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Abstract 

Background and Purpose Human lung fibroblasts (HLF) express high levels of the LPA1 

receptor, a G protein-coupled receptor (GPCR) that responds to the endogenous lipid mediator 

lysophosphatidic acid (1-acyl-2-hydroxy-sn-glycero-3-phosphate; LPA). Several molecular 

species or analogues of LPA exist and have been detected in biological fluids such as serum 

and plasma. The most widely expressed of the LPA receptor family is the LPA1 receptor, which 

predominantly couples to Gq/11, Gi/o and G12/13 proteins. This promiscuity of coupling raises the 

possibility that some of the LPA analogues may bias the LPA1 receptor towards one signalling 

pathway over another.  

Experimental Approach Here we have explored the signalling profiles of a range of LPA 

analogues in HLF that endogenously express the LPA1 receptor. HLF were treated with LPA 

analogues, and receptor activation monitored via calcium mobilization and extracellular signal-

regulated kinase (ERK) phosphorylation. 

Key Results These analyses demonstrated that 16:0, 17:0, 18:2 and C18:1 LPA analogues 

appear to exhibit ligand bias between ERK phosphorylation and calcium mobilization when 

compared to 18:1 LPA, one of the most abundant forms of LPA that has been found in human 

plasma.  

Conclusion and Implications The importance of LPA as a key signalling molecule is apparent 

due to its widespread occurrence in biological fluids and its association with disease conditions 

such as fibrosis and cancer. These findings have important, as yet unexplored, implications for 

the (patho) physiological signalling of the LPA1 receptor, as it may be influenced not only by 

the concentration of endogenous ligand but the isoform as well.   
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Introduction 

Lysophosphatidic acid (1-acyl-2-hydroxy-sn-glycero-3-phosphate; LPA) belongs to a family 

of endogenous lipid molecules involved in a number of cellular processes including 

proliferation, apoptosis and migration. LPA exerts these biological effects through highly 

efficacious interactions with its corresponding G protein-coupled receptors (GPCRs), the LPA 

family of receptors, leading to downstream intracellular signalling events. The most widely 

expressed is the LPA1 receptor, which predominantly couples to Gq/11 and Gi/o, as well as G12/13, 

leading to calcium mobilization and the inhibition of cAMP generation (Alexander et al., 

2015). This can lead to diverse cellular processes such as cell proliferation, actin cytoskeletal 

rearrangement and neurite retraction (Contos et al., 2000).  

Several molecular species or analogues of LPA exist which have varying carbon chain lengths 

and degrees of saturation, and these LPA analogues have been detected in biological fluids 

such as serum and plasma, linked to either the sn-1 or sn-2 glycerol backbone. The major 

analogues of LPA found in human blood are the 16-, 18- and 20- long acyl chain lengths, with 

86 % of LPA in serum consisting of 18:1, 18:2 and 20:4 LPA. These are found at high 

nanomolar concentrations in the plasma but can exceed 10 µM in serum (Baker et al., 2001, 

Lin et al., 2010).  

The LPA1 receptor predominantly signals through Gi/o and Gq/11 proteins to increase levels of 

intracellular calcium, but has also been shown to couple to G12/13 (Fukushima et al., 1998, 

Alexander et al., 2015). This promiscuous coupling means that agonists at the LPA1 receptor 

have the potential to demonstrate signalling bias, if they stabilise distinct conformations of the 

receptor that can differentially activate distinct G proteins leading to disparate functional end 

points. This phenomenon of agonist-biased signalling has been described for a number of 

different synthetic ligands at GPCRs, where the endogenous ligand is used as the un-biased 

comparator ligand (for reviews see: Rajagopal et al., 2010, Kenakin and Miller, 2010). To date 

the majority of these studies have been performed in cell-lines that recombinantly express 

receptors of interest (Berg et al., 1998, Gay et al., 2004, Cordeaux et al., 2001, Lane et al., 

2007, Rosethorne and Charlton, 2011). These are useful systems to examine signal bias as 

responses can be directly attributed to the receptor being over-expressed; however, some 

receptors have also been shown to elicit different responses dependent upon the cell type they 

are expressed in due to the presence of a different complement of signalling molecules. For 

example studies in mammalian cells indicate that unsaturated LPA analogues have lower EC50 

values than fully saturated analogues (Fujiwara et al., 2005), whereas in human A431 cells no 



correlation between degree of saturation and potency was observed (Jalink et al., 1995). The 

different analogues of LPA will possess a range of physicochemical properties, depending upon 

the structure of the acyl chain, most notably in their solubility and tendency to form micelles. 

This may contribute to the range of biological activities that have been observed for these 

molecules. The vast diversity of the LPA analogues and the range of signalling molecules 

available to the LPA1 receptor therefore represents a useful system in which to examine 

agonist-bias from endogenous ligands.  

