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Abstract 4 

Leaping is an indispensable part of the upstream spawning migration of a fish species. 5 

The natural barriers replaced with artificial dams and obstacles can obstruct the leaping process 6 

and destruct the life cycle of fish species, causing their extinction in extreme scenarios. To help 7 

design and improve the artificial barriers, many studies have been conducted to model the 8 

leaping success of fish species. However, generic results were scarcely obtained to be extended 9 

for a wide range of barriers. The main reasons can be identified as the lack of thorough 10 

understanding of the interaction between fish locomotion and water flow regime upstream of the 11 

investigated barriers. Hence, the aim of this study is to propose a leaping framework compatible 12 

with a diverse range of fish species and barriers. This framework includes a detailed hydraulic 13 

sub-model as well as locomotion model capable of tracing fish in both water and air 14 

environments. The functionality of the proposed framework is further discussed using a selected 15 

case study. 16 

Keywords: Computational fluid dynamics, Fish jumping, Low-head dam, Spillway, Upstream spawning 17 

migration 18 

1. Introduction 19 

Environmental preservation is a challenging issue of the current century to mitigate the past, 20 

current, and future interference of human footprints. A recent example of the ongoing damage to 21 

the environment is fish species extinction due to the construction of geographical and physical 22 

barriers in rivers and waterways (Schlosser and Angermeier, 1995). Human fragmentation has 23 

resulted in a wide range of ecological problems such as local species extinction (Wilcox, 1980; 24 
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Wilcox and Murphy, 1985). For example, fragmentation has been recognized as a cause of local 25 

extinction of small fishes in Australia (Gehrke et al., 2002). 26 

Upstream spawning migration is a part of the life cycle of many fish species, e.g. pacific 27 

salmon, smelt, shad, striped bass, and sturgeon (McDowall, 1990). These fish are born in fresh 28 

waters, migrate downstream toward sea where they become mature in a period of a few years. 29 

Then, they return back to the same stream through a long upstream migration, and spawn in the 30 

fresh waters. A part of this upstream migration is jumping through the natural barriers. However, 31 

the artificial barriers such as road-crossings, rocks, weirs, and low head dams are common 32 

impassable obstacles, cutting the ecological connectivity of fish spawning migration. 33 

Removal of the mentioned artificial structures is not always a practical and economical 34 

option. Therefore, as potential solutions, fish ladders, fish ways and passageways have been 35 

widely designed and constructed to help maintain the ecological life cycle of fish. Many design 36 

guidelines and instructions have been developed and implemented (Marmulla, 2001). Despite the 37 

positive functionality of the fish passageways, their effectiveness is sometimes questioned as the 38 

economical and engineering considerations are more dominant compared to the jumping ability 39 

and performance of fish species (McLaughlin et al. 2013; Noonan et al. 2012). 40 

Various studies have been conducted to help better the understanding of the jumping ability 41 

and performance of different fish species, where the influential parameters are recognized as 42 

water flow rate, pool depth, fall height, fish body length, etc. As an early mathematical model, 43 

Reiser and Peacock (1985) calculated the maximum attainable height by a fish using the initial 44 

burst speed. Powers and Orsborn (1985) defined a more precise model by including further 45 

parameters such as maximum burst, fish length, fish frontal area, and estimated drag force. The 46 

main limitation of such model can be identified as their simplified hydraulics model. 47 

In a more advanced study, Lauritzen et al. (2005) examined the jumping kinematic of wild 48 

sockeye salmon in natural waterfalls. They have observed the kinematic of fish jumping and 49 

developed a simple mathematical ballistic model based on the trajectory of fish in the air. They 50 

concluded that the height of waterfall and depth of pool below it are important factors in the 51 

http://www.nefsc.noaa.gov/sos/spsyn/af/sturgeon
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jumping performance. The influence of environmental factors such as brown bear presence on 52 

the jumping success was further considered in this study. In another experimental study 53 

conducted in a water tank by Ficke et al. (2011), speed, performance and kinematics of Brassy 54 

