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 3 

SUMMARY 1 
 2 

Flooding and low oxygen (O2) stress research is a rapidly advancing area that has seen 3 

tremendous progress in the last decade, including appreciation of sensing 4 

mechanisms and a role of O2 as a positional signal in development. However, 5 

inconsistencies in nomenclature, terminology and experimental methods hamper 6 

interpretations, heightened by technical challenges in assessing O2 concentrations at 7 

the cellular and subcellular level. Here we present an overview of the current state of 8 

O2 monitoring technologies and provide a unified nomenclature in flooding and low 9 

O2 stress research. We aim to create an awareness of how experimental conditions 10 

can influence in planta O2 and advocate the universal usage of the stated guidelines 11 

to promote unambiguous experimental comparisons and the reproducibility needed 12 

for addressing the major challenges in this field. 13 

 14 

 15 

 16 
 17 
INTRODUCTION 18 

Apart from playing a key role in important biochemical reactions, molecular oxygen 19 

(O2) and its by-products also have crucial signalling roles in shaping plant 20 

developmental programs and environmental responses. Even under normal 21 

conditions, sharp O2 gradients can occur within the plant when cellular O2 demand 22 

exceeds supply, especially in dense organs such as tubers, seeds and fruits. Spatial and 23 

temporal variations in O2 concentrations are important cues for plants to modulate 24 

development (Considine et al., 2016; van Dongen & Licausi, 2015). Environmental 25 

conditions can also expand the low O2 regions within the plant. For example, excessive 26 

rainfall can lead to partial or complete plant submergence resulting in O2 deficiency in 27 

the root or the entire plant (Voesenek & Bailey-Serres, 2015). Climate change-28 

associated increases in precipitation events have made flooding a major abiotic stress 29 

threatening crop production and food sustainability. This increased flooding and 30 

associated crop losses highlight the urgency of understanding plant flooding 31 

responses and tolerance mechanisms.  32 
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Timely manifestation of physiological and morphological changes triggering 1 

developmental adjustments or flooding survival strategies requires accurate sensing 2 

of O2 levels. Despite progress in understanding how plants sense and respond to 3 

changes in intracellular O2 concentrations (van Dongen & Licausi, 2015), several 4 

questions remain unanswered due to a lack of high resolution tools to accurately and 5 

non invasively monitor (sub)cellular O2 concentrations. In the absence of such tools, it 6 

is therefore extremely critical for researchers in the field to be aware of how 7 

experimental conditions can influence plant O2 levels, and thus on the importance of 8 

accurately reporting specific experimental details. This also requires a consensus on 9 

the definition of frequently used terms.  10 

At the 15th New Phytologist workshop on Flooding Stress (Voesenek et al., 2016), 11 

community members discussed and agreed on unified nomenclature and standard 12 

norms for low O2 and flooding stress research. This consensus on terminology and 13 

experimental guidelines is presented here. We expect that these norms will facilitate 14 

more effective interpretation, comparison and reproducibility of research in this field. 15 

We also highlight the current challenges in noninvasively monitoring and measuring 16 

O2 concentrations in plant cells, outlining the technologies currently available, their 17 

strengths and drawbacks, and their suitability for use in flooding and low O2 research. 18 

 19 

TERMINOLOGY 20 

The inconsistent and sometimes inaccurate usage of flooding and low O2 stress- 21 

related terms together with incomplete details regarding experimental conditions 22 

have hindered the interpretation, reproducibility and comparison of independent 23 

studies in the field. Here, we define and clarify commonly used terms used in flooding 24 

and low-O2 related experimental conditions. 25 

Flooding: a general term referring to excessively wet conditions, i.e. where excess 26 

water replaces gas-spaces surrounding roots and/or shoots. Flooding encompasses 27 

the following terms that describe natural events or experiments.  28 

 Waterlogging or soil flooding: only the root-zone is flooded (excessive water 29 

in the soil or other rooting media).  30 
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 Partial waterlogging or soil flooding: partial flooding of the root-zone. Details 1 

regarding depth and extent of soil flooding should be specified. 2 

 Submergence: the entire plant (root and shoot) is under water. 3 

 Partial submergence: the entire root system and part of above ground organs 4 

are under water. Details regarding the submergence depth in relation to plant 5 

height or distance from soil surface should be specified.  6 

 7 

Anaerobiosis: literally means ‘life without molecular O2’. Plants can only survive a 8 

limited time without molecular O2. The term anaerobiosis frequently refers to the 9 

status of plants/organs exposed to a lack of O2 for a short time, during which 10 

acclimation occurs through altered gene expression and metabolism. 11 

 12 

Anaerobic metabolism: describes cellular energy production from carbohydrates 13 

without the benefit of oxidative phosphorylation and engagement of cytochrome c 14 

oxidase as the final electron acceptor. Anaerobic metabolism occurs when O2 is absent 15 

and is usually associated with (but not limited to) ethanolic and/or lactate 16 

fermentation. In plants, it is also associated with accumulation of alanine and gamma-17 

aminobutyric acid due to altered metabolite fluxes involving the tricarboxylic acid 18 

cycle among others (Narsai, et al., 2011; Van Dongen & Licausi, 2015; Voesenek & 19 

