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Abstract

An empirical force field for carbon based upon the Murrell-Mottram potential is

developed for the calculation of the vibrational frequencies of carbon nanomate-

rials. The potential is reparameterised using data from density functional theory

calculations through a Monte-Carlo hessian-matching approach, and when used

in conjunction with the empirical bond polarisability model provides an accu-

rate description of the non-resonant Raman spectroscopy of carbon nanotubes

and graphene. With the availability of analytical first and second derivatives,

the computational cost of evaluating harmonic vibrational frequencies is a frac-

tion of the cost of corresponding quantum chemical calculations, and makes the

accurate atomistic vibrational analysis of systems with thousands of atoms pos-

sible. Subsequently, the non-resonant Raman spectroscopy of carbon nanotubes

and graphene, including the role of defects and carbon nanotube junctions is

explored.
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1. Introduction

Since their discovery, carbon nanotubes (CNTs) [1] and graphene [2] have

been the subject of considerable research interest owing to their unique struc-

tural, mechanical and electronic properties. Raman spectroscopy has emerged
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as one of the most popular techniques used to study these systems, providing in-5

formation on the structure, bonding and environment of CNTs [3] and graphene

[4], including details on CNT diameter, chirality and defects. Key modes in the

Raman spectroscopy of CNTs are the G band and the radial breathing mode

(RBM). The G band arises from planar vibrations of the carbon atoms and is

the most intense band, and is present in both graphene and CNTs. For CNTs10

this band can split into the G+ and G− bands, which correspond to in-plane

movements along and perpendicular to the CNT axis, respectively. The G band

can be used to determine whether a CNT is metallic or semi-conducting, and

allows for the qualitative assignment of the chiral indices of a CNT. The RBM

corresponds to the coherent expansion and contraction of carbon atoms in the15

radial direction, and the frequency of this mode is known to depend on the di-

ameter of the CNT. A further very weak band is the disorder-induced D band,

which is associated with sp3 defects in CNTs [5].

Although Raman spectroscopy is used routinely to study CNTs and graphene20

based materials, the prediction of the Raman spectroscopy of these systems is

a challenge for computational methods. The accurate calculation of the vi-

brational frequencies and associated spectroscopy of carbon nanomaterials can

potentially aid the interpretation of experimental measurements and allow the

relationship between the molecular structure and the observed features to be25

explored. Simulation of vibrational spectroscopy using quantum chemical meth-

ods, such as density functional theory (DFT), is well established. However, the

computational cost of these methods makes them impractical for the study of

large systems such as CNTs. This can be overcome for the simulation of pris-

tine nanotubes through the use of periodic boundary conditions, but the use of30

periodic boundary conditions to study realistic CNTs that are non-uniform and

contain vacancies and defects is limited since such calculations would require

large unit cells. Furthermore, periodic boundary conditions are not suitable for

studying systems such as nanotube junctions which are inherently non-periodic.

35
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Several groups have reported DFT based harmonic frequency calculations of

the infrared (IR) and Raman spectroscopy of fullerenes, including C60 and C70

[6, 7, 8, 9, 10]. Similar calculations have also been performed for related systems

such as [n]cycloparaphenylenes [11, 12] and a nanotorus [13]. DFT calculations

have been used to study the Raman spectroscopy of zigzag nanotubes of vary-40

ing diameter [14], accurately reproducing the diameter dependence of the RBM,

although these calculations only considered one unit cell capped with hydrogen

atoms. Such small model systems would not be expected to describe other

bands such as the G band accurately. Another study employed DFT to study

the vibrational spectroscopy of ultra-small diameter nanotubes [15]. Yumura et45

al. reported DFT calculations of the vibrational frequencies of relatively large

nanotubes, consisting of up to 120 carbon atoms, and studied the effects of the

end caps on the spectra [16]. Recently the Raman spectroscopy of zigzag nan-

otubes with length of up to 2.15 nm was studied using DFT, with larger tubes

studied using a cartesian coordinate transfer technique [17]. The calculations50

reproduced the dependence of the frequency of the RBM on the tube diameter,

but larger tubes were required to describe the G band modes accurately. It

was found that the G band was more sensitive to the presence of defects, and

there was a reduction in the intensity of the RBM on the introduction of a

Stone-Wales (SW) defect. These studies represent the current limit of what can55

be achieved through direct non-periodic DFT calculations. The Raman spec-

troscopy of nanotubes including the effect of SW and di-vacancy defects on the

spectra has been studied [18] using plane-wave based periodic DFT with the Ra-

man intensities computed using the empirical bond polarisation model (BPM)