Minnow fish were investigated for better design of fish ways. Beside the role of fish length, 55 

waterfall height, and pool depth, they have emphasised the role of water temperature in 56 

endurance jumping of Brassy Minnow. Moreover, the experiment indicated the significance of 57 

water velocity on the swimming endurance of studied species. Different regression equations of 58 

the probability of jumping success were developed based on the mentioned influential 59 

parameters. Furthermore, Salmon jumping was studied through an observational experiment 60 

conducted in an adjustable water tank (Lauritzen et al., 2010). The flow speed, pool depth, fall 61 

height and fall angels were changed to investigate the jumping success rate. In another laboratory 62 

experiment by Kondratieff and Myrick (2006), jumping performance of Brook trout was 63 

evaluated. Again, a regression model was developed based on the recognized influential 64 

parameters, including pool depth, waterfall height, fish length, trial duration, and fish condition. 65 

The impact of fish condition on leaping was assessed based on the fish level of damage in fins, 66 

jaw, eyes, and operculum condition. 67 

Despite the various studies on understanding the relation between fish jumping success and 68 

environmental/physiological parameters, contradictory results were occasionally reported in 69 

the development of jumping models (Myrick et al., 2004). This implies that most of these models 70 

are restricted to the laboratory and simplified conditions, and barely can be generalized to a 71 

wider range of barriers with different physical characteristics. This weakness is inherently due 72 

to the simplified details of the utilized hydraulic models on the jumping ability of fish species. 73 

While the developed models mainly recognize the importance of barriers and fish characteristics 74 

on the jumping success, they barely represent their interconnections with water flow regime. In 75 

other words, the poorly modelled water flow regime, affected and formed by barrier geometries 76 

such as pool depth and water fall height, significantly impacts the kinematic of a fish species. 77 

The fish kinematic is the ability of a fish species to benefit from water flow characteristics 78 

to minimize the locomotion cost and maximize the success probability of the jumping. Therefore, 79 
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development of hydraulic models can provide more details about the interaction between a fish 80 

and its surrounding environment compared to the traditional regression and observational 81 

models. The advantage of such models can be addressed as their capability in resolving the 82 

turbulence level and circulation strength of the flow regime. Turbulence is identified as a 83 

significant factor in attraction or repelling a fish as it can dominantly decrease or increase the 84 

locomotion cost (Enders et al., 2003; Pavlov et al., 1982, 2000; Webb, 1998). The mentioned 85 

parameters are mainly neglected in the traditional models, resulting in limited conclusions 86 

extracted from these studies. In general, fish kinematic depends on the characteristics of its 87 

species in generating locomotion forces (i.e. drag, lift, thrust and buoyancy). 88 

Species characteristics of a specific fish itself contain the physiological and behavioural 89 

parameters. While physiological parameters of a species (e.g. weight, length, shape) are 90 

independent of the flow regime, behavioural parameters are directly impacted by constraints of 91 

the flow regime, again justifying the implementation of a detailed flow model. Behavioural 92 

parameters include the maximum swimming speed (Reiser et al., 2006), visual ability (Sweka et 93 

al., 2001), temperature endurance (Holthe et al. 2005), environmental fear (Carpenter et al., 94 

2009), and learning ability (Odling-Smee and Braithwaite, 2003). It is widely studied that fish use 95 

their sensory and locomotion systems to navigate efficiently within the water with changing their 96 

swimming kinematics according to the flow regime (Liao, 2007). Liao et al. (2003) showed how 97 

fish surf in water and use underwater vortices to minimize their swimming energy. Takagi et al. 98 

(2013) showed how Pacific Bluefin Tuna can reduce its locomotion cost through a glide and 99 

upward swimming rather than a continuous horizontal one. As another example, reported by 100 

Lauritzen et al. (2005), straightening bodies, closing mouth, stretching the fins, and continuous 101 

beating of the tail can be respectively justified as minimizing drag and maximizing thrust forces. 102 

Hence, the aim of this study is to develop a framework, performing as a roadmap to develop 103 

simulation models of the jumping mechanism of various fish species over a variety of barriers. It 104 

should be noted again that the goal of this research is to explore the functionality of the proposed 105 

framework rather than generating reliable results for a specific fish species, which requires a 106 

thorough calibration with that of realistic behavioural and physiological parameters. The 107 
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proposed framework can be later used to evaluate the jumping favourability of any low-head 108 

barrier and to calculate the total energy budget of a fish species through several jumps required 109 

for its spawning migration. The proposed framework consists of flow details as well as 110 

physiological and behavioural characteristics of a fish species. Furthermore, it contains a sub-111 

model to trace the fish trajectory in the air when it departs the water surface. The functionality of 112 

the proposed framework and its sub-models are shown with a selected case study. 113 