We therefore aimed to determine whether any signal bias exists with the different LPA 

analogues acting at an endogenously expressed LPA1 receptor in primary human lung 

fibroblasts (HLF). This may have implications in patho-physiological processes as the 

activation of different G proteins by the range of endogenous ligands present in serum and 

plasma, may result in diverse cellular responses.  



MATERIALS & METHODS 

LPA analogues 

LPA analogues tested were purchased from Avanti Polar Lipids (Alabaster, USA) or Echelon 

Biosciences (Utah, USA). Purity of the LPA analogues was stated to be >99 % LPA (see 

Supplementary table 1 for details). 

All stock solutions were made up to 10 mM in water and stored at -20 C. 

For agonist treatments, all LPA analogues were prepared in Hanks’ balanced salt solution 

(HBSS) with Ca2+/Mg2+, containing 20 mM HEPES, 0.1 % (w/v) BSA. 

Cell culture and maintenance of HLF  

HLF were maintained in DMEM containing high glucose and HEPES, supplemented with heat 

inactivated foetal bovine serum (FBS; 10 % v/v), penicillin (100 iu.mL-1), streptomycin (100 

g.mL-1), and sodium pyruvate (1 mM). Starve medium was the same as growth medium but 

devoid of FBS.  

Calcium Mobilization assay 

Normal primary HLF were plated in 384-well black walled, clear bottom plates at a density of 

8,000 cells.well-1. Cells were incubated for 24 h at 37°C/5 % CO2 in a humidified atmosphere. 

After this time, spent media was removed, replaced with serum free media and cells incubated 

for a further 24 h. To monitor changes in intracellular calcium, the FLIPR® Calcium 4 Assay 

Kit (Molecular Devices, Sunnyvale, USA) was used. The dye was made up in HBSS with 

Ca2+/Mg2+, containing 20 mM HEPES, 0.1 % (w/v) BSA, 2.5 mM probenecid, 0.2 % (w/v) 

pluronic acid. On the day of experiment, calcium 4 dye, was added to the cell plate and 

incubated for 45 min at 37°C/5 % CO2. For inhibition assays, antagonist was pre-incubated 

with cells for 30 min at 37°C/5 % CO2. Agonist was added online using the Functional Drug 

Screening System 7000 (FDSS7000; Hamamatsu Photonics, Hertfordshire, UK) and 

fluorescence monitored for 5 min with 1s increments. Peak responses were taken for data 

analysis (between 2-3 minutes). 

For Gi/o versus Gq/11 experiments, cells were pre-treated with 200 ng/mL pertussis toxin (PTx) 

during the starvation step to inhibit Gi/o-dependent signalling. Calcium mobilisation was then 

carried out as described above.    

ERK Imaging Assay 



Normal primary HLF were plated at 3,000 cells.well-1 in 384-well black walled, clear bottom 

plates. Cells were incubated for 24 h at 37°C/5 % CO2, after which time spent media was 

removed, replaced with serum free media and cells incubated for a further 24 h. Cells were 

then incubated with agonists for 5 min at 37°C/5 % CO2. For IC50 determinations, antagonist 

was added to the cells 30 min prior to agonist addition. After stimulation, cells were fixed in 

4 % paraformaldehyde for 20 min, washed 2x in PBS (with Ca2+/Mg2+), and incubated with 

permeabilising blocking buffer (dPBS (with Ca2+/Mg2+), 10 % FBS (v/v),  0.1 % Tween-20 

(v/v)) for 1 h at 37C. Wells were then washed 3x in wash buffer (TBS-T: Tris Buffered Saline 

(TBS), 0.05% (v/v) Tween-20) and incubated with the phospho-p44/42 ERK1/2 

(Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb primary antibody (1:1000 dilution) at 4°C 

overnight. Following 3x wash in TBS-T, wells were incubated with blocking buffer containing 

Hoechst (2 µM), and CF™647-conjugated Affini-pure goat anti-rabbit IgG (1:1000 dilution) 

for 1 h at 37°C. Wells were washed 3x in TBS-T to remove secondary antibody and cell plate 

imaged using the InCell 2000 (GE Healthcare, Chalfont St. Giles, Buckinghamshire, UK) using 

DAPI filter (0.1 sec exp) for nuclei and Cy5 filter (1.3 sec exp) to monitor ERK1/2 

phosphorylation (pERK). Images were analysed for cell intensity using the INCell Analyser 

software. To quantify levels of pERK fluorescence, a standard Multi-Target Analysis (MTA) 

algorithm was used in the INCell Analyzer Workstation (v3.7.1). Nuclei were defined using 

Top-hat segmentation, with a minimum area of 80 µm2 (sensitivity 50). Cells were defined 

using Multiscale Top-hat segmentation with a characteristic area of 300 µm2 (sensitivity 58). 

For Gi/o versus Gq/11 experiments, cells were pre-treated with 200 ng/mL PTx during the 

starvation step, to inhibit Gi/o-dependent signalling. ERK phosphorylation assay was then 

performed as described above. 