[19]. The BPM is an example of a computationally inexpensive approach to60

evaluating Raman intensities and other related approaches have been reported

and used to study the Raman spectra of liquids [20]. Other work has studied

the effect of the Raman excitation profile for CNTs under torsion or uniaxial

strain [21]. Computationally less expensive methods that have been applied to

study the vibrational spectroscopy of CNTs include tight-binding DFT, which65

has been applied to study the vibrational spectra of fullerenes [22, 23], and force
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constant based methods [24, 25, 26, 27]. Calculations of the resonant Raman

spectroscopy of CNTs using a non-orthogonal tight-binding model have been

reported, and the influence of point defects on the spectra studied [28, 29].

70

Ideally it would be possible to model the vibrational spectroscopy of these

systems efficiently without the constraints of periodicity, providing an accurate

description of experiment and opening the opportunity for the role of edges and

defects to be explored. Empirical potentials provide a possible solution to this

problem. The attraction of this approach for studying the vibrational spec-75

troscopy of these systems is evident by comparing the associated computational

cost with a DFT calculation. On a single processor, a B3LYP/6-31G* calcula-

tion of the harmonic frequencies of C60 and C70 requires over 40000 and 60000

seconds, respectively. Similar calculations using the empirical Murrell-Mottram

potential take two and three seconds, representing a many thousand-fold de-80

crease in computational time. Furthermore, the use of empirical potentials alle-

viates the memory requirements of using quantum chemical methods, allowing

systems of thousands of atoms to be studied routinely. However, for empirical

potentials to form viable methods for simulating the vibrational spectroscopy of

these systems, the accuracy of quantum chemical methods needs to be retained.85

The prominence of carbon-carbon interactions in chemistry, physics and ma-

terials science has led to the introduction of several highly developed empirical

potentials. Bond order potentials that can describe changes in hybridization

and the breaking and formation of bonds are one of the most popular types90

of potential. These include the Reactive Empirical Bond Order (REBO) po-

tential [30], which is a development of the Brenner potential [31] which was

based on the Tersoff potential [32], and more recently the Reactive Force Field

(Reaxff) potential was introduced [33]. The Raman spectroscopy of nanotube

junctions have been studied based upon the REBO potential [34]. Several other95

simpler potentials for carbon have been reported in the literature including the

TLHT potential of Takai et al. [35] and the potentials of Murrell and co-workers
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[36, 37, 38]. Within the context of computing vibrational spectroscopy, one of

the advantages of these mathematically simpler potentials is that it is relatively

straightforward to implement analytical first and second derivatives. The avail-100

ability of analytical second derivatives is essential for the efficient calculation of

vibrational spectroscopy and, owing to the mathematical complexity, generat-

ing analytical second derivatives for the bond order based potentials represents

a significant challenge. Furthermore, much of the complexity of the reactive

potentials is not relevant for the calculation of vibrational frequencies, which105

are inherently an equilibrium property.

In this work we study the vibrational spectroscopy of carbon based materials

using empirical potentials. The parameterisation of the well known potentials,

such as the REBO potential [30], focuses on energetics and structure and does110

not consider the vibrational properties. As a consequence of this, it has been

shown in a recent study that the REBO potential performed poorly in describ-

ing the the vibrational frequencies of C60 and CNTs [39]. It was found that

to achieve an adequate description of the IR spectrum of C70 and the RBM

and G band of CNTs, it was necessary to treat high and low frequency modes115

separately. The calculation of vibrational frequencies has implications beyond

simulating IR and Raman spectra. Vibrational frequencies provide an indirect

probe of the potential energy surface, providing a measure of the curvature of

the surface, and it is an open question as to whether empirical potentials which

do not produce satisfactory agreement with experimental frequencies can pro-120

vide accurate molecular dynamics.

