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Abstract 1 

An experimental study on electro-spraying from small-scale combustors is carried out 2 

using liquid ethanol as fuel. Two systems of electro-spraying are employed in the 3 

present study; one is a nozzle system (without a ring electrode) and the other is a 4 

nozzle-ring system (with a ring electrode). The photos of electro-spraying at the 5 

cone-jet mode are taken by a digital camera. The voltage drop across the resistance in 6 

the loop is measured by a data acquisition instrument, and the atomization current is 7 

calculated according to Ohm’s Law. The size and velocity of electro-spraying droplets 8 

are measured by a Phase Doppler Anemometer. A non-dimensional analysis on 9 

atomization current is completed to explain the electro-spraying phenomena of liquid 10 

at the stable cone-jet mode. The results show that, the lower atomization current and 11 

droplet velocity corresponds to smaller size of droplet. Based on the results of 12 

non-dimensional analysis, it is found that the dimensionless atomization current in 13 

both the nozzle system and nozzle-ring system obeys the scaling law as square root of 14 

the dimensionless flow rate. The charge density is of a -1.5 power dependence on 15 

droplet diameter. Both of the nozzle and the nozzle-ring systems show a good 16 

agreement with Rayleigh instability. 17 

 18 

Keywords: cone-jet mode; electro-spraying; atomization current; droplet size; droplet 19 

velocity; non-dimensional analysis 20 
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1. Introduction 1 

With the progress in micro-fabrication techniques, there is an increasing 2 

demanding for the miniaturization of mechanical and electro-mechanical engineering 3 

devices. The miniaturized power generating devices using liquid hydrocarbon as fuel 4 

with high specific energy may have more competitive advantages than those using 5 

batteries [1-2]. Zeleny photographed drops held at the end of capillary tubes and 6 

raised to a high potential, forming a jet of glycerine from an electrified drop [3]. Since 7 

then, many experiments and simulations have been carried to study this phenomenon 8 

[4-9]. A conical meniscus is formed at the tip of the nozzle, and followed by a 9 

ligament, the narrow jet broken into monodisperse droplets due to Rayleigh instability. 10 

No droplets coalescence will take place due to the coulombic forces generated by the 11 

electric field; this mode of electrospray is known as “cone-jet” mode [10]. Thong and 12 

Weinberg [11] used the electric fields for dispersing solid and liquid fuels, and this 13 

made it possible that the droplet size and the charge in terms of the parameters of 14 

applied electrical, geometrical and flow can be predicted. 15 

The cone-jet is a stable atomization mode. Many researchers have carried out 16 

experimental investigations on the stability of the cone-jet mode and the dependence 17 

on the liquid properties, flow rate and the electrostatic conditions of the current and 18 

droplet size [12-15]. Fernandez and Loscertales [13] found that the scaling law of the 19 

spray current emits from an electrified meniscus and fits an equation based on the 20 

square root of flow rate of the highly conducting liquid. Gañan-Calvo et al. [14] found 21 

another different dependence between the current and flow rate for the liquid of low 22 
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polarity. In fact, an atomization process is affected by many parameters. In order to 1 

propose a general dimensional description of the entire range of working parameter 2 

for cone-jet electrospraying, a two-dimensional parametrical ‘chart’ with four distinct 3 

regions and corresponding scaling laws for droplet size and current was established by 4 

Gañan-Calvo [15]. 5 

According to the scaling laws, very low flow rate is needed to produce small 6 

droplets. A low flow-induction charger was used to improve aerosol delivery 7 

efficiency [16]. The formation of a stable Taylor cone was very important for 8 

electrospray operation. A ballpoint pen electrospray emitter greatly expands the 9 

operation range in the flow rate-voltage space [17]. A ring electrode was used to 10 

prevent the Taylor cone frequently change its shape under various external 11 

disturbance [18-19]. There were many extraordinary properties of the cone-jet mode, 12 

such as monodispersity of the primary droplets; high charge on the surface of the 13 

generated droplets; controllable droplet size by varying the flow rate [12]. It remained 14 

necessary to identify whether the cone-jet spraying mode was obtained or not. The 15 

classifications are mainly based on visual observations of the liquid meniscus, but it is 16 

very hard to observe the morphology of the spraying in the practical application. 17 