2. Jumping mechanism 114 

The proposed framework, encompassing the mentioned flow and fish parameters of the 115 

jumping, is exhibited in Fig. 1. The framework describes the dynamic interaction between a fish 116 

and its environment. After being positioned at the initial point of a jump, a fish tries to benefit 117 

from its physiological abilities (i.e. weight, volume, and hydrodynamic) against the water flow 118 

regime of a pool to generate an optimum thrust force and swim angle, heading toward the water 119 

surface. During the burst process, a fish continuously adjusts its thrust force and swim angle to 120 

achieve a successful jump. The latter behavioural ability is unique for each fish species and 121 

corresponds to its eyesight, response time, and learning rate. In general, fish optimal solution on 122 

a specific situation can result in a failure in jump due to the miscalculation in the jumping process 123 

related to its species and also to micro flow complexity associated with the low-head barrier.  124 

Therefore, the proposed framework attempts to simulate the jumping process from the fish 125 

species point of view. 126 

The presented framework in Fig. 1 contains four individual sub-models, forming a holistic 127 

jumping model. The model firstly starts with the flow regime, barrier characteristics, and initial 128 

condition of the fish as inputs to the first sub-model, the hydraulic CFD model. This sub-model is 129 

thus able to predict the flow characteristic for different spillway design and parameters. 130 

Evidently, any change in such parameters will change the flow regime that can be again 131 

regenerated with the CFD sub-model. The sub-model is assumed to be 2-dimensional and steady-132 

state while it is decoupled from the fish water kinematic model. This implies that CFD model only 133 

provides the flow characteristic to be inserted as inputs into the fish water kinematic model. 134 

Then, the flow field simulated by the hydraulic CFD model, in addition to physiological 135 
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parameters of the fish species, are transferred to the second sub-model, the fish water kinematic 136 

model to calculate the hydrodynamic forces; the fish trajectory is simulated as a particle 137 

trajectory.  The hydrodynamic forces in addition with the behavioural abilities again serve as 138 

inputs to the third sub-model, the swimming optimization model, which calculates the minimal 139 

energy-consumption path from fish point of view. Thus, at this point, the fish is able to generate 140 

a thrust force and swim with a certain angle to reach the water surface. This dictates that the fish 141 

reaches a new location between its decision and response time when the fish again analyses the 142 

environment to either maintain or adjust the former swimming pattern. The fish continues the 143 

latter process of decision making based on its expected minimal energy consumption until 144 

reaching the water surface, where it enters the air with a particular velocity and angle, implying 145 

that the fish departs the water and enters the air. This stage is further modelled with a 146 

supplementary fish air trajectory model, the forth sub-model, to calculate the failure or success 147 

of the fish in reaching the upstream reservoir. At this level, fish slightly can enhance its jump 148 

quality with beating of its tail. 149 

 
Figure 1 The proposed jumping framework of a fish species consists of four sub-models: (1) hydraulic 150 

CFD, (2) fish water kinematic, (3) swimming optimization, and (4) fish air trajectory models 151 
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3. Structure of the sub-models 152 

3.1. Hydraulic CFD model 153 

The hydraulic model simulates the water flow regime to later be utilized in calculating the 154 

propulsion forces of a fish species. As stated before, any alteration in the low-head barrier design 155 

as well as the upstream water velocity impacts the flow regime that eventually affect the decision 156 

making process of the fish species. To simulate the flow regime, CFD as a widely accepted and 157 

powerful method is utilized to model the waterfall downstream of various types of barriers. The 158 

time-dependent flow fluctuation can be neglected and the water flow can thus be simulated under 159 

the steady state condition. Therefore, the water-air interface is determined by solving the 160 

transport equation of volume fraction given as follows: 161 

∂

𝜕𝑥𝑗
(𝐶𝑖𝑢𝑗) = 0         (1) 162 

where 𝐶𝑖  is the fraction of each fluid and 𝑢𝑗  is the velocity in jth direction. The flow of 163 

viscous fluid is governed by Navier-Stokes (NS). The Reynolds-averaged approach is used to 164 

decompose the Navier-Stokes (NS) equations into mean and fluctuating terms (Mirzaei and rad, 165 

2013). Therefore, in Cartesian coordinates, the governing equations can be written as follows: 166 

