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Abstract — Ideally, the results from models operating at different scales should agree in trend 1 

direction and magnitude of impacts under climate change. However, this implies that the 2 

sensitivity to climate variability and climate change is comparable for impact models designed 3 

for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 4 

regional hydrological models (HM) for 11 large river basins in all continents under reference 5 

and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge 6 

to climate variability in the reference period, and sensitivity of the long-term average monthly 7 

seasonal dynamics to climate change. One major result is that the global models, mostly not 8 

calibrated against observations, often show a considerable bias in mean monthly discharge, 9 

whereas regional models show a much better reproduction of reference conditions. However, the 10 

sensitivity of the two HM ensembles to climate variability is in general similar. The simulated 11 

climate change impacts in terms of long-term average monthly dynamics evaluated for HM 12 

ensemble medians and spreads show that the medians are to a certain extent comparable in some 13 

cases, but with distinct differences in other cases, and the spreads related to global models are 14 

mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking 15 

at large-scale impacts of climate change and variability, but whenever impacts for a specific river 16 

basin or region are of interest, e.g. for complex water management applications, the regional-17 

scale models validated against observed discharge should be used. 18 

 19 

Keywords — Hydrological impact models, global and regional scale, seasonal dynamics, ISI-20 

MIP, WATCH, model inter-comparison. 21 

———————————————————— 22 

1 Introduction 23 

Climate change is a global phenomenon, but its impacts manifested at the regional scale (IPCC 2013). A 24 

global view on climate change impacts is important to quantify the aggregated effects, and developments 25 

at the global scale can influence driving forces in the region under study. The regional scale, on the other 26 

hand, is where most adaptation measures are planned and implemented and where interaction with affected 27 

stakeholders is most intense (Krysanova et al. 2005, Hattermann et al. 2011). Many insights into hydrolog-28 

ical processes, impact pathways and adaptation options are only available at sufficient detail at the regional 29 

scale, but can be used to feedback into global assessments. As a result, both global and regional studies 30 

provide valuable information for decision-making and scientific understanding. The cross-scale interaction 31 

makes it important to bridge the scales in impact assessment and to compare the sensitivity of impact models 32 
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of both scales to climate variability and change. Further, a comparison of regional and global hydrological 1 

models across a wide range of river basins provides a framework to test the consistency between the differ-2 

ent scales of analysis and identifying a need for improvement. 3 

Global hydrological models (Glob-HMs) are usually designed to supply consistent impact assessment for 4 

the continental and global scales. These models often compromise the model performance at the scale of 5 

individual catchments for the sake of overall model performance (Gosling and Arnell, 2011, Müller-6 

Schmied et al. 2014). Regional or catchment-scale hydrological models (Cat-HMs) are typically more 7 

streamlined to the specific characteristics of the catchment under investigation, e.g. through local input data 8 

that better describe local conditions, calibration to observations and implementation of regionally important 9 

hydrological features such as wetland processes or water management (Koch et al. 2013, Hattermann et al. 10 

2006). When looking at the specific model types and their inherent processes, there is no strict border be-11 

tween “purely” global and “purely” regional models. More and more hydrological features are implemented 12 

in global models, and model advancement and increase in computational power have led to the development 13 

that some global models are applied at the regional scale with higher resolution (e.g. WaterGAP3, Verzano 14 

2009), while some regional models are applied at the continental scale (e.g. HYPE, Donnelly et al. 2015). 15 

The way we distinguish the global and regional models in our study is that the former were applied for all 16 

continents with a spatial resolution of 0.5° without calibration (with the exception of WaterGAP2), while 17 

the regional models were applied for 11 large-scale river basins with a finer spatial resolution and were 18 

calibrated to observed discharge (see more details in Krysanova and Hattermann, this SI). In this study, we 19 

make use of global and regional HM output data uploaded in framework of the Inter-Sectoral Impact Model 20 

Intercomparison Project (ISI-MIP, Schellnhuber et al. 2014, Warszawski et al. 2014) (Table A1 I the Annex). 21 