Some experiments were done to research the relationship between the current and the 18 

behavior of the liquid meniscus [20-21]. Verdoold et al. [22] found a general mapping 19 

between the properties of the current through the system and the spraying mode that 20 

was independent of the material properties of the liquid, the electrode geometry and 21 

other experimental conditions. 22 
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In our previous study [19], two different electro-spraying systems were 1 

compared to investigate the effect of the ring electrode on the cone-jet characteristics. 2 

Numerical calculation was performed to investigate the effect of ring electrode on the 3 

electric field. The same electro-spraying systems are employed in the present study. 4 

The combustor in nozzle-ring system is consisted of three pieces of quartz glass tube 5 

connected by a ring electrode and a stainless steel grid electrode. Because of the 6 

reflections on the quartz tubes, the spray modes are difficult to be observed clearly, 7 

and the photos of electro-spraying can only be obtained after removing the outer 8 

surface of the combustors [19]. Although the size and velocity distributions of 9 

electro-spraying droplets could not be measured by a Phase Doppler Anemometer 10 

through the quartz tubes, the atomization current could be measured. Therefore, to 11 

obtain the relationship between the atomization current and droplet size is very 12 

important. In the present study, the photos of electro-spraying at the cone-jet mode are 13 

obtained by a digital camera. The voltage drop across the resistance between the grid 14 

and the ground is measured by a data acquisition instrument, and the atomization 15 

current is calculated according to Ohm’s law. The size and velocity distributions of 16 

electro-spraying droplets are measured by a Phase Doppler Anemometer both for the 17 

nozzle system (without a ring electrode) and the nozzle-ring system (with a ring 18 

electrode). A non-dimensional analysis on atomization current is proposed to explain 19 

the electro-spraying phenomena of liquid at the stable cone-jet mode. 20 

 21 

 22 

 23 



 

6 

 

2. Experimental setup 1 

2.1 The test rig 2 

The test rig is shown in Fig.1, which consists of a liquid fuel feeding system, a 3 

test section, a high voltage supply system. A capillary is used as a nozzle, which is 4 

supported by the substrate (a ceramic package). The fuel is supplied though a plastic 5 

tube to the nozzle by a syringe pump (KDS100, KD SCIENTIFIC, USA) with ±1.0 % 6 

accurancy. The test section consists of a fuel-supply nozzle, a ring electrode (only for 7 

the nozzle-ring system) and a ground electrode (a stainless steel grid). 8 

Three types’ diagnostic techniques are employed to monitor the electro-spraying 9 

modes. They are (1) the observations, in which the photographs of different 10 

electro-spraying modes are taken by a digital single-lens reflex camera (Cannon EOS 11 

5D Mark III) with a green laser light as an illuminating light source; (2) the size and 12 

velocity distributions measurements, of which the size and velocity distributions of 13 

electro-spraying droplets are measured by a Phase Doppler Anemometer (Particle 14 

Dynamics Analysis, Dantec, Denmark); (3) the current measurements, in which the 15 

voltage drop across the resistance between the grid and the ground is measured by a 16 

data acquisition instrument, and the atomization current is calculated according to 17 

Ohm’s law.  18 

The liquid fuel used is pure ethanol (CH3CH2OH, molecular weight of 46.07, 19 

purity >99.5 %). A conductivity meter with ±1.0 % accuracy (Rex; DDS-307A; 20 

Shanghai, China) is applied for measuring the conductivity of ethanol. 21 

 22 
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 1 

1- syringe pump; 2- syringe; 3- plastic pipe; 4- substrate; 5- nozzle; 6- laser lamp; 7- 2 

ring electrode; 8- high-voltage DC power source; 9- laser; 10-focusing lens; 3 

11-steelgrid; 12- resistance; 13- digital single-lens reflex camera; 14- data acquisition 4 

instrument; 15-computer 5 

Fig.1 Schematic diagram of experimental setup 6 

 7 

2.2 test section 8 

The two electro-spraying systems are employed in the present experiment, 9 

namely, the nozzle system in which the nozzle is maintained at high potential by 10 