Data Analysis 

Graphs were fitted to data and statistical analysis performed using GraphPad Prism (V7.00 for 

Windows, GraphPad Software, La Jolla California USA, www.graphpad.com). Results are 

expressed as the mean ± standard error of mean (SEM) from three separate experiments, run 

in duplicate. Concentration-response data were fitted using a four-parameter logistic equation. 

IC50 values obtained from the inhibition curves were converted to Ki values using the method 

of Cheng and Prusoff (1973). The Pearson correlation coefficient (r) was determined using the 

standard correlation function in GraphPad Prism, followed by a two-tailed t test to determine 

significance. All statistical tests used P ≤ 0.05 as critical level of significance. 



The ability of an agonist to cause a functional response after binding to a receptor is known as 

the transduction coefficient (transduction ratio) and is a function of both the binding affinity 

(KA) and the efficacy () of the ligand. To compare agonist responses between different assays, 

the Log(/KA) or LogR was calculated using the Operational model of agonism (for details see 

van der Westhuizen et al. (2014)). For the purposes of this analysis, only the log of the ratio 

(LogR) between KA and  (Log(/KA)) was calculated for each agonist at each pathway, as bias 

can arise through differences in either affinity or efficacy. The responses to all agonists at each 

pathway were globally fitted with the parameters of basal, Emax and n shared for all agonists. 

For full agonists, KA was constrained to > 0, and estimated directly from curve fitting for partial 

agonists. 

For estimation of observational bias for the different assays, the LogR for each compound was 

compared to the LogR for the ‘neutral’ compound 18:1 LPA (or 17:0), using equation (1).  

 ∆𝐿𝑜𝑔𝑅 =  ∆𝑙𝑜𝑔 (
𝜏

𝐾𝐴
) = 𝑙𝑜𝑔 (

𝜏

𝐾𝐴
)

𝐿𝑖𝑔𝑎𝑛𝑑
−  𝑙𝑜𝑔 (

𝜏

𝐾𝐴
)

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
  (1) 

Ligand bias (LogR) was calculated using the difference between the LogR values derived 

for each pathway using equation (2), and from this the bias factor for each compound was 

calculated from equation (3). 

∆∆𝐿𝑜𝑔𝑅 = ∆𝐿𝑜𝑔𝑅𝐿1:𝑃1 − ∆𝐿𝑜𝑔𝑅𝐿1:𝑃2      (2) 

where L1 is ligand 1, P1 is pathway 1, L2 is ligand 2, and P2 is pathway 2. 

Bias factor = 10∆∆𝐿𝑜𝑔𝑅 OR 10
∆∆𝐿𝑜𝑔(

𝜏

𝐾𝐴
)
    (3) 

 

Reagents 

Primary HLF were purchased from PromoCell (Heidelberg, Germany) and Lonza (Slough, 

UK). CF™647-conjugated Affini-pure goat anti-rabbit IgG was purchased from Biotium 

(Cambridge, UK) and phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (D13.14.4E) XP® 

Rabbit mAb primary antibody was purchased from Cell Signalling technology (Hitchin, UK). 

384-well GPCR TaqMan arrays, RNAqueous kit, TURBO DNase, High Capacity RNA-to-

cDNA kit, Hoechst, cell media and growth supplements were all purchased from Invitrogen 

Life Technologies (Paisley, UK).  FLIPR® Calcium 4 Assay Kit was purchased from Molecular 

Devices (Sunnyvale, USA). AM966 was synthesized in-house. 



RESULTS 

LPA receptor expression 

To determine which of the LPA receptors are present at significant levels in HLF, a Taqman 

assay quantifying the endogenous expression of the different LPA receptors was performed. 

The relative expression of each receptor was compared to the house keeping gene HPRT1. The 

LPA1 receptor had the highest level of expression in the HLF (4.4 ±1.5 fold relative expression 

compared to HPRT; Supplementary figure 1), while the other receptors tested had no 

measurable expression in these cells ( 0.1 fold relative expression compared to HPRT). Based 

on the expression data we used the HLF to investigate LPA1 receptor mediated signalling of 

different molecular analogues of LPA.  

Calcium mobilization  

To investigate the intracellular signalling downstream of the LPA1 receptor, we first monitored 

calcium mobilization in HLF after treatment with a range of concentrations of eleven LPA 

analogues (see Supplementary table 1 for chemical structures). These eleven analogues can be 

divided into four sub groups of short chain (14:0, 16:0 and 17:0), 18:x, 20:x and ester C18:x 

LPA. The most quantitatively abundant forms of LPA in human plasma are 16:0, 18:2, and 

18:1 LPA. The latter form is perhaps the most commonly used laboratory reagent for signalling 

studies, therefore it was used as a positive control in these experiments (Choi et al., 2010).  

