated atd = 0°/187 as well as ab = 90°/27(. It is observed that the skew angle
for the pressure wave is almost insensitive to frequencyn@bs, while the skewingfiect for the A wave is much
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Figure 3: Left: Wave slowness curves for the(P), SHy (- - - ) and A (- -) waves propagating in the orthotropic graphite-epoxonoiithic structure
at 0.1MHz. Right: Corresponding energy skew angles contptht®ugh the presented approach for thé-F), SHy (---) and Ay (- -) waves. Also
presented the skew angles computed through a FD schemeibisegkim [15] for the B ((J), SHy (o) and Ay (¢) waves.
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Figure 4: Left: Wave slowness curves for the(P), SHy (- - - ) and A (- -) waves propagating in the orthotropic graphite-epoxonoiithic structure
at 0.5MHz. Right: Corresponding energy skew angles contptht®ugh the presented approach for thé-F), SHy (---) and Ay (- -) waves. Also
presented the skew angles computed through a FD schemeibisegkim [15] for the B (), SHy (o) and Ay (¢) waves.
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Figure 5: Group velocity curves for thegA—) and the Sk (- -) waves propagating in the orthotropic graphite-epoxgnoiithic structure, visual-

izing the appearance of caustics at 0.1MHz.

more intense aroungl= 0°/18C for higher frequencies. Moreover, an excellent correfatioobserved between the
exhibited computational scheme and the FD scheme.

It should be noted that through the knowledge of the ampditaad actual direction af; it is also straightforward
to determine and visualize the appearance of caustics fi26fi group velocity diagrams. An example of this wave

behaviour is exhibited in Fig.5 for thepfand SH propagating guided waves.

5. Conclusions

The principal outcomes of the work are summarized as follows

(i) A generic expression quantifying the wave energy skegl@as a function of the mechanical characteristics
of a non-isotropic structure has been derived in this stldye approach does not involve any FD procedure and is
therefore #icient and not prone to the associated numerical errors.

(ii) A FE-based approach foffgciently computing the angular sensitivity of the wave slessfor each wave type,
direction and frequency was employed. The consideredtstieican be of arbitrary layering and material character-
istics as an FE modelling approach is adopted. By employangpgic structure theory the associated computational
effort is radically reduced.

(iii) An intense frequency dependence of the energy skevileangs observed for the Awaves travelling in an
orthotropic graphite-epoxy monolithic structure. Angudaad wave-type dependence was observed for the entirety
of propagating waves with the skew angle being as pronouaseif in some cases. It was also shown that the

presented approach can successfully determine and zisuh# appearance of caustics in the group velocity curves.
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Appendix A. Determining the angular sensitivity of the propagating wave characteristics through a finite ele-

ment scheme

Appendix A.1. Computation of propagating wave propertiesugh a finite element approach

The wave propagation analysis scheme presented below badits exhibited in [27]. The DoF sqt(as well as

theM, K matrices) is reordered according to a predefined sequenbeasu

d={ gs Ot O Or Oz OrB OiT ORT}' (A.1)

corresponding to the internal, the interface edge and teefaite corner DoF (see Fig.2). The free harmonic vibration

equation of motion for the modelled segment is written as:
[K - w?M]q = 0 (A.2)

The analysis then follows as in [22] with the following rétats being assumed for the displacement DoF under the

passage of a time-harmonic wave:
qR =e—i8qu’ qT :e—ia‘qu (A 3)
Ore =€7'**qLp, OuT =€7'®Qug, QrT =€ %

with ey andey the propagation constants in thendy directions related to the phasefdrence between the sets of

DoF. The wavenumbets, ky are directly related to the propagation constants throhghelation:

ex = kulx, & =kyly (A.4)
Considering Eq.A.3 in tensorial form gives:
I 0 0 0
0 I 0 0
0 lef» 0 0
0O O I 0
q=|0 0 le' 0 X = RX (A.5)
0 O 0 I
0O O 0 leiex
0O O 0 le~ey
|0 O 0 leleley |

with x the reduced set of Dok = {q, gz g. qus}’. The equation of free harmonic vibration of the modelled
segment can now be written as:
11



[R*KR — w?R*MR]x = 0 (A.6)

with * denoting the Hermitian transpose. The most practical phaeefor extracting the wave propagation character-
istics of the segment from Eq.A.6 is injecting a set of assliprepagation constants, ;. The set of these constants
can be chosen in relation to the direction of propagatioratd® which the wavenumbers are to be sought and ac-
cording to the desired resolution of the wavenumber curiapA.6 is then transformed into a standard eigenvalue
problem and can be solved for the eigenveagtpwhich describe the deformation of the segment under theapass

of each wave typev at an angular frequency equal to the square root of the quneting eigenvalugd,, = w3,
A complete description of each passing wave includingigdy directional wavenumbers and its wave shape for
a certain frequency is therefore acquired. It is noted thatgeriodicity condition is defined moduler 2therefore
solving Eq.A.6 with a set aéy, e, varying from O to Zr will suffice for capturing the entirety of the structural waves.

Further considerations on reducing the computationalresgef the problem are discussed in [22].
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Nomenclature

Q)
o

2 x~ 4 -2 R ©
~

Ly, Ly
LR B,T,I

n & u

g ™ &

Shape function derivative matrix of a single FE

Elastic stithess matrix at the material principal axis
Jacobian matrix of a single FE

Intermediate stfiness matrix employed for the assemblykof
Mass and sffness matrices of the periodic element
Displacement phase transformation matrix

Coordinate transformation matrix

Stifftness matrix of a single FE

Physical displacement vector for the elastic waveguide
Dimensions of the modelled periodic segment

Left, right, bottom, top sides and interior indices
Number of elements

Group velocity

Wavenumber

Dimensions of a single FE

Wave slowness

Wave type index

Wave mode shape vector for the elastic waveguide
Propagation constant

Wave propagation angle

Local FE coordinates

Eigenvalue of the wave propagation eigenproblem
Energy skew angle

Coordinate transformation angle

Angular frequency
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