connecting it to a direct-current (DC) power source (71030P, GENVOLT, UK), and a 11 

stainless steel grid is grounded; and the nozzle-ring system in which the nozzle and 12 

the ring electrode are connected to two DC power source (71030P, GENVOLT, UK) 13 
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separately, and the stainless steel grid is also grounded. The distance between the 1 

nozzle and the stainless steel grid is the same for both the nozzle system and 2 

nozzle-ring system. Fig.2 shows the test section and the distribution of measuring 3 

cross-sections (z=5.0 mm, 10.0 mm) and points (No. 0- No. 16). 4 

 5 

Fig.2 Test section and the distribution of measuring cross-sections and positions [19] 6 

( a: test section of nozzle system; b: test section of nozzle-ring system; c: test points of 7 

a certain cross-section (z= 5.0 mm or 10.0 mm)) 8 

 9 

The inner diameter of the stainless steel nozzle is 0.90 mm (dn= 0.90 mm); the 10 

outer diameter, 1.20 mm (Dn=1.20 mm); the inner diameter of the ring electrode, 11 

12.40 mm (dr=12.40 mm); the outer diameter, 16.00 mm (Dr=16.00 mm); and the 12 

thickness, 5.00 mm (δ=5.00 mm). The stainless steel grid has a diameter of 16.00 mm, 13 

and each hole in it has a diameter of 1.00 mm. A high DC power source (71030P, 14 

GENVOLT, UK) is used to supply high voltage on the nozzle (Vn). For the nozzle 15 
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system, the stainless steel grid is arranged above the tip of the nozzle with a vertical 1 

distance of 26.10 mm (L=26.10 mm). For the nozzle-ring system, the ring electrode is 2 

arranged above the tip of the nozzle with a distance of 1.10 mm (L1=1.10 mm), and 3 

the grid is arranged above the tip of the ring electrode with a vertical distance of 20.00 4 

mm (L2=20.00mm). Another DC power source (71030P, GENVOLT, UK) is 5 

employed to supply high voltage on the ring electrode (Vr).  6 

2.3 Measuring system 7 

The spray current was so small that it is difficult to be measured directly by the 8 

electrometer. A standard 1MΩ resistance is connected between the grid and the 9 

ground electrode. The electric potential difference across the resistance is measured, 10 

and the spray current is calculated by the measured potential. The signals are 11 

transferred to a computer though the data acquisition instrument (34790A, Agilent 12 

USA). The equivalent electrical circuit with spray is shown in Fig.3, which consists of 13 

DC power sources, electro-spray, electrodes, and the standard resistance. Vn is the 14 

voltage on nozzle; Vr is the voltage on ring electrode; R1 is the total spray resistance in 15 

the nozzle system, U1 is the voltage of R1; R2 is the liquid cone-jet resistance, U2 is the 16 

voltage of R2; R3 is the spray resistance in the nozzle-ring system, U3 is the voltage of 17 

R3; Rs is the standard resistance connected, Us is the voltage of Rs; I is the effective 18 

value of the spray current. According to Ohm’s law, the electric current can be 19 

calculated. 20 

  /s sI U R
                             

(1) 21 

The electric potential difference across the resistance is 0.00-0.08 V, the power 22 
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source voltage is 0.00-7.00 kV. Compared with the spray resistance, the standard 1 1 

MΩ resistance connected between the grid and the ground electrode is very low, its 2 

effect on the spray current can be ignored.  3 

    4 

(a) nozzle system                   (b) nozzle-ring system 5 

Fig.3 The equivalent electrical circuit with spray  6 

(Vn: voltage on nozzle; Vr: voltage on ring electrode; R1: spray resistance in nozzle 7 

system; R2: liquid cone-jet resistance; R3: spray resistance in nozzle-ring system; Rs: 8 

connected standard resistance; U1, U2, U3, Us are the voltages across each resistances 9 

of R1, R2, R3, Rs respectively) 10 

 11 

A Phase Doppler Anemometer (PDA) is employed to measure the size and 12 

velocity distributions of electro-spraying droplets. The PDA system includes a fiber 13 

optic probe, a signal processor, a receiver probe and an argon-ion laser. The sample 14 

number at each measuring position is set to 2000 and sampling time is 10 seconds, 15 

which can ensure the estimation of droplet size and velocity statistics to be accurate. 16 