Here we develop an empirical potential based upon the Murrell-Mottram

(MM) potential that is designed to predict the vibrational frequencies of carbon

based materials. Analytical first and second derivatives of the MM potential125

have been implemented and the potential reparameterised via a Monte-Carlo

based hessian-matching approach. When combined with the empirical bond

polarisation model [19] it provides a fully empirical method for modelling the
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Raman spectroscopy of CNTs and graphene. The implementation of analyt-

ical first and second derivatives allows accurate atomistic vibrational analysis130

and simulation of the Raman spectroscopy of systems with greater than 10,000

atoms. Subsequently, the Raman spectroscopy of graphene and CNTs with

defects and junctions is explored.

2. Computational Details

2.1. Parameterisation of the Murrell-Mottram Potential135

The work presented in this study is based upon the MM potential. This

potential was chosen in preference to bond order potentials like REBO and

Reaxff for its simplicity that allows for the implementation of analytical first and

second derivatives and a more straightforward framework for parameterisation.

For a system with N atoms, the MM potential [36] takes the following form140

with two and three body terms:

E =

N∑
i<j

V
(2)
ij +

N∑
i<j<k

V
(3)
ijk (1)

where

V
(2)
ij = −D(1 + a2ρij) exp(−a2ρij) (2)

V
(3)
ijk = −DP (Q1, Q2, Q3) exp(−a3Q1) (3)

ρij = (rij − re)/re (4)

with rij being the distance between atoms i and j. D and re are parameters

that allow the energy and ground state structure to be described accurately.

The exp(−a2ρij) and exp(−a3Q1) terms are damping functions that ensure the145

energy goes to zero as the atoms become infinitely separated with the form of

the function controlled by the parameters a2 and a3. P (Q1, Q2, Q3) is a quartic

polynomial in symmetrical coordinates Qi which has the following form

P (Q1, Q2, Q3) = c0 + c1Q1 + c2Q
2
1 + c3(Q2

2 +Q2
3) + c4Q

3
1 + c5Q1(Q2

2 +Q2
3)

+ c6(Q3
3 − 3Q3Q

2
2) + c7Q

4
1 + c8Q

2
1(Q2

2 +Q2
3)

+ c9(Q2
2 +Q2

3)2 + c10Q1(Q3
3 − 3Q3Q

2
2) (5)
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where c0 − c10 are parameters and

Q1 =
1√
3

(ρij + ρik + ρjk) (6)

Q2 =
1√
2

(ρik − ρjk) (7)

Q3 =
1√
6

(2ρij − ρik − ρjk). (8)

The MM potential has been used extensively to study the structure of metal150

clusters [40, 41, 42, 43, 44, 45, 46, 47]. A parameterisation for carbon has been

reported by Eggen et al. [38], wherein the potential was fitted to the phonon

frequencies and elastic constants of diamond and to the cohesive energy and

intralayer spacing of graphite in addition to other structural data. The po-

tential was applied to study the structure of a wide range of carbon clusters155

and fullerenes. Vibrational frequencies for selected carbon clusters including

C60 were computed, and it was found that that low frequencies were underesti-

mated and higher frequencies overestimated.

As was noted in the work of Eggen et al., small carbon clusters and fullerenes160

will both have π-bonding electronic effects, which are missing in diamond which

has only sp3 carbons. Consequently, in order to describe the vibrational spec-

troscopy of CNTs and graphene-based materials correctly, it is necessary to

revisit the parameterisation of the potential. In order to construct a new set of

parameters of the MM potential designed to accurately model the structure and165

vibrational frequencies of sp2 based carbon materials, we have used a Monte-

Carlo structure and hessian-matching approach. The hessian matrix is the key

component for the computation of accurate vibrational frequencies and nor-

mal modes, and contains all the information required for vibrational analysis

within the harmonic approximation. This is a similar idea to force-matching170

approaches, where an empirical potential is parameterised to replicate forces

computed from quantum chemical calculations by a Monte-Carlo minimisation

of the root mean square deviation (RMSD) between the forces [48, 49]. Recently,

the use of hessian data in the parametisation of force fields has been exploited
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[50].175

New parameters for the MM potential were determined by a Monte-Carlo

based minimization of the RMSD of the unscaled hessian matrix for C60, com-

puted using DFT with the B3LYP exchange-correlation functional [51, 52] and

6-31G* basis set within the constraint that a low RMSD for the structure is180

also achieved. C60 was chosen since it captures many of the structural elements

present in sp2-based carbon materials, and it is sufficiently small for the calcu-

lation of the hessian matrix using DFT. Previous studies have shown that the

B3LYP/6-31G* level of theory provides a good description the structure and

vibrational frequencies of fullerenes [7]. In the fitting, the parameter D was not185

varied from the value of 6.298 eV from the work of Eggen et al. [38] where this

value corresponds to the typical bond energy of a carbon-carbon double bond.