ISI-MIP is a community-driven modelling effort bringing together impact modelers across sectors and 22 

scales to create consistent and comprehensive projections of impacts at different levels of global warming, 23 

based on the Representative Concentration Pathways (RCPs, van Vuuren et al. 2011) and Shared Socio-24 

Economic Pathways (SSPs) scenarios (IPCC 2013).  25 

In our study, we investigate the consistency of climate change impacts on the long-term average seasonal 26 

dynamics of discharge in 11 large-scale river basins (see Table A2 in Annex), covering the main climatic 27 

zones and hydrological regimes on all continents, using outputs of 9 Glob-HMs and 9 Cat-HMs. It was not 28 

possible to apply all regional models to all basins, because implementation of new model set-ups is work 29 

intensive and exceeded the capacity of the regional team. 30 

To our knowledge, this is one of the first comprehensive cross-scale inter-comparisons of multiple hydro-31 
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logical models considering river basins on all continents, although there have beencross-scale model inter-1 

comparisons involving fewer models and basins (Gosling et al. 2011, Piniewski et al. 2014). Responses to 2 

climate change in hydrological extremes of the same HMs are reported in another cross-scale paper by 3 

Gosling et al. 2015 (this SI). The most recent comparison of Glob-HMs was conducted within the frame-4 

work of ISI-MIP and described by Schewe et al. 2014, Dankers et al. 2014, Prudhomme et al. 2014, Had-5 

deland et al. 2014, Davie et al. 2013, Wada et al. 2013 and Portmann et al. 2014. Model intercomparisons 6 

for the regional scale are described in Breuer et al. 2009, Bosshard et al. 2013, Chen et al. 2013 and Vetter 7 

et al. 2014.  8 

This article first presents a comparison of the model validation runs for the reference period 1971-2000, 9 

using re-analysis climate data from the WATCH project (Weedon et al. 2011) as driving data, and observed 10 

discharge. Secondly, the comparison is extended to impacts under climate change scenarios until 2099.   11 

 12 

2 Methods, models, river basins and climate data 13 

2.1 Models 14 

In total, outputs from 9 Glob-HMs and 9 Cat-HMs are considered in this study. Annex Table A1 lists the 15 

models and references where more information on them can be found. While the global models consistently 16 

simulate hydrological processes and river routing with a spatial resolution of 0.5°, different approaches are 17 

used by the regional models: regular grids (e.g. VIC and WaterGAP3) and disaggregation schemes with 18 

subbasins and hydrological response units (SWIM, HYPE and SWAT). More information on basic pro-19 

cesses represented in the models is given in Annex Table A3. All models simulate the full water cycle, with 20 

daily precipitation and temperature as main inputs, calculation of evapotranspiration, infiltration, generation 21 

of runoff, and application of a routing scheme to transfer the locally generated runoff along the river net-22 

work to the outlet. Some of the models include more processes such as lake dampening of flow, regulation 23 

of flow, wetlands and more.  24 

Table A2 illustrates which hydrological models were applied in which of the eleven river basins. While the 25 

Glob-HMs provided outputs for each river basin, only a subset of Cat-HMs was applied in most cases 26 

(minimum four in the Upper Yangtze and Darling, a maximum of nine in the Rhine), due to the workload 27 

associated with model set-ups and calibration in catchments. More information about the regional models, 28 

the calibration process and the validation results can be found in Krysanova and Hattermann and in Huang 29 

et al. (this SI). 30 

The Glob-HMs are operated at the same spatial resolution as the provided climate data (0.5°), whereas 31 
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further model-specific interpolation of climate data to the subbasin scale was necessary to run the regional 1 

models. In addition, some of the regional models corrected precipitation and temperature during interpola-2 

tion taking into account elevation.  3 

 4 

2.2 River basins 5 

Eleven river basins were selected for this cross-scale comparison to cover the most important climate zones 6 

and hydrological regimes worldwide. The map in Figure A1 shows their location, and Table A2 summarizes 7 

some of their characteristics (Annex). Two of them are located in temperate climate (Upper Mississippi and 8 

Rhine), one in Mediterranean climate (Tagus), one in subarctic climate (Lena), four in monsoonal climate 9 

(Ganges, Upper Amazon, Upper Niger, Blue Nile), two in continental plateau climate (Upper Yellow and 10 