All LPA analogues were able to increase intracellular calcium mobilization in a concentration 

dependent manner, with a range of potencies and intrinsic activities (figure 1). Of these, C18:1 

was the most potent form of LPA, despite having modest intrinsic activity (77 %), with the 

fully saturated 20:0, C18 and 17:0 the least potent. All analogues except for 20:4, 18:3, C18:1, 

C18 and 20:0 were fully efficacious, with a comparable Emax to 18:1 LPA (table 1). Among the 

18: LPAs tested a general trend was observed where an increase in the degree of saturation of 

the 18: LPAs resulted in an increase in both potency and intrinsic activity in the calcium 

mobilization assay. In contrast, among the 20:x and C18:x LPAs tested, the fully saturated 20:0 

and C18:0 were the least potent and gave only partial responses in this assay.  

ERK phosphorylation 

As both Gq/11 and Gi/o have been shown to activate ERK (Goldsmith and Dhanasekaran, 2007), 

we explored the ability of the same range of LPA analogues to phosphorylate ERK in the 

primary HLF. In order to determine the correct incubation time for this assay, we first 



performed a time course of ERK phosphorylation with 18:1 LPA (data not shown). The pERK 

response was rapid and short-lived, with maximal response achieved between 2 – 5 minutes 

after which time signal returned to basal levels. For this reason, all further experiments were 

performed after 5 minute stimulation. 

All of the LPA analogues were able to promote ERK phosphorylation with a range of intrinsic 

activities and potencies (figure 2). 18:1 LPA gave the largest maximal response, so this was 

taken to be 100 % in these assays. In comparison, all other analogues of LPA tested were partial 

agonists in the pERK assay, with maximal responses ranging from 25 – 80 % of that of 18:1 

LPA (table 1). 20:0 and C18 were the least active LPA analogues in the pERK assay, able to 

only partially phosphorylate ERK at the highest agonist concentrations. Generally most 

analogues of LPA had either similar (18:1, 18:3, 20:4) or slightly lower (5 – 10-fold) potency 

in the pERK compared to the calcium mobilization assay, however 17:0 was more potent at 

pERK than calcium and C18:1 was more than 20-fold more potent in the calcium assay than 

pERK. This suggests there may be some bias in the ability of different analogues of LPA to 

signal to the two different pathways. 

Quantification of ligand bias 

Without truly understanding the difference in system and observational bias between the two 

assays, it is difficult to use agonist potency to determine which of the LPA analogues are biased 

and which are non-biased for the different systems being studied. For this reason, we attempted 

to quantify the level of ligand bias between the two pathways (calcium mobilization versus 

ERK phosphorylation) using the operational model to calculate LogR or Log(τ/KA) for each 

ligand (van der Westhuizen et al., 2014, Kenakin and Christopoulos, 2013). We then calculated 

the LogR for each ligand, using 18:1 as the control ligand as this is one of the most abundant 

LPA analogues in the body, and was the only agonist that gave a maximal response in both 

assays (figure 3; Table 1). Comparison of the LogR of each analogue of LPA between the 

two different assay formats revealed significant differences in the LogR values between 

assays for 16:0, 17:0, 18:2 and C18:1 LPA (p < 0.05, unpaired t-test), which were selected for 

further investigation, using comparison 18:1 LPA as the non-biased control ligand.  

In order to confirm that the responses observed were solely due to activation of the LPA1 

receptor, we tested this subset of LPA analogues against the selective LPA1 receptor antagonist 

(4′-{4-[(R)-1-(2-chloro-phenyl)-ethoxycarbonylamino]-3-methyl-isoxazol-5-yl]-biphenyl-4-

yl)-acetic acid (AM966) (Choi et al., 2010, Swaney et al., 2010). AM966 was able to 



completely inhibit both calcium and pERK responses elicited by 18:1, 16:0, 17:0, 18:2 and 

C18:1 LPA (figure 4), demonstrating that the calcium response observed is solely due to 

activation of the LPA1 receptor. IC50 values derived from this assay were converted into Ki 

using the Cheng-Prusoff equation (table 2).  

Effect of Pertussis toxin on calcium and pERK responses 

It has been demonstrated previously that the LPA1 receptor can couple to multiple pathways 

(Alexander et al., 2015), of which both Gi/o and Gq/11 are capable of causing increases in 

intracellular calcium release and ERK phosphorylation. We hypothesized that the bias we 

observed between calcium mobilization and ERK phosphorylation for 16:0, 17:0, 18:2 and 

C18:1 LPA may be due to activation of different G proteins. To explore this further, the degree 

of calcium mobilization and ERK phosphorylation was determined after pre-treatment of cells 

with PTx to inhibit Gi/o proteins. 

All LPA analogues tested were less potent in the calcium mobilization assay after 24 h 

treatment with PTx, and demonstrated reduced intrinsic activity. In contrast, we were unable 

to accurately determine EC50’s in the ERK phosphorylation assay after PTx treatment, as pERK 

responses were almost completely abolished for all the analogues of LPA tested (figure 5; table 

3). From these data we can infer that the calcium response is dependent on the activation of 

multiple G proteins, whereas the pERK response is predominantly PTx-sensitive. To explore 

the bias we observed for 16:0, 17:0, 18:2 and C18:1 LPA further, we wanted to quantify the 

signal bias between the total pERK response and the PTx-insensitive calcium response (data 

from experiments performed in the presence of PTx).  