∂

𝜕𝑥𝑖
(𝜌𝑢𝑖) = 0         (2) 167 

∂

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑢𝑖) = −

∂𝑝

𝜕𝑥𝑖
+

∂

𝜕𝑥𝑗
[+𝜇 (

∂𝑢𝑖

𝜕𝑥𝑗
+

∂𝑢𝑗

𝜕𝑥𝑖
) − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ] + 𝜌𝑓𝑖   (3) 168 

where the source term, fi, represents the surface tension and gravity force applied on the 169 

control volume in the ith direction. In terms of surface tension, the continuum surface force (CSF) 170 

model can be used to depict the interaction between water and air: 171 

𝐹𝐶𝑆𝐹 = 𝜎𝑖𝑗
𝜌𝑘𝑖∇𝐶𝑖

1

2
(𝜌𝑖+𝜌𝑗)

        (4) 172 

where 𝐶𝑖 is the volume fraction, ki is the curvature of free surface, and ρ is the volume-173 

average density based on the volume fraction. σ is the surface tension coefficient. For the 174 

Reynolds stress components, 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ , the Boussinesq hypothesis was employed. Moreover, 175 

turbulent kinetic energy and its dissipation rate were introduced to close the RANS equation 176 

(Mirzaei and Haghighat, 2013). ANSYS Fluent software was utilized to solve the NS equations. 177 
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3.2. Fish water kinematic model 178 

Although fish trajectory model utilizes the characteristics of the flow as its input, it is 179 

inherently decoupled from the CFD model, meaning that the fish species is neglected in the CFD 180 

model as it has relatively small impact on the flow regime; inversely, it is highly impacted by water 181 

flow regime. Based on Weihs (1973), fish swimming is governed by thrust, drag, lift, buoyancy, 182 

and gravity (Fig. 2) as follows: 183 

𝑇⃗ = 𝐷⃗⃗ + 𝐿⃗ + 𝐵⃗ + 𝑊⃗⃗⃗ − 𝑚
𝑑𝑈⃗⃗ 

𝑑𝑡
       (5) 184 

where 𝑇⃗  is the thrust force. 𝐷⃗⃗  and 𝐿⃗  are respectively the drag and lift forces. 𝐵⃗  stands for 185 

the buoyancy force and 𝑊⃗⃗⃗  denotes the weight of the fish species. 𝑈⃗⃗  represents the fish absolute 186 

velocity, which is the sum of fish swimming velocity and water velocity. Thus, the last term in the 187 

right hand side presents the momentum of the fish. The drag force can be obtained with the 188 

following equation: 189 

𝐷⃗⃗ = −
1

2
𝜌𝑆𝐶𝐷|𝑈⃗⃗ 𝑓 − 𝑈⃗⃗ 𝑤|

2 𝑈⃗⃗ 𝑓

|𝑈⃗⃗ 𝑓|
       (6) 190 

where 𝜌 is the water density and S is the wetting surface area. The 𝑈⃗⃗ 𝑓  and 𝑈⃗⃗ 𝑤  respectively 191 

represent the fish swimming velocity and water velocity. 𝐶𝐷 is the drag coefficient and is assumed 192 

to be independent from the swimming speed. Similarly, the lift force can be defined as below: 193 

𝐿⃗ =
1

2
𝜌𝑆𝐶𝐿|𝑈⃗⃗ 𝑓 − 𝑈⃗⃗ 𝑤|

2 𝑈⃗⃗ 𝑓

|𝑈⃗⃗ 𝑓|
      (7) 194 

where 𝐶𝐿 is the lift coefficient and the rotation matrix indicates the direction of the force, 195 

which is normal to the fish swimming velocity. Drag and lift coefficients are chosen to be a 196 

function of attack angle and total body length, which are extracted from a look-up table created 197 

from a study by Takagi et al. (2013).  Additionally, the buoyancy and gravity forces can be taken 198 

into consideration with the following equations: 199 

𝐵⃗ = −𝜌𝑉𝑔          (8) 200 

𝑊⃗⃗⃗ = 𝑚𝑔          (9) 201 
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where 𝑔  the is gravity acceleration, and 𝑉 and 𝑚 denote the volume and mass of the fish 202 

species, respectively. Finally, the energy consumption caused by thrust force can be derived by 203 

integration of the thrust force along the swimming path: 204 

𝐸 =  ∫ 𝑇⃗ ∙ 𝑈⃗⃗ 𝑓
𝑡

0
𝑑𝑡        (10) 205 

It should be noted that this energy can only represent the kinetic cost of transport, and 206 

the actual metabolic energy consumption is neglected in this study. 207 

 