Upper Yangtze) and one in dry temperate climate (Darling). More information about these river basins is 11 

given in Krysanova and Hattermann (this SI). The upper parts of several basins (Mississippi, Amazon, 12 

Yangtze, Yellow, Niger and Blue Nile) were chosen because they have no or minor influence of human 13 

management, thus making it possible to compare close-to-natural discharge and avoid consideration of 14 

complex water management affecting river discharge. 15 

 16 

2.3 Climate data 17 

To obtain a coherent impact model intercomparison, the models are driven by climate forcing data from the 18 

same source and for the same periods. For the analysis of model performance under current conditions, all 19 

models were forced by global WATCH Forcing Data (WFD), daily 0.5 by 0.5 degree gridded meteorological 20 

data covering the period 1958-2001 (Weedon et al. 2011). The CMIP5 climate scenario data (Taylor et al. 21 

2012) used in this study were provided by ISI-MIP. Five Earth System Models (HadGEM2-ES, IPSL-22 

CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, NorESM1-M) which have been bias-corrected using 23 

a trend-preserving method(Hempel et al. 2013), were applied. In this study, only the high-end scenario 24 

RCP8.5 was used. In most cases, it can be shown that the selected GCMs cover well the spread of GCM 25 

uncertainty in the specific region. For more i.e. information about the climate scenario simulations for the 26 

individual river basins including statistics about projected climate see Krysanova and Hattermann  (this SI). 27 

Other important input data for hydrological models are soil, land cover, elevation and hydrological infor-28 

mation such as the river network. In most cases, they were taken from globally available data sources (see 29 

Table 2 in Krysanova and Hattermann, this SI), and some already existing regional-scale models used dif-30 

ferent spatial data they were originally implemented with. Observed discharge time series for the considered 31 
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gauges were provided by the Global Runoff Data Centre (GRDC 2013) or country specific agencies. 1 

 2 

3 Results  3 

3.1 Model performance during the reference period 4 

3.1.1 Comparison of simulated and observed discharges 5 

The validation of the hydrological models was done for the gauging stations listed in Table A2 for the 6 

reference period 1971-2000. All Cat-HMs were calibrated against observed discharge and afterwards vali-7 

dated in a split sample mode, i.e. validating the model using discharge data of a time period different from 8 

calibration, normally with an 8-10 year period for calibration, depending on data availability. The Glob-9 

HMs were not calibrated, except WaterGAP2 (which was calibrated against long-term average monthly 10 

discharge for a number of gauges worldwide) (see Krysanova and Hattermann, this SI).  11 

Figure 1 visualizes the long-term average monthly seasonal dynamics of discharge for 1971-2001 simulated 12 

by Cat-HMs and Glob-HMs at the downstream gauges of the eleven basins, and Table 1 provides quantita-13 

tive assessment. In general, Cat-HMs reproduce the observed long-term average seasonal dynamics of dis-14 

charge well, with narrow ranges of uncertainty. This is partly so because the minimizing volume error is 15 

generally a calibration target of regional models. Results of the Glob-HMs in most cases show much higher 16 

uncertainty ranges in terms of deviation from the mean, and often a considerable bias towards observed 17 

data, mostly too high discharge, e.g. for the rivers Rhine, Tagus, Upper Mississippi, Upper Niger, Blue Nile, 18 

Ganges and Darling. In these cases, evapotranspiration is underestimated. The best performance of the 19 

mean of the nine Glob-HM results is for the Upper Yellow, followed by the Upper Yangtze, and Ganges 20 

(Figure 1). 21 

The Darling is an extreme case, with a strong overestimation of the long-term average seasonal dynamics 22 

by Glob-HMs, while the Cat-HMs perform better but not as well as for the other basins (see also Table 1). 23 