Bailey-Serres, 2015). It can occur in cells within an ‘anoxic core’ in tissues/organs (e.g. 20 

vascular tissues of roots (Berry & Norris, 1949; Thomson & Greenway, 1991) even 21 

under externally aerobic conditions and in densely packed tissues or organs with a low 22 

surface to volume ratio (e.g. developing fruits, tubers, seeds, meristems) 23 

(Geigenberger et al., 2000; Gibbs & Greenway, 2003; Van Dongen & Licausi, 2015). 24 

 25 

Defining –oxic conditions: The terms hypoxia and anoxia are often used 26 

interchangeably, which limits experimental reproducibility and can lead to 27 

misunderstanding of associated physiological, biochemical and molecular processes. 28 

When accurate quantification of the O2 status of biological samples or their 29 

environment is not possible, use of -oxic terms is valid, but care should be taken when 30 
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inferring conclusions about O2 availability from these experiments. As a guideline, we 1 

describe common -oxic words, highlighting their limitations. 2 

 Anoxia: describes complete absence of O2 in a system. This is not the same as 3 

an O2 concentration that is too small to measure because such a condition can 4 

be maintained when the diffusive flux of O2 into the tissue is equal to the O2 5 

metabolism. True anoxic conditions are unlikely to occur in plant tissues where 6 

photosynthesis and respiration are key metabolic processes (Smith & Dukes, 7 

2013). Thus, this term should be limited to describing the atmosphere applied 8 

to biological samples or the environment under investigation. Most cases 9 

applying anoxic conditions involve replacing the natural atmosphere with an 10 

inert gas such as argon or nitrogen (e.g. Loreti et al., 2005; Branco-Price et al., 11 

2008). Some artificial flooding treatments have also been defined as anoxic, 12 

when water was degassed prior to submergence (Baud et al., 2004). In this 13 

case, however, the degassed water will not remain O2 free unless subsequently 14 

placed in an O2 free environment. Finally, true anoxic conditions require 15 

darkness, since the photosynthetic light reaction generates molecular O2. 16 

 Normoxia: The reference normoxic condition is often the O2 availability in air 17 

at sea level on today’s Earth, i.e. 20.95 %. However, O2 concentrations within 18 

plant organs can be lower or higher under normoxic conditions (Van Dongen 19 

& Licausi, 2015; Pedersen et al., 2016). Therefore, internal 20 

(organ/tissue/cellular) O2 concentrations could deviate from the “normoxic 21 

environment”. Under external normoxia, cells may be O2-limited due to high 22 

metabolic activity, as in meristems (Greve et al., 2003), vascular tissues of roots 23 

(Armstrong & Beckett, 1987)  or due to limited diffusion in bulky tissues 24 

(Pedersen et al., 2006), or tubers (Geigenberger et al., 2000). O2 levels 25 

measured in these tissues over time in the experimental system is desirable. 26 

 Hypoxia: describes O2 concentrations below normoxic without necessarily 27 

implying any impact (i.e. hypoxic treatment refers to experiments in which a 28 

plant is exposed to lower O2 conditions than air). Hypoxia is preferably used to 29 

selectively describe O2 concentrations below which a specific process is 30 

affected (e.g. below the critical O2 pressure (Armstrong et al., 2009) for 31 
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respiration) or a response is activated. This may imply the need for additional 1 

terms to indicate ranges of O2 concentrations (e.g. in the field of microbiology, 2 

micro-oxic often describes 0.5 to 5% O2 (Pessi et al., 2013)). When authors use 3 

hypoxia or alternative terms to describe reduced O2 availability, provision of 4 

precise O2 tensions or ranges is valuable. This can include flow rates or 5 

turbulence, medium composition and temperatures for the external medium 6 

and the bulkiness, respiration rate and density of experimental tissue(s).  7 

 Hyperoxia/superoxia: describe O2 concentrations above normoxia. 8 

Hyperoxia/superoxia can result from, for instance, underwater photosynthesis 9 

and reduced outwards diffusion rate of O2 from photosynthetic organs to the 10 

environment ( Rich et al., 2013; Pedersen et al., 2016), or from water bodies 11 

to the atmosphere (Nikinmaa, 2014). 12 

Although it is advisable that O2 concentrations be described for each experimental 13 

system, authors may prefer to use -oxic conditions best suiting the study, as long as 14 

the description enables experimental replication. Detailed description of the O2 levels 15 

assessed externally or internally (within the plant) or physical parameters that affect 16 

its availability will improve the reproducibility of observations and help design of 17 

models and meta-analyses. 18 

 19 

THE CHALLENGE OF MONITORING OXYGEN LEVELS IN PLANTS 20 

Flooding is a compound stress imposing changes in O2 availability (and thus respiratory 21 