The ci parameters were confined to the range -200 to +200, the ai parameters

between 1.5 and 10.0. re was allowed to vary between 1.1 and 1.5 Å since

this range contains acceptable values for the bond lengths of C60. 10000 sets of190

randomly chosen initial parameters were generated, and then for each of these

sets of parameters, the RMSDstructure and RMSDhessian were minimised using

the following procedure: Each parameter is perturbed randomly by an amount

between -5 and +5 for the ci coefficients and between -0.05 and 0.05 for the

remaining parameters, and the change is accepted if both the RMSDstructure
195

and RMSDhessian decrease. This was continued until there was no further de-

crease in RMSDstructure and RMSDhessian, and was repeated three times for

each starting condition. The 1200 sets of parameters with lowest RMSDhessian

that satisfied the condition RMSDstructure < 0.03 Å were refined further us-

ing a similar procedure with the magnitude of the variation in the parameters200

reduced by a factor of 100. The final results showed several sets of parame-

ters with similarly low RMSDstructure and RMSDhessian, these parameters were

then tested in the simulation of a Raman spectrum for a nanotube. The final

parameters chosen are shown in Table 1, and correspond to RMSDstructure=

0.014 Å and RMSDhessian = 0.37 Eh Å−2. There is a significant reduction205
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in the value of re between the original MM potential for carbon and the new

parameters reflecting the change from sp3 to sp2 carbons and the presence of

carbon-carbon double bonds. Some of the c coefficients change significantly,

however, the potential depends on the cumulative effect of these parameters

and it is difficult to determine any physical relevance from the change in any210

one of these coefficients. The RMSD in the hessian is significant, but as shown

later this is sufficiently low to provide an accurate description of the vibrational

frequencies of CNTs and graphene. The vibrational frequencies are computed

within the harmonic approximation, and it is well known that this leads to an

overestimation of the vibrational frequencies. Consequently, it is customary to215

apply a linear scaling to computed harmonic frequencies. For B3LYP/6-31G*

a scaling factor of about 0.96 is optimal [53], for the frequencies computed with

the re-parameterised MM potential we find a scaling factor of 0.90 to be suitable

which is closer to the scaling factors used for Hartree-Fock theory calculations.

We note that overestimating the experimental frequencies at the harmonic level220

is to be expected since if the calculations were extended to anharmonic fre-

quencies, for example via vibrational perturbation theory, this would lead to a

decrease in the computed frequencies.

2.2. Raman Intensities

To simulate Raman spectra it is necessary to combine the computed frequen-225

cies with Raman intensities associated with the corresponding normal modes.

Within a non quantum chemical framework, this can be achieved using the BPM.

The BPM has been previously used for the computation of Raman spectra of

CNTs, graphene and nano-ribbons [54, 55], and provides a complementary em-

pirical approach for estimating Raman intensities. One limitation of the model230

is that it cannot be applied to resonant Raman spectra. The BPM has been used

in conjunction with periodic calculations using a force-constant model [54, 55]

and DFT [18], thus avoiding the computationally expensive determination of

the polarisability derivatives via quantum chemical calculations.

235
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Parameter MMEggen MMV ib

D / eV 6.298 6.298

re / Å 1.570 1.313

a2 8.200 7.428

a3 8.200 8.072

c0 8.087 7.788

c1 -13.334 3.917

c2 26.882 -17.503

c3 -51.646 -51.427

c4 12.164 99.263

c5 51.629 -39.772

c6 25.697 70.505

c7 -5.964 73.262

c8 -7.306 3.831

c9 2.208 65.696

c10 13.707 -85.307

Table 1: Parameters for the Murrell-Mottram potential from the work of Eggen et al.

