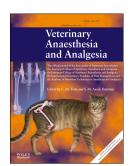
Accepted Manuscript

A clinical evaluation of the pharmacokinetics and pharmacodynamics of intravenous alfaxalone in cyclodextrin in male and female rats following a loading dose and constant rate infusion


Kate L. White, Stuart Paine, John Harris

PII: \$1467-2987(17)30062-4

DOI: 10.1016/j.vaa.2017.01.001

Reference: VAA 88

To appear in: Veterinary Anaesthesia and Analgesia

Please cite this article as: White KL, Paine S, Harris J, A clinical evaluation of the pharmacokinetics and pharmacodynamics of intravenous alfaxalone in cyclodextrin in male and female rats following a loading dose and constant rate infusion, *Veterinary Anaesthesia and Analgesia* (2017), doi: 10.1016/j.vaa.2017.01.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	RESEARCH PAPER
2	A clinical evaluation of the pharmacokinetics and pharmacodynamics of
3	intravenous alfaxalone in cyclodextrin in male and female rats following a loading
4	dose and constant rate infusion
5	Kate L White*, Stuart Paine* & John Harris†
6	
7	*School of Veterinary Medicine and Science, University of Nottingham, Sutton
8	Bonington, UK
9	†School of Biosciences, University of Nottingham, Sutton Bonington, UK
10	
11	Correspondence: Kate White, School of Veterinary Medicine and Science, University
12	of Nottingham, Sutton Bonington, Loughborough, Leics LE12 5RD, UK. E-mail:
13	Kate.White@nottingham.ac.uk
14	
15	Running head: Alfaxalone anaesthesia in male and female rats
16	

17	Abstract
18	Objective To characterise, as a clinical study, the pharmacokinetics and
19	pharmacodynamics and describe the hypnotic effect of the neurosteroid alfaxalone (3α -
20	hydroxy-5 α -pregnane-11, 20-dione) formulated with 2-hydroxypropyl- β -cyclodextrin
21	in male and female rats.
22	Study design Prospective, experimental laboratory study.
23	Animals Twelve (six male and six female) adult, aged matched Sprague Dawley rats.
24	Methods Surgery and instrumentation was performed under isoflurane anaesthesia in an
25	oxygen/nitrous oxide mixture (1:2) and local anaesthetic infiltration. All animals
26	received a loading dose (1.67 mg kg ⁻¹ minute ⁻¹) for 2.5 minutes followed by a constant
27	rate infusion (0.75 mg kg ⁻¹ minute ⁻¹) for 120 minutes of alfaxalone. Isoflurane and
28	nitrous oxide was discontinued 2.5 minutes after the alfaxalone infusion started.
29	Cardiorespiratory variables (heart rate, respiratory rate, arterial blood pressure, end tidal
30	carbon dioxide tension) and clinical signs of anaesthetic depth were evaluated
31	throughout anaesthesia. Carotid artery blood samples were collected at strategic time
32	points for blood gas analysis, haematology and biochemistry and plasma concentrations
33	of alfaxalone. Plasma samples were assayed using liquid chromatography-mass
34	spectrometry (LC/MS).
35	Results There were significant differences between the sexes for plasma clearance ($p =$
36	0.0008), half-life ($p = 0.0268$) and mean residence time ($p = 0.027$). Mean arterial blood
37	pressure was significantly higher in the male rats ($p = 0.0255$).
38	Conclusions and clinical relevance This study confirms alfaxalone solubilized in a 2-
39	hydroxypropyl- β -cyclodextrin provides excellent total intravenous anaesthesia in rats.

40	Sex-based	differences	in 1	pharmacol	kinetics a	and	pharmacod	ynamics	were	demonstr	rated
----	-----------	-------------	------	-----------	------------	-----	-----------	---------	------	----------	-------

and must be considered when designing biomedical research models using alfaxalone.