The distribution of measuring sections and points is shown in Fig.2. The 17 

measurements of droplet sizes are made at different cross-sections (z=5.0 mm, z=10.0 18 

mm) up the tip of the nozzle. The measuring points distribute on the concentric circles 19 

of different radiuses (r=0.5 mm, r=1.0 mm, r=1.5 mm and r=2.0 mm). After 20 
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comparing the droplet size distribution at the different cross-sections, measurements 1 

are performed at the cross-section (z=10.0 mm) up the tip of the nozzle, and the size 2 

distribution is determined based on 17 points. 3 

2.4 Error summary 4 

In the present study, ethanol is used as liquid fuel and its physical properties at 5 

25oC are shown in Table 1. The conductivity of ethanol is measured by a conductivity 6 

meter with ±1.0 % uncertainty (Rex; DDS-307A; Shanghai, China). Other parameters 7 

are from the handbook [23]. 8 

 9 

Table 1 Physical properties of ethanol (250C) [19] 10 

Density 

kg/m3 

Viscosity 

Pa·s 

Surface tension 

N/m 

Conductivity 

S/m 

Relative permittivity 

— 

789.3 1.07×10-3 0.022 5.1×10-5 25.3 

 11 

The experiments are conducted in the following variation ranges of operating 12 

parameters: liquid ethanol flow rate Q of 0.20-4.00 ml/h, the applied voltage on the 13 

nozzle electrode Vn of 0.00-6.80 kV, the applied voltage on the ring electrode Vr of 14 

1.00 kV, the distance L1 of 1.10 mm, the distance L2 of 20.00 mm, the distance L of 15 

26.10 mm. Table 2 shows the measurement errors.  16 

 17 

 18 

 19 

 20 

 21 
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Table 2 error summary 1 

Parameters Measure tool or 

equipment 

Ranges Error 

Flow rate, Q Syringe pump 0.00-4.00 ml/h ±1.0% 

Voltage, Vn DC power source 0.00-2.00 kV ±1.0% 

Voltage, Vr DC power source 0.00-7.00 kV ±1.0% 

Voltage, Us Data acquisition 

instrument 

0.00-10.00 mV ±1.0% 

Diameter,  

dn, Dn, dr, Dr, D 

Vernier caliper 0.90-16.00 mm ±0.02 mm 

Thickness of ring 

electrode, δ 

Vernier caliper 5.00 mm ±0.02 mm 

Droplet size PDA 0.00-250.00 μm ±1.0% 

Droplet velocity PDA  0.00-50.00 m/s ±1.0% 

 2 

3. Results and discussions 3 

3.1 The atomization current at different modes 4 

Fig.4 shows the influence of the nozzle voltage Vn on atomization current in the 5 

nozzle system. The distance between the stainless steel grid and the nozzle tip is of L 6 

= 26.10 mm. Fig.5 shows the influence of nozzle voltage Vn on atomization current in 7 

the nozzle-ring system. The distance between the nozzle tip and the ring electrode is 8 

of L1 =1.10 mm, the distance between the ring electrode and the stainless steel grid is 9 

of L2=20.00 mm, and the applied voltage on the ring electrode is of Vr =1.00 kV. 10 

When the liquid drop is charged, the drop turns into a cone, then a liquid jet 11 

appears at the cone apex, and the jet is broken into micro-scale droplets due to 12 

Rayleigh instability. The charge is trapped on their surface, and the continuous motion 13 
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of charged jet and droplets are formed atomization current. The conduction charging 1 

is a process, in which the high voltage is connected to the liquid. The induction 2 

charging is also a process, in which the high voltage electrode keeps a distance away 3 

from the nozzle tip and the charge is induced on the liquid. The liquid droplets are 4 

positively or negatively charged depending on the polarity of the high voltage supply. 5 

For the nozzle electro-spraying system (in Fig.4), the droplets are charged mainly 6 

based on conduction charging method. For the nozzle-ring electro-spraying system (in 7 