(MMEggen) and the new parameters determined in this work (MMV ib).
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Within the BPM, the bond polarisability for a pair of atoms is given as

Πµν =
1

3

(
α|| + 2α⊥

)
δµν +

(
α|| − α⊥

)(RµRν
R2

− 1

3
δµν

)
(9)

where µ and ν are Cartesian coordinates and R is the vector connecting the

two atoms linked by the bond. Raman intensities can be calculated from deriva-

tives of equation 9 with respect to the normal modes, and equations for these

derivatives can be found elsewhere [19, 25].
(
α|| + 2α⊥

)
and

(
α‖ − α⊥

)
and240

the associated derivatives
(
α′‖ + 2α′⊥

)
,
(
α′‖ − α

′
⊥

)
are empirical parameters.

Here we adopt the parameters used by Saito et al., for modelling CNTs [55]

and graphene [54]. For CNT
(
α′‖ + 2α′⊥

)
= 4.7 Å2,

(
α′‖ − α

′
⊥

)
= 4.0 Å2 and(

α‖ − α⊥
)

= 0.04 Å3 and for graphene
(
α′‖ + 2α′⊥

)
= 7.55 Å2,

(
α′‖ − α

′
⊥

)
=

2.60 Å2 and
(
α‖ − α⊥

)
= 0.32 Å3. We note that these parameters were de-245

signed for the study of CNTs under periodic boundary calculations, and as

a result may not be ideal for the calculations presented here. Furthermore, it

would be desirable to have a common set of parameters for CNTs and graphene.

2.3. Calculations

Using the new MM potential, structures were optimized using the conjugate250

gradient method with a gradient convergence criterion of 10−8 Eh Å−1, and a

spherical cut off was applied to the potential with a radius of 12 Å with an

update every 200 steps during optimization. Harmonic vibrational frequencies

and normal modes were calculated through diagonalisation of the mass-weighted

hessian matrix. The elements of the hessian matrix were constructed using ana-255

lytical derivatives with the same spherical cut off of 12 Å. Analytical derivatives

are critical for efficient structure and frequency calculations, and for C180 the

computational cost is over 3000 times less expensive than the use of numerical

derivatives based upon energies, and this difference grows rapidly as the sys-

tem size increases. Furthermore, ambiguity regarding the step size within the260

numerical derivative methods is removed. Subsequently, the vibrational modes

were visualized in either IQMOL or VMD. Isotopic effects of including 13C in

naturally occurring abundances were explored and showed to have negligible
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(a)$

(b)$

Figure 1: Optimized structures of a (36,0) nanotube of length 15.2 nm (a) and 5 nm x 5 nm

graphene flake (b).

effects on the computed spectra. Non-resonant Raman intensities via the BPM

were convoluted with Lorentzian functions with FWHM’s of 20 cm−1, unless265

stated otherwise. DFT calculations were performed using the Q-CHEM soft-

ware [56] and the calculations using the MM potential and BPM were performed

with our own code.

3. Results and Discussion

3.1. Structure270

The new parameters of the potential find CNTs and graphene to be stable

structures as demonstrated by the absence of imaginary frequencies, and rep-

resentative structures are shown in Figure 1. The previous parameterisation of

the MM potential for carbon did not produce sp2 carbon as stable structures,

but rather tetrahedrally distorted coordination of carbon atoms in a tubular275
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arrangement. This is unsurprising since the parameters were fitted to the prop-

erties of diamond. For nanotubes with diameters greater than that of a (10,10)

nanotube, the predicted C-C bond lengths are 1.43 Å, consistent with a value of

approximately 1.427 Å observed in experiment. For small diameter nanotubes

the strain arising for the high curvature results in greater deviation in the bond280

lengths. For graphene the new potential gives bond lengths of 1.42 Å at the

center of a model 5 nm x 5 nm flake, again this compares well to literature

values. At the edges of the flake, bonds lengths deviate from 1.42 Å with edge

effects becoming more prominent and differentiation between the bond lengths

of double and single bonds is evident. Overall, this shows that the parameters285

fitted to C60 are able to provide a reliable description of the minimum energy

structures of large CNTs and graphene.