A possible reason for the poor results in the Darling and in other arid and semi-arid climates may be the 24 

low runoff coefficient (i.e. the fraction of precipitation that reaches the basin outlet) because even a small 25 

underestimation of evapotranspiration (or overestimation of precipitation in the forcing) may lead to large 26 

overestimation of river discharge. Also, lots of unregulated and regulated water abstractions are reported 27 

for the Darling, including water harvesting (Kingsford 2000, Thoms and Sheldon 2000), which were not 28 

considered in the modelling  29 

In the Upper Amazon, all models underestimate discharge in May and June, due to underestimation of 30 
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precipitation in the rainy season in the driving WATCH ERA-40 data (Strauch et al., this SI). In the Lena, 1 

the inclusion of frozen soil is very likely to influence river discharge as it results in a higher runoff peak in 2 

the spring (Haddeland et al. 2011), a process considered only in the ECOMAG model and, by a static 3 

permafrost mask, in MPI-HM.   4 

 5 

6 

7 

8 

9 
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1 

       2 

Figure 1: Comparison of the observed and simulated long-term average monthly seasonal dynamics of 3 

river discharge for 1971-2000 as modelled by the Cat-HMs and Glob-HMs in the selected 11 river basins.  4 

 5 

Table 1: Performance of the global and regional models considering reproduction of the long-term average 6 

seasonal dynamics (monthly values) in the period 1971-2000 using WATCH data as climate input for 11 7 

river basins. Indicators are the correlation coefficient r between simulated and observed monthly seasonal 8 

dynamics (r), and percent bias in standard deviation (Δσ) (see Equation 1 in Annex), both averaged over all 9 

models in columns 2, 3, 7 and 8, and d-factor as a measure of uncertainty in columns 6 and 11 (Abbapour 10 

et al., 2007). The percentage share of models with a moderate fit of r > 0.8 and Δσ < ±30% is shown in 11 

columns 4, 5, 9 and 10. Usually the thresholds r ≥ 0.9 and Δσ < ±15 % denote a good performance (Huang 12 

et al., this SI). The high average fit (r ≥ 0.9, Δσ < ±15%, d-factor<1) is indicated by shading. 13 

 14 
 Cat-HMs Glob-HMs 

Basin Average 
dynam-
ics: corr. 
coef. r 

Average 
dynam-
ics: bias 
in STD 
Δσ 

Share 
of mod-
els with          
r>0.8, in 
% 

Share of 
models 
with          
Δσ:< 30, 
in % 

d-factor Average 
dynam-
ics: corr. 
coef. r 

Aver-
age 
dy-
nam-
ics: 
bias in 
STD 
Δσ 

Share of 
models 
with          
r>0.8, in 
% 

Share of 
models 
with          
Δσ:< 30, 
in % 

d-factor 

Rhine 0.95* 1.9 100 78 1.08 0.87 68 88 50 4.60 

Tagus 0.96 -5.4 100 60 0.75 0.91 67 100 50 2.86 

Niger, Kouli-
koro 

0.96 7.3 100 100 0.72 0.89 116 75 13 2.59 
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Bl.Nile, El 
Deim 

0.97 4.5 100 83 0.65 0.93 187 100 13 3.23 

Lena 0.92 -10.6 80 100 0.51 0.61 66 38 0 1.23 

U. Yellow 0.97 4.5 100 100 0.55 0.89 7.2 75 25 2.34 

U. Yangtze 0.99 7.2 100 100 0.37 0.90 -16 88 50 0.99 

Ganges 0.98 7.4 100 100 0.45 0.95 60 100 38 1.32 

Darling 0.83 -29.5 50 50 0.68 0.34 431 0 38 47.2 

U. Mississippi 0.92 2.0 88 88 1.13 0.80 59 50       25 3.61 

U. Amazon 0.90 -16.5 83 100 0.89 0.87 -25 100 50 1.99 

*with shading: r>0.9, Δσ< 15%, d-factor<1 1 

 2 

Table 1 provides quantitative results of the model comparison shown in Figure 1. It summarizes the vali-3 

dation results in terms of two criteria of fit applied to the average seasonal dynamics from two model sets 4 

and to separate models: shown are the correlation coefficient (r) between the simulated and observed mean 5 

annual cycles of the years 1971-2000, and bias in standard deviation (Δσ). In addition the d-factor is added 6 

as a measure of uncertainty. 7 

According to these thresholds, high correlation was found for 10 basins (all except the Darling) for means 8 

of Cat-HMs, but for only 4 out of 11 basins for means of Glob-HMs, and low bias in standard deviation 9 

was found in 9 cases for means of Cat-HMs, but only in one case for means of Glob-HMs. In addition, 10 

shares of regional and global models fulfilling the moderate thresholds of r > 0.8 and Δσ < ±30 % are given 11 

in Table 1. The values of d-factor below 1 denoting a low uncertainty related to observations (see Abbaspour 12 

et al., 2007) were found in 9 basins with Cat-HMs, but only in one case with Glob-HMs. 13 