To do this we fitted these data to the Operational model to calculate LogR for each ligand 

between the two different pathways (for details see van der Westhuizen et al. (2014)). The 

results from this analysis (figure 6a; table 4) demonstrate that for some of the molecular 

analogues a bias for one particular signalling pathway does exist. Statistical analysis of the bias 

factors between both pathways, when compared to 18:1 LPA, showed that a significant 

difference was seen for 18:2 and 17:0 LPA, both of which appeared more biased towards the 

pERK pathway. 

  



DISCUSSION 

The LPA1 receptor is widely expressed in the body, and has been implicated in diverse cellular 

and physiological responses, such as proliferation and survival, neurite retraction, brain 

development, renal and pulmonary fibrosis (Fukushima et al., 1998, Estivill-Torrus et al., 2008, 

Tager et al., 2008, Pradere et al., 2007). The endogenous ligand, LPA, has many different 

naturally occurring analogues which differ in chain length or saturation, and are found within 

a range of biological fluids including serum and blood. The physiological relevance of this 

diversity is not fully appreciated, however it may play an important role in pathology with 

evidence demonstrating that certain analogues may be differentially regulated in disease. For 

example, levels of the polyunsaturated 22:5 and 22:6 LPA are increased after allergen 

challenge in asthmatics (Park et al., 2013), and IPF patients demonstrated significantly higher 

levels of 22:4 LPA in their exhaled breath condensate compared to controls (Montesi et al., 

2014). It has also been demonstrated that there is a preference for polyunsaturated LPAs in the 

follicular fluid of patients undergoing in vitro fertilization (Yamamoto et al., 2016). In addition, 

18:0, 18:1 and 16:0 LPA have been shown to increase in mouse spinal dorsal horn after nerve 

injury, with 18:1 LPA being the key species associated with amplification of LPA production 

in peripheral neuropathic pain (Ma et al., 2013). The way in which these different analogues 

are regulated and signal within the body after activation of the LPA1 receptor is still relatively 

poorly understood. 

As well as having a number of endogenous LPA analogues to regulate LPA1 receptor 

signalling, the receptor itself can also couple to multiple signalling pathways, including Gi/o, 

Gq/11 and G12/13 proteins, to initiate diverse cellular responses (Fukushima et al., 1998). For 

example, LPA1 receptor activation leads to ERK phosphorylation via the Gi/o-Ras leading to 

gene transcription, cell cycle progression and proliferation (Kranenburg and Moolenaar, 2001). 

Fibroblast chemotaxis to LPA has also been shown to occur via the PTx-sensitive Gi/o proteins 

(Tager et al., 2008), whereas G12/13-RhoA pathway is responsible for actin cytoskeleton 

rearrangements in fibroblasts (Sakai et al., 2013). In addition, it has been demonstrated that the 

LPA receptor can transactivate the epidermal growth factor (EGF) receptor, leading to ERK 

phosphorylation via Gi/o-derived β sub units (Daub et al., 1996, Tveteraas et al., 2016). In this 

study we have investigated a number of different naturally occurring analogues of LPA, after 

activation of an endogenous LPA1 receptor in primary HLF. In addition to calcium 

mobilization, we have explored the ability of these ligands to activate the Ras-Raf-ERK 

signalling cascade resulting in ERK phosphorylation, which may occur downstream of either 



Gi/o or Gq/11 proteins (Goldsmith and Dhanasekaran, 2007), or via G protein-independent 

mechanisms involving β-arrestin (Lefkowitz and Shenoy, 2005, Rosethorne and Charlton, 

2011). The signalling properties of the different LPA analogues were first characterized in the 

two assays, and PTx treatment used to determine the relative contributions of Gi/o and Gq/11 

(G12/13) proteins.  

All analogues of LPA were capable of activating both pathways, with 18:1 LPA being the only 

fully efficacious agonist in both assays. The key difference observed in the responses between 

the assays was that all LPA analogues except 17:0 LPA were less potent in the pERK assay 

than the calcium mobilization assay.  

In order to understand these differences, we first determined that all responses were due to only 

the LPA1 receptor. Using the selective LPA1 receptor antagonist AM966, we demonstrated that 

all responses were solely due to the activation of the LPA1 receptor. We also observed that 

there were significant differences between the Ki values determined from the two assays, with 

AM966 demonstrating consistently higher affinity at the pERK pathway when compared to 

calcium (2-7 fold). This is most likely due to complications arising from non-equilibrium 

conditions in the rapid calcium signalling system. As the calcium assay is measured earlier than 

the pERK, it is likely that we are slightly underestimating the affinity of AM966 at this pathway 

due to these hemi-equilibrium conditions (Charlton and Vauquelin, 2010).  