Fig.5) the droplets are charged based on both the conduction charging and the 8 

induction charging methods.  9 

 10 

   11 

(a)                             (b) 12 

Fig.4 (a) Current-voltage characteristics for different spraying modes of nozzle 13 

system (L=26.10 mm); (b) a typical electrospray photo at cone-jet mode (Q=1.00 ml/h, 14 

Vn=5.44 kV) 15 

 16 

 17 

 18 
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   1 

(a)                                 (b) 2 

Fig.5 (a) Current-voltage characteristics for different spraying modes of nozzle-ring 3 

system (L1=1.10 mm, L2=20.00 mm, Vr=1.00 kV); (b) a typical electrospray photo at 4 

cone-jet mode (Q=1.00 ml/h, Vn =4.40 kV, Vr=1.00 kV) 5 

 6 

Corona discharge is a process, in which a current flows from an electrode with 7 

high potential into a neutral fluid, such as air, by ionizing the fluid so as to create a 8 

region of plasma around the electrode. The corona-generated space charges are driven 9 

by the electric field to the ground or to the opposite polarity causing the enhancement 10 

of the space electric field; and the total electric field could be called as ionized fields. 11 

The drifted space charges can cause the ion current in space and corona current on the 12 

conductor, respectively.  13 

The empirical solution for a corona initiation field Eco (V/m) from ring electrode 14 

of radius r (m) can be represented [25]: 15 

r >100μm 16 

  
6

co 0.5

0.03
3 10 1E

r

 
   

                             

(2) 17 

The radius of the ring electrode is 6.20 mm (r=6.20 mm), Eco=3×106V/m.  18 
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Fig.4 shows the variation of the atomization current with the voltages at a fixed 1 

flow rate of ethanol. Firstly, the current increases with electric potential (Vn=4.25 2 

-5.10 kV). Then, it keeps almost constant at cone-jet mode (Vn=5.10 -6.20 kV). When 3 

the electric potential further increases to a certain value (near to 6.20 kV), the electric 4 

field intensity exceeds to the value of Eco, the corona discharge is emerged, the air is 5 

ionized, and the current increases rapidly. 6 

Fig.5 shows the variation of atomization current along with different nozzle 7 

electric potentials at a fixed ring electric potential of 1.00 kV in nozzle-ring system. 8 

The combined electric field is established by the nozzle, the ring and the grid. The 9 

residence time of liquid ethanol plays a great role in the charging process. Both 10 

conduction charging and induction charging controls the electrospray process together. 11 

For conduction charging, there is a current flowing through the power supply, which 12 

causes electrical energy consumption; but there is no electrical energy consumption 13 

during the induction process. In the induction process, the liquid droplets are 14 

positively or negatively charged depending on the polarity of the high voltage power 15 

source. The ring electrode is connected to the positive of the DC power source. When 16 

the nozzle potential Vn is low (Vn=3.50 -4.20 kV), the axial velocity of liquid jet and 17 

droplet is relatively low, so the current increases with the nozzle potential Vn. Then, it 18 

keeps almost constant at the initial stage of cone-jet mode (Vn=4.20 -4.30 kV). When 19 

the electric potential Vn is increased to a certain value (Vn≈4.3kV), the corona 20 

condition appears during the conduction and induction charging process. The air will 21 

be ionized to some extent, which causes neutralization with the charged droplets. 22 
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Thus, the current decreases with the increase of the nozzle potential. When the nozzle 1 

potential is increased to over 4.60 kV, the corona charging dominates the charging 2 

process, the neutral air can be ionized greatly and the current is increased rapidly.  3 

 4 

3.2 The droplet size and velocity distributions at cone-jet mode 5 

The volume mean diameter is calculated from the mean of the droplet volumes 6 

as: 7 

1

3
3

30

1

1 iN

i i

i

D n D
N 

 
  
 


                         (3)