42

43 Keywords alfaxalone, anaesthetics, intravenous, rat, steroid,

Introduction

46	Alfaxalone is a neuroactive steroid that modulates neurotransmission through
47	interaction with a steroid recognition site on the GABAA receptor complex causing a
48	positive allosteric modulation of the ligand gated chloride channel resulting in
49	inhibition of neuronal excitability (Harrison & Simmonds 1984; Turner et al. 1989).
50	Such agents therefore have roles in anaesthesia, epilepsy, anxiety, insomnia, migraine
51	and drug dependence (Rupprecht & Holsboer 1999). Alfaxalone had been used as an
52	anaesthetic induction agent in humans and veterinary species for almost half a century
53	but anaphylactoid reactions attributed to the polyethoxylated castor oil (Cremophor EL)
54	vehicle (Tammisto et al. 1973) made its use redundant. Subsequent formulations of
55	alfaxalone incorporating a cyclodextrin have hitherto been devoid of the previous side
56	effects and Alfaxan (alfaxalone dissolved in 2-hydroxypropyl- β -cyclodextrin) is now
57	registered for induction and maintenance of anaesthesia in dogs and cats and has been
58	used in horses (Goodwin et al. 2011) sheep (Andaluz et al. 2012; del Mar Granados et
59	al. 2012) rabbits (Navarrete-Calvo et al. 2014) and other more exotic species (Bouts &
60	Karunaratna 2011; McMillan & Leece 2011; Bauquier et al. 2013; Kischinovsky et al.
61	2013; Knotek et al. 2013; Villaverde-Morcillo et al. 2014).
62	The use of alfaxalone in biomedical research and clinical veterinary medicine is gaining
63	popularity as it may offer some selective advantages over other anaesthetic
64	combinations in terms of safety, reflex suppression, cardiopulmonary depression,
65	interaction with receptors involved in pain pathways/modulation and pain on injection
66	(Child et al. 1972; Michou et al. 2012; Santos González et al. 2013) but may also offer
67	additional advantages in influencing CNS development and myelination (Yawno et al.

68	2014). Alfaxalone has been popular for neuroendocrine studies for its sparing of various
69	forebrain functions (Sarkar et al. 1976; Sherwood et al. 1980). Human trials of
70	alphaxalone in cyclodextrin are currently underway (Monagle et al. 2015).
71	The majority of animals used in basic science pain research however are young healthy
72	male laboratory rodents, and indeed it has been suggested that a more heterogeneous
73	and diverse population be used to improve the translational relevance to a human
74	population (Mogil 2009). The inclusion of female rodents is to be encouraged despite
75	the additional complexities that the variability of the oestrous cycle and sexual
76	dimorphism poses; well-designed studies can include both sexes without needless
77	increase in animal numbers (Clayton & Collins 2014). With respect to alfaxalone usage,
78	the pharmacokinetics of a single intravenous (IV) dose have been defined in dogs (Ferré
79	et al. 2006) cats (Whittem et al. 2008b; Muir et al. 2009) female rats (Lau et al. 2013)
80	and male rats after a 5 minute infusion (Visser et al. 2002). The novelty and primary
81	aim of this study was therefore to characterise the pharmacokinetics,
82	pharmacodynamics and hypnotic characteristics of a constant rate infusion of alfaxalone
83	in male <i>versus</i> female rats.
84	
85	Materials and methods
86	This study was performed in accordance with Project Licence PPL30/3156 issued under
87	the Animal (Scientific) Procedures Act 2013 (EU Directive 2010/63/EU) and local
88	ethics committee as part of a larger study investigating nociceptive withdrawal reflexes
89	and diffuse noxious inhibitory control. This study is reported in accordance with the
90	ARRIVE guidelines (Kilkenny et al. 2014).