All responses were AM966-dependent, suggesting that bias exists between the two signalling 

pathways downstream of the LPA1 receptor. In order to explore the potential bias we have 

attempted to control for differences in the kinetics of the different assays by taking the initial 

peak response for both assays. This occurred between 2-3 minutes for the calcium response 

and at 5 minutes for the pERK response. Recent data have demonstrated that LPA1 receptor 

phosphorylation occurs after 15-30 minute treatment with LPA, with internalization occurring 

after 30-60 minutes (Alcántara-Hernández, 2015). Although we cannot completely rule out a 

contribution of these processes, this suggests that the responses we are measuring will not be 

affected by differences in receptor state, but are in fact due to differential activation of the 

pathways being measured. 

In order to quantify the potential bias demonstrated by the LPA analogues, functional assays 

for each pathway must be used, and the differences between kinetics, receptor reserve, signal 

amplification etc. taken into account. The most common way to do this is to use a reference 

(usually endogenous) agonist that is assumed to be non-biased, and relate experimental data to 



that obtained for the reference ligand. As all the ligands we have tested here are endogenous 

LPAs for the LPA1 receptor, we have chosen to use 18:1 LPA as the control agonist, as it was 

the only analogue that was fully efficacious in both assays. We used the Operational model of 

agonism to calculate a LogR for each ligand, which is a combination of efficacy (τ) and affinity 

(K), both of which can contribute to ligand bias in a functional system. By comparing the LogR 

of each analogue to our control analogue, 18:1, we can eliminate any bias that may exist due 

to differences in the efficiency of receptor coupling to each second messenger. From this 

analysis, we chose to further explore the signalling profiles of 16:0, 17:0, 18:2 and C18:1 LPA, 

as they yielded LogR values that were significantly different between the two assay formats, 

indicating that they may be biased agonists. 

For these selected agonists, we wanted to further explore the signal bias, by determining the 

role of Gi/o proteins in each of the responses we have measured. To do this we used PTx 

treatment to inactivate the Gi/o subset of G proteins to determine what effect this would have 

on the calcium and pERK responses. ERK phosphorylation was almost completely abolished 

after PTx treatment, while a significant proportion of the calcium response remained. This 

suggests that the calcium response is due to the activation of multiple G proteins, whereas the 

pERK response is predominantly PTx-sensitive and therefore may be due to Gi/o protein 

activation.  

For this reason, we repeated the LogR analysis using data for ERK phosphorylation (without 

PTx treatment) compared to the PTx-treated calcium responses. From these data we observed 

a significant difference between the LogR for 18:2 and 17:0 LPA, compared to 18:1, our 

control LPA, suggesting that these ligands are more biased towards the pERK pathway over 

the PTx-insensitive calcium response when compared to 18:1 LPA. To confirm that the ERK 

phosphorylation is occurring independent of Gq/11 activation, and that the PTx-treated calcium 

responses are solely due to Gq/11 activation, it would be interesting to repeat these experiments 

in the presence of selective Gq inhibition, or down-regulation of specific G proteins using 

siRNA treatment. Although we cannot rule out a role for LPA1 receptor mediated EGF 

transactivation leading to ERK phosphorylation, this has been shown to be dependent upon 

Gi/o-derived β subunits in fibroblasts, and therefore this would still indicate ligand bias at the 

level of the G protein (Daub et al., 1996, Tveteraas et al., 2016). 

In summary, we have characterized the calcium and ERK responses downstream of the LPA1 

receptor for a number of different LPA molecular analogues, and demonstrated that there is 

signalling bias between these pathways in HLF. As these experiments were performed in a 



native cell background almost exclusively expressing the LPA1 receptor, using a range of 

endogenous ligands, they could be indicative of the native in vivo/clinical situation in the lung. 

The importance of LPA as a key signalling molecule is apparent due to its widespread 

occurrence in biological fluids and in majority of the tissues in the body. It is also becoming 

increasingly important for drug discovery efforts and has been shown to play an important role 

in the pathogenesis of a range of diseases, with fibrosis, rheumatoid arthritis, neuropathic pain, 

cardiovascular disease and cancer being key areas of interest (Choi et al., 2010, Tigyi, 2010, 

Yanagida and Ishii, 2011, Lin et al., 2010, Velasco et al., 2016). Due to the diversity in the 

LPA analogues, it is possible that levels of specific molecular analogues of LPA are 

deregulated in certain conditions and the ligand bias could be explored in developing selective 

ligands for therapeutic applications. Here we have investigated signalling bias for the LPA1 

receptor between calcium mobilization and ERK phosphorylation, however there is also the 

potential for signalling through G protein-independent pathways such as -arrestin. These data 

were all generated in human primary cells which endogenously express the LPA1 receptor, as 

well as the relevant effector proteins. For this reason we believe the bias we have detected may 

be more relevant for therapeutic applications. Unfortunately it is still difficult to monitor β-

arrestin recruitment or receptor internalization without the need to transfect labelled proteins 

which may predispose the signalling towards these over-expressed pathways. For this reason 

we have not monitored these pathways in this study. Together these data demonstrate the 

importance in considering not only the LPA isoform associated with health and disease, but 

the receptor signalling pathways activated as well.  
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Table 1 Potency and intrinsic activity for different molecular species of LPA in different functional assays. 