Figure 2 Kinematic of fish locomotion in water 208 

3.3. Swimming optimisation model 209 

After detecting the barrier, the fish has to respond quickly to avoid the obstacle, so it starts 210 

to change its swimming direction and speed. As it is stated in literature, fish follow the optimal 211 

solution for its jump in accordance with the information obtained from the surrounding 212 

environment. The path alteration of fish, however, cannot occur instantly, meaning that the 213 

response lag is inevitable. Therefore, the targeted leaping point is adjusted at each time step in 214 

response of the variation in water velocity and fish location. This implies that the fish’s actual 215 

moving path will deviate from its preliminary decided path and is thus created in various time 216 

steps. 217 

Hence, the purpose of swimming optimisation is to simulate fish decision and calculate 218 

the optimum thrust force, and minimising kinetic energy required for fish to leap over the barrier 219 

in each time step associated with the decision made by fish. It is noteworthy to mention that the 220 

decided path by fish occurs in response to its understanding from the flow characteristics and 221 
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position from the spillway while the learning process is neglected in this study. The swimming 222 

optimisation is based on the assumption that fish sense the water flow at a certain distance and 223 

will move toward that point as shown in Fig.3. The decision process is defined based on the 224 

various angles and velocities that the fish species can select to reach the water surface. However, 225 

to minimize the calculation cost of the simulation, only three nodes were generated in each time 226 

step where the angle between thrust force and fish swimming velocity was restricted to be less 227 

than 30 degrees (Pearson et al. 2005). After a distance swum during its response lag (time step), 228 

fish again re-decide to maintain the current path or detour where three new nodes are generated 229 

as the possible direction of fish. Therefore, in each time step, expected leaping point and 230 

swimming angle and velocity will be adjusted by the fish species. 231 

  

Figure 3 (right) local decided path to impact the water surface (left) simplified 3-nodes path 232 

optimization for the fish species 233 

The water flow is assumed to be uniform at each time step to ensure a local optimal value 234 

for the thrust force. In this study, MATLAB optimisation toolbox was linked with the hydraulic 235 

CFD model used to solve the equations 5-9. In the optimisation algorithm, both the linear and 236 

non-linear constraints were applied to the calculation. 237 

3.4. Fish air trajectory model 238 

After departing the water surface, the motion of fish can be described as projectile motion 239 

in the air.  The equation of this curved motion can be presented as follows (Powers and Orsborn, 240 

1985): 241 

𝐻𝐿 = tan(𝜃𝐿) 𝑋𝐿 −
𝑔𝑋𝐿

2

2(𝑉𝐹𝑐𝑜𝑠𝜃𝐿)2
       (11) 242 
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where 𝐻𝐿  and 𝑋𝐿  are respectively the vertical and horizontal distances. 𝑉𝐹  denotes the 243 

fish speed, and 𝜃𝐿 is the angle of leap (take-off) from the plunge pool. It should be noted that the 244 

small thrust force generated by the rapid tail flapping of fish is neglected in this study. 245 

4. Case Study 246 

To further investigate the jumping mechanism over a spillway as an artificial barrier, a 247 

standard spillway designed by the U.S. Army Corps of Engineers (1990) was selected as the case 248 

study (Fig. 4a). The shape of the overflow spillways and the flow pattern is parameterised by 249 

three influential parameters, including the design head (Hd), water flow rate (Q), and the slope 250 

(k). In this study, the spillway characteristics were respectively selected to be R1 = 0.5Hd, R2 = 251 

0.2Hd, and R3 = 0.04Hd. Moreover, the height of the dam, and the design head were respectively 252 

selected to be H0 = 5m and Hd = 1m. 253 

 
 

(a) 

 
(b) 

Figure 4 (a) CFD study domain and spillway characteristics (b) utilized grid with boundary layer cells 254 

After choosing the case study, the 2D CFD model was validated using a series of 255 

measurements by the U.S. Army Corps of Engineers (1990). The assumption of creating a 2D 256 

model is fairly valid as the velocity variation is mainly in the flow direction.  Several structured 257 

grids were generated for the CFD model to ensure the independency of the results from the grid 258 
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size. It was observed that a mesh with 5.7⨯105 cells will not significantly improve the results. As 259 

illustrated in Fig. 4b, this grid was refined near the walls to ensure the wall y-plus is low enough 260 

for the enhanced wall treatment method, which guarantees representation of the boundary layer 261 

effect in the model (Mirzaei and Haghighat, 2013). Two transitional zones before and after the 262 

spillway are patched 5H0  and 7H0  to ensure that the water flow reaches the fully developed 263 

condition (Mirzaei and Carmeliet, 2013). 264 

Table 1 Assigned boundary conditions of the hydraulic CFD model 265 

Inlet 
boundary 

Air inlet Uniform velocity inlet, volume fraction = 0 
Water inlet Uniform velocity inlet, volume fraction = 1 