  14 

3.1.2 Sensitivity of modelled river discharge to climate variability  15 

We investigated the sensitivity of discharge simulated by the Glob-HMs and Cat-HMs to climate variability 16 

by calculating the anomalies of annual precipitation and annual discharge for the reference period 1971-17 

2000 and fitting outputs from the two model sets to a nonlinear regression (Figure 2). The anomalies are 18 

defined as the differences between the annual values for each year and the long-term average annual values 19 

over the period 1971-2000.  20 

The lowest variability in precipitation was found for the Upper Amazon and Blue Nile basins with anoma-21 

lies ranging from -20 % to +10. The largest variability in precipitation was found for the Darling and Tagus 22 

basins with annual precipitation anomalies ranging from -40 % to +40 %. The latter two are the driest re-23 

gions considered, and they are consequently also the basins that show the highest variability in discharge 24 

(from less than -80 % to more than 150 % in the case of Tagus and from -100 % to more than 300 % in the 25 

case of Darling), proving their high vulnerability to climate variability. The lowest variability in discharge 26 
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was found for the Upper Amazon and the Upper Yangtze (between -30 % to +30 %).  1 

Relatively low variability in annual precipitation appears also in the basins of the Upper Niger, Upper Yel-2 

low, Upper Yangtze and Lena. Variability in discharge is low in the Upper Yangtze, while the Upper Mis-3 

sissippi shows relatively high variability in discharge. The correlation of changes in precipitation to changes 4 

in discharge has mostly close-to-linear character, only the Lena, Upper Mississippi, Tagus and Darling show 5 

more nonlinear responses (Figure 2). A positive anomaly in precipitation greater than 10 % usually produces 6 

a positive anomaly in discharge, but a smaller increase in rainfall may be associated with a decrease in 7 

discharge in single model runs (e.g.  when in the specific application evapotranspiration increases more 8 

than precipitation). 9 

The coefficient of determination R2 of the fitted curves (see Table A4) is high for the Ganges, U. Niger, U. 10 

Amazon, Rhine and Blue Nile (both model types) in connection with their mostly high precipitation and 11 

runoff coefficients, and much lower for the Tagus, U. Mississippi, U. Yangtze and Darling. In general, there 12 

is no clear and distinct relation to the runoff coefficient, but interesting is that the single R2 values of the 13 

two model sets are comparable.  14 

A robust conclusion that can be drawn from Figure 2 is that no systematic differences in Glob-HM and Cat-15 

HM sensitivities to climate variability can be observed, only the Darling River (where also the bias in 16 

discharge is highest for both model ensembles), as well as the Upper Niger and Blue Nile rivers show larger 17 

deviations. 18 

 19 

20 

21 
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2 

3 

             4 

 5 
Figure 2: Sensitivity of annual discharge simulated by Glob-HMs and Cat-HMs to annual variability in 6 

precipitation for the 11 basins: anomalies in discharge (y-axis) versus anomalies in precipitation (x-axis) 7 

and the period 1971-2000 in percent. The lines were calculated using the LOESS technique, a nonparamet-8 

ric regression method that combines multiple regression models in a k-nearest-neighbor-based meta-model. 9 

 10 

3.2 Climate change impacts on seasonal flows 11 

Comparison of the climate change impacts simulated by Glob-HMs and Cat-HMs was done for the high-12 
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end scenario RCP8.5 by comparing the differences in long-term average monthly discharges between the 1 

periods 2071-2099 and 1971-2000 in terms of medians and uncertainty ranges from two HM sets (Figures 2 

3, A3 and Table 2).  3 

While temperature increases in all basins under scenario conditions, trends in precipitation are diverse 4 