91	Animals
92	Twelve (9-12 week old) Sprague Dawley rats, six male (397 \pm 16 g) and six female
93	$(286 \pm 20 \text{ g})$ (Charles River Laboratories, Margate, UK) were used. Animals were
94	housed in single sex groups of four, given access to food (Teklad 2018, Harlan) and tap
95	water ad libitum and maintained on a 12-hour light/dark cycle. All experiments started
96	at 10:00 h each day.
97	
98	General anaesthesia
99	Anaesthesia was induced using 3% isoflurane (Isoflo; Abbott, UK) in oxygen and
100	nitrous oxide mixture (1:2). Once the rat had lost its righting reflex, it was transferred to
101	a heating blanket (Harvard Apparatus Ltd., UK) coupled to a rectal probe for
102	maintenance of body temperature (37.5 \pm 0.5 °C). Anaesthesia was maintained using
103	2.00-2.25% (vaporizer setting) isoflurane in oxygen/nitrous oxide delivered via a
104	nosecone. Lidocaine 2% (Lignol; Dechra, UK) 3 mg kg ⁻¹ was infiltrated subcutaneously
105	prior to skin and sternohyoid incision. The trachea was surgically cannulated using
106	polyethylene 2.42mm O.D. tubing (Fisher Scientific, UK). Respiratory rate and effort
107	was assessed by observing chest excursion and measuring end tidal carbon dioxide
108	(CapStar 100, Linton, Diss, UK). In animals exhibiting respiratory depression as judged
109	by a low respiratory rate and rising end tidal carbon dioxide values, intermittent positive
110	pressure ventilation was initiated (Harvard 683 ventilator, Harvard Apparatus, UK) at
111	60-80 breaths minute ⁻¹ to maintain end tidal carbon dioxide at 35-45 mmHg (4.67-6.00
112	kPa). The left jugular vein was surgically cannulated using 0.63 mm O.D. polyethylene

tubing (Fisher Scientific) for administration of alfaxalone. The left carotid artery was

114	surgically cannulated using 1mm O.D. polyethylene tubing (Fisher Scientific) to
115	monitor arterial blood pressure and for sampling. Arterial blood pressure was monitored
116	by an arterial pressure transducer (SensoNor 840; SensoNor, Norway) and recorded
117	using a PC running Spike2 software (CED Ltd, UK). Heart rate was recorded via two 25
118	gauge needles inserted subcutaneously on the lateral sides of the thoracic wall. The
119	electrocardiogram signal was amplified and used to trigger an instant rate meter
120	(Neurolog NL253, Digitimer, UK) and again recorded using Spike2 software.
121	An infusion of alfaxalone (Alfaxan, Jurox, UK) was started at time 0 at a loading dose
122	of 1.67 mg kg ⁻¹ minute ⁻¹ for 2.5 minutes followed by a constant rate infusion (0.75 mg
123	kg ⁻¹ minute ⁻¹) for the remainder of the electrophysiological experiment using a
124	calibrated syringe driver (SP100iz, WPI, UK). The isoflurane and nitrous oxide were
125	stopped 2.5 minutes after starting the alfaxalone infusion. Arterial blood was withdrawn
126	from the carotid cannula into lithium heparin and placed on ice. Blood samples (200µl)
127	were collected at baseline (prior to alfaxalone), end of loading dose, and at 10, 30, 60,
128	90, 120 minutes. Arterial blood gases, biochemistry and haematology parameters (pH,
129	pCO ₂ , pO ₂ , bicarbonate, sodium, potassium, chloride, calcium, glucose, lactate and
130	creatinine concentrations) were also measured (EPOC, Woodley Instrumentation,
131	Bolton, Lancashire, UK). All rats received an equal volume of balanced electrolyte
132	solution after sampling (Vetivex 11 (Hartmann's); Dechra, UK). Samples were
133	centrifuged (4000g for 10 minutes) within 30 minutes of collection. Plasma was
134	harvested and stored at -20°C until determination of plasma alfaxalone concentration.
135	The hypnotic characteristics of the anaesthetic were evaluated by monitoring paw
136	withdrawal reflex in response to pinch, corneal reflex in response to light brushing,