Top boundary Symmetry 
Ground Boundary Non-slip wall 

Outlet Pressure outlet, open channel 

Boundary conditions assigned to each surface of Fig. 4 are summarized in Table 1 (Mirzaei 266 

and Haghighat, 2011). A separate velocity inlet boundary condition for the air and water was 267 

assigned to the upstream boundary. The volume flow rate for the water inlet was changed 268 

between 1m3/s and 12m3/s. The material properties of both water and air were assumed to be 269 

constant at 20ᵒC. For the downstream boundary, the open channel model was utilized. The 270 

pressure-velocity coupling was achieved by SIMPLE algorithms. The PRESTO scheme was also 271 

used for the pressure interpolation. For steady-state calculations, the implicit scheme was used 272 

for the volume fraction equation. The momentum, volume fraction, and turbulent kinetic 273 

equations were discretised by the second-order upwind scheme while the turbulent intensity was 274 

assumed to be 10% 275 

4.1. CFD validation 276 

As depicted in Fig. 5, the performance of the developed CFD model is evaluated by 277 

comparing the dimensionless static water head with the measured data by the U.S. Army Corps 278 

of Engineers, 1990. The result shows a close relation between the simulation and experimental 279 

results. Therefore, the verified grid and setup in this section will be used later as a basis for 280 

generation of other barriers. 281 
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Figure 5 Static water head comparison between the measured data by the U.S. Army Corps of Engineers, 282 

1990 and the developed CFD model 283 

4.2. Utilized parameters 284 

The fish jumping was determined by a number of physiological and behavioural 285 

parameters that vary with different species. Therefore, the framework should be initially 286 

calibrated by assigning the related parameters, e.g. starting location, buoyancy, drag and lift 287 

coefficients. The studied fish species is Salmon in this study as it is the most investigated species 288 

in back migration (Roscoe and Hinch, 2010). The weight and length of the selected Salmon were 289 

respectively considered to be 2kg and 0.29m. The utilized drag and lift coefficients for the fish 290 

water kinematic model were obtained from a study by Takagi et al. (2013). These coefficients 291 

were defined to be a function of tail beating frequency, attack angle, and total body length. 292 

Moreover, the behavioural parameters were identified based on the previous studies in the 293 

literature and are presented in Table 2. 294 

Table 2 Fish behavioural parameters adopted in swimming optimization model 295 

Fish behavioural Parameters Description 

Response time The fish cannot respond instantly to the water velocity. Van Leeuwen (1990) 
observed 60ms time delay between the initial electrical stimulus and fully 
mechanical response. 

Turbidity 
Nephelometric turbidity unit (NTU) is assumed to be 0.57 in clear water, and the 
responding reactive distance is about 0.9 m (Sweka et al., 2001). 

Initial speed 
Reiser and Peocock (1985) identified three swimming speeds for various types of 
fish, including cruising, sustained, and darting speeds. These speeds are reported 
0-0.61, 0.61-1.95, and 1.95-4.11 for Trout. The initial speed was assumed to be its 
cruise swimming speed, 0.3m/s. 

Leaping speed (𝑉𝐹) 
According to Stuart (1962), the leap is mainly initiated at the point of the standing 
wave. Thus, the vicinity of this point was inserted as a constraint to the swimming 
optimization model. The leaping speed was also bounded between 0m/s and 
4m/s. 