(Krysanova and Hattermann, this SI). In general, the rivers showing the strongest overall decrease in mean 5 

seasonal discharge are the Tagus, Rhine and Darling, whereas increases are most pronounced for the Gan-6 

ges, Lena and U. Amazon. The changes in medians without uncertainty ranges are shown additionally in 7 

Figure A3 in the Annex.  8 

As one can see in Figure 3, similar to the model validation against observed discharge (Figure 1), the Glob-9 

HMs mostly span much wider ranges, especially for the Tagus, U. Niger and Darling. The medians of the 10 

simulated changes of the two model ensembles are comparablefor the Lena and Ganges, but differ signifi-11 

cantly in most of other cases (Figure A3). In some cases, for example the Mississippi, U. Niger and U. 12 

Yangtze Rivers, the uncertainty in changes from the Glob-HMs is very large compared to the average 13 

changes making it difficult to draw conclusions regarding the projected direction of changes and the com-14 

parability of both the two data sets. Therefore, a more formal analysis of similarity of the long-term average 15 

discharges from two ensemble results (Figure 3) was done using the non-parametric Wilcoxon signed-rank 16 

test, with a confidence level of 95% and in the two-sided mode. The hypothesis of similarity of the popu-17 

lation mean ranks (i.e. of the signals of change) was confirmed in five cases (Rhine, Niger, Ganges, Mis-18 

sissippi and Lena) by this test. 19 

In addition, the change signals in terms of means and medians (presented in Figure 3) as well as spreads 20 

and spreads related to means were estimated (Table 2, columns 2 - 9) and analyzed. The last two columns 21 

provide a qualitative estimation of similarity. As we see from this table, the means and medians are well 22 

comparable for the Ganges and Lena (though the shapes of seasonal dynamics for the Lena are different, 23 

Figure 3), and the differences are not large for the Rhine and Blue Nile. For the remaining seven basins 24 

differences are higher than 70%, and in three cases they are very high (U. Niger, U. Yangtze and Dar-25 

ling).  The spreads from Glob-HM simulations are higher than those from Cat-HMs in 10 cases of 11. The 26 

spreads are well comparable in four cases: for the Lena, U. Amazon and two Chinese basins, and in four 27 

cases, the spreads from Glob-HMs are moderately (33 - 79%) larger. In three cases (Tagus, U. Niger and 28 

Darling) the spreads from Glob-HMs are more than doubled compared to spreads from Cat-HMs.  29 

It is important to mention that the large uncertainty ranges in Figure 3 are the combined effects of global 30 

climate model and hydrological model uncertainty. The uncertainty related only to HMs can be seen in 31 

Figure A4, where results driven only by one climate model, GFDL, are presented as partial results from 32 
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Figure 3. The evaluation of means, medians and spreads for this figure is included in Table A5, confirming 1 

that the uncertainty (spread related to mean) corresponding to Glob-HMs is significantly larger than that 2 

corresponding to Cat-HMs in most cases.  3 

 4 

   5 

   6 

 7 

* 
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 1 

Figure 3: Comparison of climate change impacts on the long-term average monthly discharge modelled by 2 

the Glob-HMs and by Cat-HMs driven by 5 GCMs (scenario RCP8.5) for the period 2071-2099 compared 3 

to the reference period 1971-2000. Red stars indicate that the medians are not distinguishable with the 4 

confidence level of 95 % following the two-sided Wilcoxon signed-rank test. 5 

 6 

 7 

 8 

 9 

 10 
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Table 2. Comparison of differences in seasonal dynamics of discharge between end of the century and reference period (RCP 8.5) simulated by Glob-HMs and 1 
Cat-HMs (as in Figure 3) in terms of annual means, medians and spreads. The change signals (columns 2, 3, 6, 7 are calculated by averaging 12 values of the 2 
long-term mean or median values). The signs in last two columns: ++ similar (differ < 25%);  + quite similar (differ < 40%); +/- moderately different (difference 3 
40-70%); --- different (difference > 70%. 4 
 5 

 Global Models Regional Models Comparison of means, medians and spreads 
change 

signal 

(seas. 

mean) 

change 

signal 

(seas. 