 

 Calcium mobilization ERK phosphorylation 

Ligand pEC50 Intrinsic activity ΔLogR pEC50 Intrinsic activity ΔLogR 

18:1 LPA 7.73 ± 0.12 101.4 ± 5.83 0 7.51 ± 0.08 105.3 ± 4.31 0 

14:0 LPA 7.26 ± 0.11 101.4 ± 3.74 -0.62 ± 0.10 6.72 ± 0.04 73.55 ± 4.85 -0.78 ± 0.07 

16:0 LPA* 7.32 ± 0.16 104.7 ± 4.71 -0.18 ± 0.10 6.58 ± 0.10 76.45 ± 6.40 -1.13 ± 0.09 

17:0 LPA* 6.44 ± 0.05 94.48 ± 10.6 -1.39 ±0.10 7.14 ± 0.06 79.81 ± 5.22 -0.20 ±0.09 

18:2 LPA* 6.84 ± 0.03 112.9 ± 9.93 -0.90 ± 0.10 6.49 ± 0.04 79.45 ± 2.88 -1.36 ± 0.09 

18:3 LPA 6.45 ± 0.06 82.01 ± 2.27 -1.52 ± 0.12 6.31 ± 0.10 78.85 ± 3.41 -1.29 ± 0.17 

20:0 LPA 5.44 ± 0.24 58.83 ± 2.16 -2.65 ± 0.16 ND 32.89 ± 1.93 -2.56 ± 0.10 

20:4 LPA 6.85 ± 0.22 89.36 ± 6.72 -1.09 ± 0.12 6.63 ± 0.24 50.53 ± 2.52 -1.09 ± 0.13 

C18 LPA 6.22 ± 0.05 66.67 ± 5.98 -1.98 ± 0.14 ND 26.67 ± 1.13 -2.34 ± 0.31 

C18:1 LPA* 8.04 ± 0.18 77.04 ± 6.36 0.04 ± 0.12 6.70 ± 0.12 78.06 ± 5.49 -0.99 ± 0.09 

Potency and intrinsic activity values for LPA1 receptor agonists in calcium mobilization and ERK phosphorylation assays in HLF. Intrinsic activity 

was calculated as a percentage of the maximal 18:1 LPA response. ΔLogR were calculated for each agonist using the Operational model of agonism 

(van der Westhuizen, 2014).  Data were analysed in a pairwise manner using a two-tailed unpaired Student’s t test to determine if there was a 

significant difference in the ΔLogR values between the two assays. Data are expressed as means ± SEM for 3 independent experiments. 

ND – not determined due to incomplete curve * p < 0.05 



Table 2 Affinity values for the LPA1 antagonist AM966 versus different LPA1 agonists.  

 

 Calcium mobilization (pKi) ERK phosphorylation (pKi) 

18:1 LPA* 7.85 ± 0.03 8.37 ± 0.07 

16:0 LPA* 7.73 ± 0.05 8.13 ± 0.13 

17:0 LPA* 7.77 ± 0.02 8.62 ± 0.10 

18:2 LPA* 7.86 ± 0.02 8.68 ± 0.02 

C18:1 LPA* 7.78 ± 0.02 8.33 ± 0.04 

 

Affinity of LPA1 receptor antagonist AM966 in calcium mobilization and ERK 

phosphorylation assays after treatment with a range of different LPA isoforms. Data were 

analysed in a pairwise manner using a two-tailed unpaired Student’s t test to determine if there 

was a significant difference in the affinity values between the two assays. Data are shown as 

means ± SEM for three independent experiments.  

*P <0 .05 

 

 



Table 3  Effect of PTx treatment on the potency and intrinsic activity of different LPA1 receptor agonists. 

 

 Calcium mobilization ERK phosphorylation 

 Control PTx treated Control PTx treated 

Ligand pEC50 
Intrinsic 

activity 
pEC50 

Intrinsic 

activity 
pEC50 

Intrinsic 

activity 
pEC50 

Intrinsic 

activity 

16:0 LPA 7.28 ± 0.07 96.7 ± 5.06 6.40 ± 0.09 58.6 ± 1.99 6.80 ± 0.09 77.9 ± 6.51 ND 13.3 ± 3.17 

17:0 LPA 6.84 ± 0.03 97.0 ± 4.76 6.58 ± 0.06 68.0 ± 4.32 7.16 ± 0.04 79.4 ± 0.82 ND 15.0 ± 6.54 

18:2 LPA 6.84 ± 0.08 96.1 ± 3.15 6.37 ± 0.03 70.2 ± 0.48 6.65 ± 0.05 80.2 ± 2.72 ND 20.9 ± 3.00 

C18:1 LPA 7.27 ± 0.02 75.4 ± 1.11 6.74 ± 0.04 48.7 ± 1.03 6.58 ± 0.15 78.4 ± 0.17 ND 16.5 ± 4.01 

18:1 LPA 7.77 ± 0.07 100 6.84 ± 0.09 60.3 ± 2.42 7.43 ± 0.17 100 ND 5.69 ± 1.35 

 