 8 

where, Di is the volume mean diameter of the individual particles, Ni the number of 9 

size classes (bins) selected by the user, ni the number of particles in each size class 10 

and N the total number of particles.  11 

Fig.6 shows the droplet size distributions under cone-jet mode at the different 12 

cross-sections. The distribution is very similar when measuring points is at z=5 mm 13 

and z=10 mm, respectively. It is necessary to keep the measurements at a certain 14 

position to compare the two different systems. Considering the differences of two 15 

apparatus, the measurements performed at z =10.0 mm is chosen to identify the 16 

difference between the two systems. 17 

Fig.7 shows droplet size versus flow rate at cone-jet mode for two electrospray 18 

systems. Fig.8 shows droplet velocity versus flow rate at cone-jet mode for two 19 

electrospray systems. The droplet size and velocity distributions at cone-jet mode are 20 

uniform at different position (please see the measurement points No.0-No.16, Fig.2), 21 

so that the droplet size measured is as nearly monodisperse and the droplet velocity is 22 
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nearly uniform.  1 

 2 

Fig.6 The distribution of measuring points under cone-jet mode at different cross- 3 

sections (z=5mm, 10mm) for nozzle system (Vn=5.44 kV, Q=1.00 ml/h) 4 

 5 

Fig.7 shows that, for both nozzle and nozzle-ring systems, droplet size increases 6 

with flow rate. As shown in Fig.8, droplet velocity increases with flow rate. Thus, the 7 

droplet size and velocity increase with the flow rate; the lower velocity corresponds to 8 

smaller droplet size.  9 

The velocity in the nozzle-ring system is smaller than that in the nozzle system, 10 

and the variation of the velocity is smaller in the nozzle-ring system. The droplets 11 

breakup process is dominated by the axisymmetric disturbance. For the nozzle-ring 12 

system, the axisymmetric disturbance is protected by the ring electrode, due to the 13 
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decreasing of the electric field strength near the cone-tip. The electric field strength in 1 

the nozzle-ring system is smaller than that in the nozzle system at the axial position 2 

(z=10.0 mm) [19]. At small flow rate (0.40 ml/h <Q <2.00 ml/h), the liquid is charged 3 

completely, and the droplets have more time to evaporate due to its smaller droplet 4 

velocity, so the droplet size is smaller in the nozzle-ring system. At large flow rate 5 

(2.00 ml/h<Q< 3.20 ml/h), the liquid is charged incompletely. In addition, the electric 6 

field strength in the nozzle-ring system is smaller than that in the nozzle system. Thus, 7 

the droplet size becomes larger than that in the nozzle system. 8 

 9 

 10 

Fig.7 Droplet sizes of ethanol at different flow rates for two electrospray systems at 11 

cone-jet mode (Nozzle system: Vn=5.00-5.50 kV; Nozzle-ring system: Vn=4.00-6.00 12 

kV, Vr=1.00 kV) 13 
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 1 

Fig.8 Droplet velocities of ethanol at different flow rates for two electrospray systems 2 

at cone-jet mode (Nozzle system: Vn=5.00-5.50 kV; Nozzle-ring system: 3 

Vn=4.00-6.00kV, Vr=1.00 kV) 4 

3.3 The scaling law 5 

At stable cone-jet mode, a cone-like meniscus is formed at the nozzle tip, from 6 

whose apex a jet is emitted. The cone-jet surface is given as the following equation 7 

[15]: 8 

   r z   (4) 9 

where r is the radial coordinate, z is the axial coordinate as shown in Fig. 2, and ξ 10 

is the cone-jet surface. 11 

The charge conservation is expressed as [15]: 12 

  

202
n s

Q
I E KE





 

 (5) 
13 
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where I is the total emitted atomization current, the first term on the right-hand side is 1 

the induction current, the second term is the conduction current, Q is the flow rate, ε0 2 

is the permittivity of a vacuum, K is the electrical conductivity of the liquid, En is the 3 

normal electric field, and Es is the tangential electric field.  4 

The atomization current I depends on the liquid properties (density ρ and 5 

viscosity μ, electrical conductivity K, gas-liquid surface tension σ, and relative 6 

permittivity εr) as well as the flow rate Q, nozzle voltage Vn, ring voltage Vr, vacuum 7 

permittivity ε0, and a certain geometrical configuration. For the electro-spraying at the 8 

cone-jet mode, the atomization current keeps nearly constant as the voltage changes, 9 

so the influence of the voltage can be negligible. The atomization current I is 10 

proportional to the square root of the flow rate at cone-jet mode. The characteristic 11 

flow rate Q0 and current I0 are defined as follows [24]: 12 

  0
0Q

K




   (6) 13 

  

2
2

0
0I

 



 
  
 

 (7) 14 

  

1/2

0 0

I Q
k

I Q

 
  

 
 (8) 15 

where Q0 is the characteristic flow rate, I0 is the characteristic current, and k is a 16 

nearly universal constant. 17 

The scaling law indicated by Eq. (8) shows the relationship between the 18 

dimensionless current I/I0 and the dimensionless flow rate Q/Q0. 