me-

dian) 

aver-

age 

sprea

d 

av. 

spread

/ mean 

chang

e sig-

nal 

(seas. 

mean) 

change 

signal 

(seas. 

median) 

average 

spread 

av. 

spread

/ 

mean 

difference in 

means (abs.  

values, without 

sign) 

difference in 

medians (abs.  

values, without 

sign) 

spread(Glob

-HM)/ 

spread(Cat-

HM) 

(in %) 

similar-

ity of 

means & 

medians 

similar-

ity of 

spreads 

Rhine  -278 -237 2067 7.4 -169 -164 1154 6.8 

Glob-HM: 64% 

higher (neg) 

Glob-HM: 45% 

higher (neg) 179 +/- --- 

Tagus -366 -341 652 1.8 -205 -196 244 1.2 

Glob-HM: 79% 

higher (neg) 

Glob-HM: 74% 

lower (neg) 267 --- --- 

U. Niger 25 -5 3841 153 137 -66 1746 12.7 

Cat-HM: 5.5 

times larger 

(pos) 

Cat-HM: 13 

times larger 

(neg) 220 --- --- 

Blue Nile 1131 274 7763 6.9 838 159 5413 6.4 

Glob-HM: 35% 

higher (pos) 

Glob-HM: 72% 

higher (pos) 143 +/- +/- 

Ganges 5101 3206 21789 4.3 4161 3132 16373 3.9 

Glob-HM: 23% 

higher (pos) 

Glob-HM: 2%  

higher (pos) 133 ++ + 

Lena 5923 4934 24365 4.1 6211 5239 21492 3.4 

Cat-HM: 5%   

higher (pos) 

Cat-HM: 6%  

higher (pos) 113 ++ ++ 

U. Yangtze 

 

9 -73 5861 651 813 487 5253 6.4 

Cat-HM: 116 

times higher 

Cat-HM and 

Glob-HM: diff. 

signs 112 --- ++ 

U. Yellow 88 53 648 7.4 61 19 681 11.1 

Glob-HM: 44% 

higher (pos) 

Glob-HM: 2.8 

times larger 

(pos) 95 --- ++ 

Darling -196 -161 2084 10.7 -45 -21 854 18.9 

Glob-HM: 4.4 

times larger 

(neg) 

Glob-HM: 7.7 

times larger 

(neg) 244 --- --- 

U.  

Mississippi 25 126 4859 194 405 353 3324 8.2 

Cat-HM: 16 

times larger 

(pos) 

Cat-HM: 180% 

higher (pos) 146 --- +/- 

U. Amazon 2928 1311 33640 11.5 5271 3849 32051 6.1 

Cat-HM: 80% 

higher (pos) 

Cat-HM: 2.9 

times larger 105 --- ++ 

 6 
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4 Discussion 

The results suggest that the model sensitivity of Cat-HMs and Glob-HMs to climate variability is compa-

rable in most cases (Figure 2). When looking at the spreads of the annual discharges for each model set in 

Figure 3, both have similar ranges, indicating that the model sensitivity of both ensembles to climate vari-

ability is comparable and not altered by calibration of the Cat-HMs.  

The comparable model sensitivity is in contrast to the fact that the long-term average seasonal dynamics of 

discharge simulated by the Glob-HMs often show large biases compared to the observed values when driven 

with WATCH data for the reference period 1971-2000 (Figure 1, Table 1). For a more detailed look and 

statistical analysis of the behavior of the single models in different basins see Huang et al., Eisner et al. and 

Vetter et al., all in this special issue. 

When looking at climate change impacts, the highly aggregated outputs such as the long-term monthly 

averages of the two model sets show visually comparable shapes for many of the 11 catchments (Figure 3) 

with large uncertainty bounds stemming from GCMs and HMs. The changes in simulated seasonal dis-

charge in general are mainly the result of changes in precipitation (where the input is the same for both 

model sets) and changes in evapotranspiration, where models from both scales often use the same equations 

to calculate potential evapotranspiration (see Table A3). Therefore, it is not very surprising that the aggre-

gated long-term average monthly impacts are comparable. However, a more formal statistical analysis of 

similarity of the long-term average discharges (signals of change in discharge and empirical distributions) 

from the two ensembles confirms the hypothesis of similarity by the Wilcoxon test only in five cases of 

eleven (Figure 3). Also the analysis of differences in means, medians and spreads (Table 2) reveals many 

differences between of two HM ensembles. 