ATP production), CO2, light, ethylene, mineral nutrients and reactive oxygen species 22 

(Voesenek & Bailey-Serres, 2015; Voesenek & Sasidharan, 2013). The severity of the 23 

stress and the response elicited depends upon genotype, developmental age of the 24 

plant, organ, tissue, and other factors including flooding depth and duration, light 25 

availability, temperature, humidity and the amount of carbohydrate storage (such as 26 

sugars, starch, lipids, protein) in cells and tissues.  27 

It is not easy to predict what physiological changes occur in a spatial and dynamic 28 

fashion during flooding at the cellular level, especially with respect to O2 29 

concentration. The way in which a flooding treatment is performed will strongly 30 

influence how fast plant tissues experience low O2 stress. Different factors, including 31 
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light levels in the water, the temperature and the volume of the water used to 1 

submerge the plants, microbial activity in the submerged soil, and O2 concentration of 2 

the water at the beginning of the experiment will all influence how the O2 availability 3 

to the plant changes during the treatment. Therefore, careful monitoring and 4 

reporting of the O2 concentration around submerged plant tissue is required. 5 

Polarographic electrodes (such as the Clark-type electrode) are still most widely used 6 

for this. However, fiber-optic based sensor methods have become more popular 7 

during recent years (Rolletschek et al., 2009; Ast et al., 2012), since these are fast and 8 

selective. Moreover, optical sensors have the advantage that the same sensor can be 9 

used to measure molecular O2 concentrations in solution as well as in air, and the 10 

baseline of the measurement is more stable as compared to polarographic methods 11 

which makes optical sensing more suited for long-term (days to weeks) 12 

measurements. 13 

To avoid technical difficulties in controlling the O2 concentration around a plant by 14 

submergence, many studies use a chamber filled with O2-free or O2-poor air. This has 15 

the advantage that O2 concentrations can be changed much faster as compared to a 16 

submergence treatment, and that the actual external concentration can be controlled 17 

precisely. One should be aware, however, that a treatment with air containing little 18 

O2 does not mimic submergence, but only changes one out of many parameters that 19 

are affected by submergence. 20 

Apart from the importance of controlling the environmental O2 concentration during 21 

experimental treatments, there is a strong need to obtain precise information about 22 

the plant internal O2 concentration as well. To date, measurements of plant internal 23 

O2 have been only accomplished via invasive means (Ast et al., 2012; Ast & Draaijer, 24 

2014; van Dongen & Licausi, 2015). Most commonly, a small sensor needle is inserted 25 

into a plant organ and O2 concentrations are measured at the tip of the needle.  The 26 

smallest needle type sensors that currently exist are based on the Clark-type sensor 27 

system (Revsbech, 1989) and commercially available sensors have a diameter of 28 

around 4 µm. These sensors are extremely fragile. More robust glass fibre-based 29 

optical sensors typically have a diameter of about 50 µm. A disadvantage of needle-30 

type sensors is that the tissue will be damaged upon insertion, which can lead to local 31 

changes in the rate of respiratory O2 consumption. Moreover, external O2 is likely to 32 
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diffuse through the insertion wound into the interior of the tissue, which could lead 1 

to an overestimation of the actual in planta O2 concentration.  2 

An alternative invasive method to determine local differences or changes in O2 3 

concentration is by using O2 sensitive reporter foil (Tschiersch et al., 2012). Here, a 4 

special camera is used to determine O2 concentration-dependent light emission from 5 

a special coated sensor foil that is placed on the surface of plant tissue (Jensen et al., 6 

2005). This method has been used to describe local differences in O2 concentration of 7 

plant organs such as stems and seeds that were cut in order to access the interior 8 

tissues with the sensor foil. By doing so, these measurements allowed detection of 9 

differential O2 consumption patterns within the plant organ (Tschiersch et al., 2012). 10 