3.2. Raman Spectra

Figure 2 shows the Raman spectrum computed with the empirical model

for a single CNT along with an experimental spectrum reported by Dresselhaus290

and co-workers [57]. The calculation is for a 4 nm long (12,0) nanotube. The

theoretical spectrum predicts the RBM, intermediate frequency band (IFM)

and G bands that are observed in experiment. The D band is associated with

defects/sp3 environments which are not present in the pristine CNT modelled

here and overtone bands at higher frequency than the G band observed in exper-295

iment are not present in the fundamental harmonic frequency analysis presented

here. The most intense band is the G band which lies at 1608 cm−1 in the the-

oretical spectrum compared with about 1590 cm−1 in experiment. The profile

of the G band shows two distinct peaks, and this is discussed in more detail

later. The predicted frequencies for the RBM and IFM are in good agreement300

with the experimental spectrum, although direct comparison with the exper-

iment for these bands is problematic since the frequencies of these bands are

sensitive to the diameter of the nanotube and the precise diameter of the tubes

in experiment is not well defined. The main difference between the computed

and experimental spectra is the underestimation of the intensities of the RBM305
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Figure 2: Experimental and computed Raman spectra for a carbon nanotube (left) and

graphene (right). Calculations are for a (12,0) nanotube of length 4 nm, and the experi-

mental spectrum is adapted from reference [57].

and IFM bands relative to the G band. One noticeable feature of the RBM for

finite nanotubes is that there is some distortion to the perfect radial expansion

at the ends of the tube, while within a periodic (infinite) tube framework, the

displacements of the atoms are perfectly radial and symmetrical. A consequence

of this is that the Raman intensity associated with the RBM for the finite tube310

will be smaller and is likely to be underestimated by the BPM parameters that

were parameterised based upon periodic (infinite tube) calculations.

Also shown in Figure 2 are corresponding spectra for graphene. The cal-

culations correspond to a finite 5 nm x 5 nm graphene sheet. There are fewer315

features in Raman spectra for graphene, and the spectra are dominated by the

G band. The calculations predict a spectrum in agreement with experiment,
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Figure 3: Variation of the ωRBM with nanotube diameter. Circles: calculated frequencies,

black line: ωRBM = 234
d

+ 25, red line: ωRBM = 223.5
d

+ 12.5.

the frequency of the G band is calculated to be about 1650 cm−1 compared with

1585 cm−1 in experiment. The agreement with experiment for this band is not

as accurate as found for the nanotube and may reflect the nature of the fitting320

of the potential to C60, which is a more appropriate model for nanotubes than

for a flat graphene sheet.

3.3. Radial Breathing Mode

The RBM is one of the most important modes in the Raman spectroscopy325

of CNTs. The primary use of this mode stems from the relationship of its

frequency to the diameter of the nanotube and the RBM is commonly used to

determine nanotube diameters in experimental samples. The frequency of the

RBM is known to follow an inverse relationship with the diameter (d) of the
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CNT, and is commonly used to determine nanotube diameters in experimental330

samples. The following empirical relationships are often used [58, 59]

ωRBM =
A

d
(10)

ωRBM =
A

d
+B (11)

For ωRBM in cm−1 and d in nm, A is known to lie between 223 - 248 nm cm−1,

and B typically has values 0 - 20 cm−1 [58, 59, 60]. Figure 3 shows the varia-

tions of the RBM frequency computed with the new potential with diameter for

a set of nanotubes comprising both armchair and zigzag CNTs. Fitting of these335

frequencies to equation 10 gives a value of A = 234 nm cm−1 and to equation

11 gives values of A = 234 nm cm−1 and B = 25 cm−1, and in both cases

the correlation coefficient is 0.999. Also shown are the RBM frequencies given

by a commonly used empirical formula ωRBM = 223.5
d + 12.5. This shows that

the potential accurately describes the diameter dependence of the RBM mode340

observed in experiment, although the frequencies are a little too high. The cal-

culations also show that the frequency of the RBM converges rapidly with the

length of the tube and for nanotubes longer than 10 nm there is little change

in the computed RBM frequency.

345

3.4. G Band

In nanotubes the G band is known to have two components, G− and G+.