While the focus here was on absolute changes in discharge, for many applications it might be sufficient to 

evaluate relative changes only (Schewe et al. 2014), or in the case of floods or droughts to use extreme 

value statistics (Feyen et al. 2012, Hattermann et al. 2014, Gosling et al. 2015 (this SI)). Figure A2 (Annex) 

shows the relative changes in discharge under climate change for three basins where the absolute results of 

the two model sets showed stronger differences, the Mississippi, Yangtze and Darling. Especially for the 

Darling and Mississippi, the similarity of results from the two model ensembles strongly increases.   

The results presented here generally support those ones from an earlier multi-scale hydrological model 

intercomparison (Gosling et al. 2011), which showed that Glob-HMs can be useful tools for understanding 

catchment-scale hydrological responses to climate change, if mean impacts on annual flows, sign of change, 

or the seasonal cycle are of interest. However, the fact that ensemble medians of both model sets tend to be 

comparable while single models (especially the global ones) often generate high uncertainty ranges proves 
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that there is a real benefit in using a multi-model ensemble, as also reported in previous studies (e.g. Hage-

mann et al. 2013). In addition, this allows the model-related uncertainty to be quantified. 

Under climate scenario conditions, the range of uncertainty in the Glob-HM results is mostly higher than 

that in the Cat-HM results, and in some cases much higher (e.g. in the Tagus, U. Niger and Darling). The 

larger uncertainty in absolute values is probably the result of the large biases during the reference period 

(Darling). Most practitioners would certainly prefer a lower uncertainty in scenario results, while it might 

be of interest in some cases to screen a larger range of uncertainty, for example when planning sensitive 

infrastructure in riverine areas. Generally, models overestimating runoff by far during the reference period 

will likely do so also under climate change conditions. 

In most cases, when simulated water components are used in subsequent management applications, accu-

racy of the data is important, for example in the case of water availability per capita, hydropower produc-

tion, flood protection and crop production. In these cases, data of uncalibrated models should be used with 

care. For water resources applications, changes in many components of the water cycle also within the 

catchment may be equally important, and in this case a multi-site and multi-criteria validation is necessary 

(Hattermann et al. 2005). However, in some cases, the good model performance we observed for the Cat-

HMs could be a sign of over-calibration, e.g. where hydrological processes are influenced by management 

which was not included.  

Calibration of hydrological models is complex and the stability of calibrated parameters over time (and into 

the future) may be questionable and is under discussion (Merz et al. 2011). However, the fact that a model 

can respond to the climatic variability within the historical period lends some more trust to the projections 

using this specific model.  

 

5 Conclusions 

Our study is, to our knowledge, one of the first comprehensive cross-scale hydrological model intercom-

parisons, applying 9 global and 9 regional hydrological models in 11 large scale river basins. Some of the 

results were as to be expected: Glob-HMs, mostly uncalibrated, often show a large bias in the long-term 

average seasonal discharge when results are compared against observations, although they do in many cases 

reproduce the intra-annual variability well. More surprising is the fact that the sensitivity of models of both 

scales to climate variability (evaluated for model ensembles) is quite similar in most basins. The simulated 

climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble me-

dians and spreads show that the medians are to a certain extent comparable in some basins – but with distinct 

differences in others, and the spreads related to global models are mostly notably larger. The hypothesis of 
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similarity of the long-term average signals of change from the two ensembles is confirmed by Wilcoxon 

tests only in five cases out of eleven. 

This study was limited to analysis of river discharge at the outlet of large scale river basins, an indicator for 

changes in the water balance of large regions. In future studies, it would be good to have a more balanced 

number of models from the global and regional scales. In follow-up investigations, more attention should 

be given to improving performance of global models, including spatially-distributed calibration of regional 

models, analysis of other components of the water cycle, and also to other sources of uncertainty in scenario 

analysis, such as the emission scenarios and the driving global climate models. 
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