Leaping angle (𝜃𝐿) 
It is reported through a series of experiments that salmons leave the pools with 
their bodies straight and a combined mean take-off angle of 58 Degrees. This 
angle is similar with the sea run fish observed by Lauritzen et al (2005). 
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5. Results and discussion on the functionality of the leaping framework 296 

5.1. Circulation importance 297 

To investigate the threshold of the hydraulic jump and formation of the back circulation 298 

in front of the case study spillway, the flow rate was changed between 0.5m3/s and 6m3/s. This 299 

jump can be controlled based on the selection of a related dimensionless number, the Froude 300 

number (Fr). As illustrated in Fig. 6, a large back circulation was formed about a few meters after 301 

the crest where the hydraulic jump occurs. One of the main intentions of designing spillways is to 302 

avoid an intense back circulation right after the crest as this vortex, known as the drowning 303 

machine, caused thousands of casualties in the past years (Zamankhan, 2012). On the other hand, 304 

the current design of the spillway directs the flow with a high velocity slipping from the crest to 305 

the downstream, creating a high speed velocity region (Fig. 6). This region is an energy costly 306 

path for fish species to cross the barrier with either jumping or swimming. In both scenarios, fish 307 

consume a considerably high amount of energy to generate the required hydrodynamic forces to 308 

reach the upstream reservoir. Another feasible option to pass the barrier can be jumping over the 309 

back circulation of the hydraulic jump shown in Fig 6.  However, the far distance of this circulation 310 

from the upstream reservoir is normally beyond the jumping ability of fish species, implying that 311 

they need to swim toward the high speed region. 312 

 

Figure 6 Back circulation and high velocity region in the studied spillway 313 

As depicted in Fig. 7, it was observed that a small vortex in the vicinity of the spillway trail 314 

tends to appear in velocities lower than 5m3/s, leaving this region as an alternative to the high 315 

velocity region for the fish species to cross the spillway. Evidently, the size and strength of this 316 

High velocity region 

Back Circulation 
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vortex increases in the lower velocities. This means that the fish can benefit from this trail vortex 317 

where the upstream flow rate is low enough. On the contrary, the water level elevates in the 318 

higher flow rates, which may open a new option for fish species to benefit a better jump when 319 

they depart the water surface. As it was mentioned earlier, the aim of the framework is to consider 320 

the complex and dynamic regime of a water flow regime in the jumping of fish species. 321 

  

Figure 7 Impact of the air flow rate on the formation of the small vortex (left) Q=2m3/s (right) 322 

Q=3m3/s 323 

5.2. Barrier shape 324 

The shape of a barrier significantly impacts the flow regime. In particular, the pool depth 325 

and waterfall heights could influence fish jumping when considering both characteristics 326 

simultaneously. As shown in Fig. 8a, a strong back circulation can be observed when the barrier 327 

has a different shape from a standard spillway as introduced before. Here, the fall height and pool 328 

depth are the key elements in characteristics (i.e. shape and strength) of this back circulation, 329 

impacting the jumping quality of the fish species. 330 

To investigate the influence of the barrier shape on the jumping quality, a case study 331 

similar to an experiment by Lauritzen et al., (2010) is simulated with the CFD model. In this case, 332 

therefore, the fall height and the pool depth to fall height (D/H) are respectively selected to be 333 

0.36 m and D/H = 0.6. Using the CFD model of Lauritzen et al., (2010) experiment shows that the 334 

preferred pool depth for jumping slightly increases with an increase in the fall height, but the 335 

preferred ratio of the pool depth to fall height decreases with an increase in the fall height. Adding 336 

a small ramp to the latter case scenario, it can be clearly seen in Fig. 8b that the existence of a 337 

small ramp can change the shape and strength of the vortex as well as the elevation of the water 338 

flow. Therefore, it can be again concluded that the pool and barrier parameters noticeably 339 
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influence the complex flow of the stream, resulting in different hydrodynamic forces required to 340 

be generated by fish species. 341 

  

Figure 8 Impact of ramp on water flow regime (left) without ramp (right) with ramp 342 

As it was explained by Fig. 1, the details of the water flow, which are unique for each 343 

barrier, will be obtained at this stage and will be transferred to the fish water kinematic model to 344 

calculate the hydrodynamic forces at any location of the pool. 345 

 

Figure 9 Desired and actual paths of the fish 346 

5.3. Path optimization 347 

The next step of the proposed framework is to simulate the jumping optimal solution from 348 

the fish species point of view when the hydrodynamic forces are calculated from the previous 349 

steps. To minimize the swimming energy and ensure a successful jump, a fish can initially control 350 

its swimming velocity and angle. Before detecting the obstacle (low-head dam’s wall), the fish 351 

continuously moves at cruise speed in the horizontal direction. When the obstacle is detected in 352 

accordance with the turbidity number (Table 2), it decides to initiate the jumping process (Fig. 353 
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3). It is noteworthy to mention that the selection of initial point of jumping significantly impact 354 

the optimization result. In this study, the ending of the horizontal cruse is used as the starting 355 

point for the optimization calculation (Fig. 9). Therefore, this point is located where the fish 356 

deviates from its previous straight line. Fish determine their desired path by visual stimulus, 357 

meaning that it constantly revises its path and velocity toward the water surface. 358 