More recently, nano particles coated with a fluorescent dye have been successfully 11 

used in rhizosphere studies (Koren et al., 2015). These nano particles are possible 12 

future candidates for O2 studies at the cell level when working with large, transparent 13 

model cells such as cells of Chara. 14 

To date, no method exists that enables non-invasive analysis of plant internal O2 15 

concentrations. The best alternative that is currently being applied makes use of 16 

reporter proteins (such as GUS, GFP or Luciferase) that are expressed under the 17 

control of low- O2 induced promotor sequences (Gasch et al., 2016). Interpretation of 18 

the expression pattern of the reporter protein allows conclusions about relative 19 

variation in the O2 concentration between regions or through time. It will not provide, 20 

however, an exact value for the actual local concentration of O2. Moreover, the 21 

reaction time of such reporter systems is relatively long, making it difficult to 22 

investigate rapid changes. Several other suggestions are being discussed to design 23 

alternative non-invasive molecular O2 reporter systems. FRET (fluorescent resonance 24 

energy transfer)-based methods in which the FRET efficiency is affected by O2-25 

dependent protein maturation has already been applied successfully in bacterial cell 26 

cultures (Potzkei et al., 2012), but there are no reports yet of the successful application 27 

of such O2 sensors in plants.  28 

In medical research, various non-invasive O2 monitoring techniques are being used, 29 

including Positron Emission Tomography (PET) and nuclear magnetic resonance 30 

(NMR) technology (Roussakis et al., 2015). In plants, such methods have not been 31 

reported yet to determine O2 gradients, because of the poor resolution and because 32 



 10 

homogenous application of the required radioisotopes or contrast agents (such as 1 

Fluorine-19 (19F)-based probes) appears difficult in plants. Further research to 2 

develop methods to determine plant internal O2 concentrations will remain of utmost 3 

importance for the research field to develop further. 4 

 5 

EXPERIMENTAL SYSTEMS 6 

It is extremely important that researchers carefully detail the experimental imposition 7 

of flooding or low O2 stress. We suggest that, in addition to details essential to any 8 

methods description, the following details specific to low O2 and flooding studies are 9 

necessary: 10 

Stress conditions:  11 
o Type of flooding (waterlogging, partial or complete submergence) 12 

should include depth relative to shoot height. Investigators are 13 

encouraged to define terms used in their system, e.g. stagnant 14 

flooding. If hydroponics are used, information on aeration, O2 status, 15 

light and medium composition are needed. 16 

o Flooding in a natural or artificial environment should include 17 

information on light, flow, turbidity, pH, inorganic carbon 18 

concentration and temperature of the water. It is beneficial to record 19 

the rate of decline of O2 in the soil, air and water. Soil flooding can also 20 

be documented from soil redox potential. 21 

o Hypoxia experiments should provide details regarding the system used 22 

to achieve low O2 conditions (and state the O2 concentrations), 23 

including time taken to achieve the condition. Further information can 24 

include: chamber size, flow rate through the system, and details of 25 

application. The gas used to lower O2 levels must be stated. 26 

o In experimental setups determining O2 flux into roots from O2 27 

containing bathing media, experimenters should be aware that when 28 

roots are attached to shoots, fluxes to the root can come not just from 29 

the media but also internally from the shoot (Armstrong & Armstrong, 30 

2014). 31 
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o Recovery conditions (post-submergence or post-hypoxia) should be 1 

described, including light levels, temperature, humidity, and watering 2 

regime post-drainage. Rate of soil drainage (changes in soil water 3 

content) and changes in soil redox potential are also valuable. 4 

o Zeitgeber time (hours after dawn) and illumination when experiments 5 

start and terminate should be mentioned.  6 

o Plant density and orientation of growth on medium should be included.  7 

 8 

Scoring survival: A recovery period following the removal of flooding/hypoxia/anoxia 9 

stress is essential for scoring survival (Striker, 2012). Plants should be photographed 10 

immediately before and after the treatment and at the end of the recovery period. 11 

When scoring damage, quantitative rather than qualitative data are more 12 

reproducible and can be analysed statistically (e.g., chlorophyll levels, biomass, green 13 

leaf area). 14 

 15 

CONCLUSIONS  16 

Careful descriptions of growth and treatment conditions, especially factors that can 17 

influence both plant external and internal O2 concentrations are essential for clarity, 18 

reproducibility and progress in the research on plant responses to flooding and low 19 

O2. Reporting on O2 concentrations, whenever possible, using the most suitable, 20 

currently available methods is recommended. Ultimately, the challenge is to also 21 

achieve an understanding of the spatial and temporal dynamics of the major flooding 22 

signals O2, ethylene, nitric oxide, reactive oxygen species and low-energy, their 23 

interactions, and how signalling modulates response from the subcellular to the whole 24 

plant level. Furthermore, the focus of many studies has been on short-term molecular 25 

signatures often under severe conditions, whereas responses associated with long-26 

term, less severe and more chronic O2 limitations that influence developmental 27 

plasticity deserve greater attention.  28 
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