G− lies at lower frequency and corresponds to a vibrational mode wherein the

carbons are moving perpendicular to the nanotube axis, and this mode is more

sensitive to the diameter of the nanotube. G+ lies at higher frequency and cor-350

responds to carbon motions along the tube axis. The splitting between these

modes can lead to two bands and can distinguish between metallic and semi-

conducting tubes. Figure 4 shows the computed G band for two nanotubes of

different diameter, (8,8) and (12,12) with lengths of 15 nm. The nature of the

modes comprising the G band are predicted correctly. For both nanotubes the355
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Figure 4: Computed G band for (8,8) and (12,12) nanotubes, and illustration of the G− and

G+ modes. Black line: Lorentzian broadening with width 20 cm−1, red line: Lorentzian

broadening with width 2 cm−1

G band has two distinct components, and observation of the corresponding nor-

mal modes shows that the lower frequency mode has predominately motions of

the carbons perpendicular to the tube axis and the higher frequency mode has

motions along the nanotube axis. The frequency of both components changes

with the diameter of the nanotube, and this is illustrated in Figure 5 which360

shows the variation of the frequency of the G− and G+ modes with nanotube

diameter. The G− mode is more sensitive to diameter, and as the tube diam-

eter increases the two components of the G band become closer in frequency.

The computed band profiles with the Lorentzian broadening of 20 cm−1 do not

show two clearly distinct peaks. Armchair nanotubes, such as the ones modelled365

here, are metallic and two peaks are expected for semiconducting nanotubes.

The frequency of the G band does not show a strong dependence on the length
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of the CNT. This is not surprising since the G band is common across a wide

range of carbon nanomaterials, hence its main properties are independent of

large-scale structural differences such as that between CNT and graphene.370
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Figure 5: Variation of the frequency of the G+ and G− bands with nanotube diameter.

3.5. Vibrational Density of States

Calculations of Raman spectra only probe the small number of vibrational

modes that have significant Raman intensity. The vibrational density of states

(VDOS) provides a measure of the complete vibrational spectrum. For fi-

nite nanotubes of sufficient length the calculated VDOS can approach bulk375

behaviour. Figure 6 shows the computed VDOS for a (10,10) nanotube with

length 60 nm that has 9720 atoms, and a broadening using Lorentzian functions

of 20 cm−1 is applied. This can be compared with the VDOS measured in ex-

periment from the work of Dresselhaus and Eklund [61] which also corresponds

to (10,10) nanotubes. We note that the calculations represent a single pristine380
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Figure 6: Calculated and experimental vibrational density of states. Experimental data from

reference [61].

CNT while the experiments are for a nanotube bundle. In general the calcula-

tions qualitatively reproduce the VDOS profile observed in experiment. In some

regions of the spectrum some notable differences are revealed. In particular the

two distinct peaks in the 600 cm−1 to 900 cm−1 region are predicted to lie at

lower frequency. There are also differences in the 1400 cm−1 to 1600 cm−1 re-385

gion. However, the potential is performing reasonably well over the frequency

range, although some features are slightly shifted.

3.6. Stone-Wales Defects

The Stone-Wales (SW) rearrangement is 90◦ rotation of a single carbon-

carbon bond which can lead to the formation of two 5-membered rings and two390

7-membered rings [62]. The SW rearrangement is a common defect found in car-

bon nanomaterials and it has been proposed that a localised vibrational mode

associated with the defect may form the basis for monitoring the formation of

these defects in nanotube growth [63]. Consequently, it is of interest to study
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Figure 7: Illustration of the local vibrational modes associated with a Stone-Wales defect.

how the presence of these defects is reflected in the Raman spectroscopy.395

For CNTs the inclusion of a single defect leads to some distinct highly local-

ized modes based purely around the defect area. These defects are illustrated

in Figure 7 and the computed Raman spectra for nanotubes and graphene are

shown in Figure 8. The first type of vibrational mode lies at 1665 cm−1 in400

a (10,10) nanotube and is associated with stretching modes of the pentagon

defect. The second corresponds to the C-C stretching mode between the two

pentagon defects and is calculated to lie at 1931 cm−1 in a (10,10) nanotube.

The computed frequency of this mode is consistent with previous work [63] where

the C-C stretching mode between the pentagon defects was computed to lie at405

1962 cm−1 in DFT based calculations on a narrower diameter (3,3) nanotube.

The computed spectra show the effect of the presence of the SW defect on the

computed Raman spectra. The frequency of the RBM is not affected by the

inclusion of the SW defect, and we find that the variation of the RBM frequency

with diameter is also unaffected. The invariance of the RBM frequency to the410

presence of a SW defect was also observed in periodic tight binding density func-

tional theory based calculations on a (7,0) nanotube [29]. However, the Raman

intensity of this mode is decreased significantly, and the single RBM becomes a

collection of Raman active modes in the position of the original RBM, although

20



100 200 300 400 500
Raman Shift / cm-1

1600 1650
Raman Shift / cm-1

1900 1920 1940
Raman Shift / cm-1

RBM

G band

IFM

DF

DF

Figure 8: Effect of Stone-Wales defect on the computed Raman spectra for a (10,10) nanotube.