As it is shown in Fig. 9, the fish deviates from its desired path due to the sudden decrease 359 

in drag force due to the time lag, while the propulsion force is still fixed. This indicates that the 360 

total force applied on the fish cannot lead it to the desired path, but towards the direction of water 361 

velocity, sketching an actual path for the fish. This continuous adjustment process is calculated in 362 

the swimming optimization model. The locomotion is moreover assumed to be accomplished in 363 

several time steps in respect to the response time of a fish species. This means that a fish can 364 

modify the current path after each response time. Thus, in each node, the model simulates the 365 

largest exerted thrust force by the fish to accelerate itself for a successful jump over the spillway 366 

as depicted in Fig. 3. Then the algorithm investigates the possible scenarios of the current node. 367 

This includes whether the fish (1) hits the wall (Fig. 10a), implying an unsuccessful attempt, (2) 368 

swims backward when the water velocity is too large to be dominated, (3) departs the water 369 

surface where the swimming optimization model will transfer the direction, speed, and location 370 

of the fish to the Air Trajectory Model  in order to evaluate the quality of the jump (Fig. 10b and 371 

c), or (4) relocate to a new point toward the barrier, meaning the generation of three new nodes 372 

(Fig. 3). Eventually, all the nodes will be generated toward the top surface boundary where the 373 

calculation will stop. The selection of three new nodes is due to reducing the computational time 374 

of the optimization algorithm where the angle between thrust force and fish swimming velocity 375 

is assumed to be less than 30 degrees (Pearson et al. 2005). 376 

The fish control strategy is affected by a variety of factors, including age, sex, temperature, 377 

burst speed, starting location of the jump and turbulence. Hence, it is assumed that the fish is able 378 

to relocate between nodes by reduction and elevation of the thrust force. Utilizing this concept, 379 

the optimization model can find the critical thrust, the minimum thrust required for the fish to 380 
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have a control on its jumping path. The scenario in which fish cannot exert a force above the 381 

critical thrust is then assumed as a failed jump attempt. 382 
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(C) 

Figure 10 Example of the possible scenarios for a specific barrier and water flow (a) incomplete jumps 383 

(b) jump failures (c) a successful jump 384 

These scenarios are illustrated in Fig. 10 associated with the defined case study in the 385 

previous section (H=0.36 m). Some of the paths in which the fish is tapped under the water fall 386 

due to its miscalculation on the direction and thrust generation are shown in Fig. 10a. Similarly, 387 

Fig. 10b demonstrates the paths in which the fish reaches the water surface, but without a suitable 388 

burst speed or direction to reach the upstream reservoir. Eventually, one of the feasible successful 389 
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jumping attempts is shown in Fig. 10c where the fish generated enough thrust forces and chose 390 

suitable directions on each node toward the water surface. 391 

As discussed earlier, the application of the purposed framework is to provide practical 392 

solution in the modification of low-head barriers in order to elevate the leaping probability of fish 393 

species. For example, in the above case study, the probability of the leaping should be initially 394 

calculated according to the various leaping scenarios as explained in the previous sections – this 395 

value is below acceptable range with various assumed inputs to the framework related to the fish 396 

species and its behaviour. The obtained probability thus empower the decision makers to apply 397 

a variety of strategies to change or retrofit the barrier, e.g. alteration of the outfall drop, plunge 398 

pool depth, water flow rate, etc. 399 

Conclusion 400 

A fish leaping framework, including hydraulic CFD, fish water kinematic, swimming 401 

optimization, and fish air trajectory models, is proposed in this study. The proposed framework 402 

is initially validated with physical characteristics of a barrier and calibrated with behavioural and 403 

physiological parameters of a fish species. The capability of the developed model in calculating 404 

the leaping success rate of the fish is then shown with a case study. The results clearly show that 405 

the framework is capable of the calculation of the favourability of a specific barrier. 406 

As a future study, the developed framework can be improved by including the learning 407 

process of the fish species. Moreover, the framework can be utilized to calculate the total energy 408 

required for a complete upstream spawning migration of a fish species. Furthermore, more 409 

research can be conducted for better understanding of the behavioural parameters that 410 

contribute to the leaping process of a fish species. 411 
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