 

19 

Fig.9 shows the dimensionless atomization current I/I0 as a function of square 20 

root of the dimensionless flow rate Q/Q0 based on the present experimental results.  21 
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The predictive capability of these correlations is overall evaluated by the mean 1 

relative error (MRE), defined as 2 

  
1

100%
pred exp

exp

I I
MER

M I


    (9)3 

 where M is the number of data points, Ipred is the atomization current predicted by the 4 

available correlations, Iexp is the atomization current measured in the experiments. 5 

Based on the present experimental results, the fitted equation (10) has a MRE of 2.8%, 6 

and the fitted equation (11) has a MRE of 2.1%.  7 

 8 

 9 

Fig.9 Dimensionless atomization current versus square root of the dimensionless flow 10 

rate at cone-jet mode 11 

 12 

 13 
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For the nozzle system: 1 

  

1/2

0 0

2
predI Q

I Q

 
  

   (10) 

2 

For the nozzle-ring system: 3 

 

1/2

0 0

1.6
predI Q

I Q

 
  

   (11)

 4 

3.4 The relationship between charge density and droplet size 5 

For an individual charged droplet, it is influenced by the electric field force and 6 

surface tension force. According to the Rayleigh instability, the maximum charge it 7 

can sustain is when the electric field force is nearly balanced by the surface tension 8 

force, and the limit is called the Rayleigh limit [26], 9 

  
3

0 302 2q D     (12) 10 

where q is the Rayleigh limit charge. 11 

 12 

Fig.10 The influence of charge density on the droplet size 13 

 14 
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The maximum charge density can be expressed as the Rayleigh limit charge 1 

divided by the droplet volume. In order to identify the influence of charge density on 2 

the droplet size in the experiments, the charge density can be expressed as the ratio of 3 

the atomization current to the liquid flow rate. The maximum charge density is 4 

defined as 5 

  0

3/2

30

12 2q I

V Q D

 
   (15) 6 

where V is the droplet volume. It indicates that charge density have a -1.5 power 7 

dependence on droplet diameter. And the smaller droplet has higher charge density.  8 

Fig.10 shows the influence of charge density on droplet size. It can be inferred 9 

that both the nozzle system and the nozzle-ring system show a good agreement with 10 

the Rayleigh instability.  11 

 12 

4. Conclusions 13 

In the present study, the experimental study on electro-spraying from small-scale 14 

combustors are carried out using liquid ethanol as fuel. The electro-spraying systems 15 

are the same with that used in our previous work [19]. The electro-spraying systems 16 

consist of the nozzle system (without a ring electrode) and the nozzle-ring system 17 

(with a ring electrode). The photos of electro-spraying at cone-jet mode are taken by a 18 

digital camera. The voltage drop across the resistance between the grid and the ground 19 

is measured by a data acquisition instrument, and the atomization current is calculated 20 

according to Ohm’s law. The size and velocity distributions of electro-spraying 21 

droplets are measured by a Phase Doppler Anemometer. A non-dimensional analysis 22 
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on atomization current has been proposed to explain the electro-spraying phenomena 1 

of liquid at the stable cone-jet mode. The following can be concluded: 2 

(1) At cone-jet mode, the smaller atomization currents and droplet velocities 3 

corresponds to the smaller droplet sizes. 4 

(2) The dimensionless atomization current in both nozzle system and nozzle-ring 5 

system obey the scaling law as square root of the dimensionless flow rate. 6 

(3) The charge density has a -1.5 power dependence on the droplet diameter; both the 7 

nozzle system and the nozzle-ring system show a good agreement with the Rayleigh 8 

instability. 9 
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