Potency and intrinsic activity of LPA1 receptor agonists in calcium mobilization and ERK phosphorylation assays in HLF, with or without PTx 

treatment. Intrinsic activity was calculated as a percentage of the maximal 18:1 LPA response. Data are shown as means ± SEM for three 

independent experiments. 

ND – not determined due to incomplete curve  



Table 4 ΔΔLogR ratios and bias factors (BF) for selected LPA molecular species at the LPA1 receptor.  

 

 
ΔlogR (18:1) 

calcium 

ΔlogR (18:1) 

pERK 
ΔΔLogR (18:1) (BF) 

18:1 LPA 0 0 0 (1) 

17:0 LPA 0.08 ± 0.11 -0.78 ±  0.19 0.87 ±  0.18 (7.35)* 

18:2 LPA -0.14 ± 0.11 -1.01 ± 0.21 0.86 ± 0.22 (7.31)* 

16:0 LPA -0.25 ± 0.11 -0.88 ± 0.21 0.63 ±0.24 (4.30) 

C18:1 LPA -0.27 ± 0.14 -0.47  ±0.19 0.20 ± 0.24 (1.59) 

 

Transduction ratios (LogR) and Bias factors (BF) were calculated using the equations described in (van der Westhuizen et al., 2014) from data 

plotted using the Operational Model. Data used were obtained from calcium experiment performed in the presence of PTx (Gq/11-dependent) and 

ERK phosphorylation performed in the absence of PTx (Gi/o-dependent), and calculations performed using either 18:1 or 17:0 LPA as the reference 

ligand. Data are expressed as the mean ± SEM of 3 independent experiments. Data were analysed in a pairwise manner using a two-tailed unpaired 

Student’s t test [on ΔΔLogR] to determine the significance of the ligand biases.  

BF= Bias factor *P <0 .05  

 



Figure Legends 

Figure 1 Concentration-response curves for calcium mobilization in HLF using a) short chain 

b) 18:x, c) 20:x and d) C18:x molecular analogues of LPA. Data were normalised to the 18:1 

LPA response and are expressed as means ± S.E.M. for three independent experiments. 

Figure 2 Concentration-response curves for ERK phosphorylation in HLF using a) short chain 

b) 18:x, c) 20:x and d) C18:x molecular analogues of LPA. Cell intensity was normalised to 

the 18:1 LPA response and data expressed as means ± S.E.M. for three independent 

experiments. 

Figure 3 Correlation between LogR for calcium versus ERK phosphorylation in HLF. A 

Pearson correlation coefficient (r) was determined followed by a two-tailed t test to determine 

significance (P ≤ 0.05). 

Figure 4 Concentration-response curve to the selective LPA1 receptor antagonist AM966, in 

the presence of an EC80 concentration of 16:0, 17:0, 18:2 & C18:1 LPA for a) calcium 

mobilization or b) ERK phosphorylation.  Data are normalised to the EC80 control for each of 

the different LPA analogues and are expressed as means ± S.E.M. for three independent 

experiments.  

Figure 5 Effect of PTx on calcium mobilization and ERK phosphorylation by selected LPA 

analogues; a) 18:1 LPA, b) 16:0 LPA, c) 17:0 LPA, d) 18:2 LPA and e) C18:1 LPA. HLF were 

treated with 150 ng/ml PTx during the serum starvation and the response to selected LPA 

analogues was measured in calcium mobilization and ERK phosphorylation assay. Data are 

normalised to the 18:1 LPA response and are expressed as means ± S.E.M. for three 

independent experiments. 

Figure 6 a) LogR for each ligand calculated between the ERK response (-PTx) and the 

calcium response (+PTx), using either 18:1 LPA or 17:0 LPA as the control, non-biased ligand. 

b) Bias plot for calcium mobilization versus ERK phosphorylation. The response in the ERK 

phosphorylation assay (-PTx) was plotted as a function of the corresponding response in the 

calcium mobilization assay (+PTx), for selected analogues of LPA. 
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Figure 5 
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Figure 6 

1
8
:1

 L
P

A

1
7
:0

 L
P

A

1
8
:2

 L
P

A

1
6
:0

 L
P

A

C
1
8
:1

 L
P

A

-0 .5

0 .0

0 .5

1 .0

1 .5

L P A  s p e c ie s




 L
o

g
R

*

*

p E R K  b ia s

c a lc iu m  b ia s

 

 

 

 