Black line: pristine nanotube, red line: one Stone-Wales defect, blue line: four Stone-Wales

defects.

these modes are not resolved after the Lorentzian broadening, reflecting what415

is mostly likely observed experimentally. The frequency of the IFM is also un-

changed, but the intensity of this mode increases with the presence of the defect.

In the G band region of the spectrum the SW defect leads to a new feature

in the Raman spectrum. This defect band (labelled DF) lies at about 30 cm−1420

higher in wavenumber than the G band and the intensity of this band increases

as more SW defects are included in the nanotube. The spectra for this band

have been generated with a narrower Lorentzian function (2 cm−1) so it can

be seen more clearly. This feature arises from the vibrational modes associ-

ated with the pentagons and has been observed in previous studies [34, 29]. At425

higher frequency a band associated with the C-C bond between the pentagons

is evident. In the pristine nanotube there is a small band at this frequency

associated with vibrational modes at the open ends of the nanotube. However,
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Figure 9: Effect of Stone-Wales defect on the Raman spectrum of graphene. Black line:

pristine graphene, red line: one Stone-Wales defect.

the introduction of the SW defects leads to significant increase in the intensity

of the band at this frequency, and overall this band has a similar intensity to430

the IFM. For graphene, the inclusion of a SW defect can lead to buckling in a

graphene sheet. The computed Raman spectra for a graphene flake are shown

in Figure 9. The pentagon defects lead to an additional band at higher energy

than the G band, although the separation is 15 cm−1 which is smaller than

for the nanotube and so this band is less distinct from the G band. The C-C435

stretching mode between the pentagons lies at 1922 cm−1 which is lower than

calculated for the nanotube. The presence of these new bands in the Raman

spectroscopy of nanotubes can provide evidence for the presence of SW defects

in the sample.

440

3.7. Nanotube Junctions

Junctions are points where two CNTs of two different chiralities meet. The

junction modelled here, shown in Figure 10, is non-concentric between (10,10)
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Figure 10: Computed Raman spectra for a nanotube junction, lower spectra: nanotube junc-

tion and upper spectra: individual nanotubes.

and (5,5) nanotubes, and was generated via the ConTub v1.0 program [64].

Figure 10 also shows the computed Raman spectra for the junction system in445

addition to the Raman spectra for the individual nanotubes. For this junction

the separate nanotubes have distinct RBM and G bands, and the resulting Ra-

man spectrum is very similar to the superposition of the Raman spectra for

the individual tubes. This indicates that there is little coupling between the vi-

brational modes of the two nanotubes and they simply act as two independent450

nanotubes. Vibrational modes associated with the join region between the two

CNTs lie between 1640-1670 cm−1 which lie in the tail of the G band, however

it is difficult to differentiate them from the tail of the G band. The join region

between the two nanotubes is constructed from hexagons and no pentagon de-

fects are introduced. Consequently, bands associated with pentagon defects are455

not observed.
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4. Conclusions

The MM potential has been parameterised to model the vibrational spec-

troscopy of carbon-based materials such as CNTs and graphene via a Monte-

Carlo based minimisation of the RMSD of the DFT hessian matrix of C60460

fullerene. When combined with the BPM the resulting potential provides a

method to simulate the non-resonant Raman spectroscopy that can be applied

to systems with thousands of atoms. For CNTs the computed Raman spectra

accurately reproduce experimental observations. The known dependence of the

RBM with the diameter of the nanotube and the nature of the vibrational modes465

corresponding to the G band are reproduced and a satisfactory approximation

to the VDOS is obtained. The effect of SW defects on the Raman spectroscopy

of CNTs and graphene has been explored, and new bands are observed that arise

from new localised vibrational modes associated with the defect. CNT junctions

have also been studied and it is shown that the resulting Raman spectra corre-470

spond to a superposition of the spectra for the individual nanotubes. Overall we

have demonstrated that is it possible to simulate the vibrational spectroscopy of

carbon nanomaterials using a fully empirical method, allowing accurate spectra

to be calculated quickly for large systems which are not affordable with current

quantum chemical based methods.475
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