137	spontaneous blinking and gross purposeful movement and cardiopulmonary parameters
138	Following the pharmacokinetic study, a separate electrophysiological study was
139	performed, EMG responses were recorded from tibialis anterior, biceps femoris, and
140	medial gastrocnemius muscles during electrical plantar hind paw stimulation of the toes
141	and heel, before and after a conditioning injection of capsaicin into either the
142	contralateral forelimb to study diffuse noxious inhibitory controls (DNIC) or the
143	ipsilateral hind limb to investigate central sensitization and reflex facilitation (Harris &
144	Clarke 2003). Data from this part of the study were not included in this paper but
145	informed the subjective assessment of response to noxious stimuli during alfaxalone
146	anaesthesia. At the end of the experiments animals were euthanised by IV injection of
147	pentobarbitone (Pentobarbital; Ayrton Saunders Ltd, UK) followed by cervical
148	dislocation (as required by UK Home Office regulations). All female rats underwent
149	vaginal swabbing to characterise vaginal smear cell types. Slides were examined under
150	x40 and then x100 magnifications (BH2 microscope, Olympus, UK) after staining with
151	modified Giemsa (Diff Quik, Vet Direct, UK) and cell types and numbers were
152	recorded.
153	
154	Sample analyses
155	Samples were analyzed for alfaxalone using a LCMS/MS method. Methanolic standard
156	curve and quality control (QC) spiking solutions were produced for alfaxalone from
157	separate accurate weighings of solid compound. Standards and QCs were prepared by
158	spiking 10 μ l spike solution into a solution of 20 μ l plasma + 30 μ l water + 40 μ l

methanol $+ 150 \,\mu l$ methanol containing $1000 \,nM$ tolbutamide as internal standard.

160	Plasma standard curves were prepared from $100-5000~\text{ng mL}^{-1}$ and QCs were prepared
161	for 250 and 2500 ng mL ⁻¹ . Blank male or female plasma was used for the standards and
162	QC solutions (Charles River, UK). The plasma samples were prepared by adding 30 μl
163	water $+50~\mu l$ methanol $+150~\mu l$ methanol containing $1000~nM$ tolbutamide as internal
164	standard to 20 µl plasma. Samples, standards and QCs were then mixed and stored in a
165	freezer at -20°C for a minimum of 120 minutes prior to centrifugation at 4000g for 20
166	minutes. The samples were extracted and analyzed using a Micromass Quattro Premier
167	mass spectrometer incorporating an Acquity autosampler (Waters, UK). An ACE Excel
168	2 C18-AR 50 x 2.1mm column was used with the following LC conditions: Solvent A =
169	Water $+$ 0.1% Formic Acid, Solvent B = Methanol $+$ 0.1% Formic Acid, Flow rate $=$ 0.8
170	mL minute ⁻¹ , column temperature = 60°C. LC gradient went from 95 % solvent A:5 %
171	solvent B to 5 % solvent A:95 % solvent B over a 1.5 minute interval. The MS/MS
172	method used electrospray positive mode with a 333.16 > 107.01 transition for the
173	detection of alfaxalone. The lower limit of quantification (LLOQ) was 100 ng mL ⁻¹ . The
174	coefficient of variation at LLOQ was <8% and <16% for other concentration levels. All
175	samples were run in triplicate. Two separate LC/MS/MS runs were performed for the
176	male and female samples, respectively.
177	Samples were analysed within 28 days of collection based on data from analytical
178	validation study file supporting stability of alfaxalone in rat plasma at -20 $^{\circ}$ for 30 days
179	(Jurox 2010).
180	

181

Pharmacokinetic analyses

182	Pharmacokinetic analysis was carried out using Phoenix WinNonlin 6.3 (Pharsight,
183	Sunnyvale, CA, USA). The pharmacokinetic parameters (clearance, volume of
184	distribution and half life) for each individual rat were estimated according to best fit
185	from an IV infusion one compartmental pharmacokinetic model, based on previous
186	published data (Lau et al. 2013) showing a single exponential decay, with appropriate
187	weighting for best fit. The appropriate weighting for best fit in this study was based on
188	examination of the residuals showing random scatter around predicted values using 1/y^
189	weighting by 1/reciprocal of the predicated value.
190	
191	Statistical Analyses
192	Statistical tests were performed using GraphPrism (GraphPad Software, CA, USA)
193	version 6. The pharmacokinetic parameters for log transformed parameter data for both
194	genders were compared using an unpaired, two tailed Student's t-test and a p value of
195	$<$ 0.05 was considered significant. Data are reported as mean \pm standard deviation (SD)
196	unless stated otherwise.
197	Cardiopulmonary data were collected continuously, and analyzed at the
198	pharmacokinetic time points. The normality assumptions were tested with Kolmogorov-
199	Smirnov or Shapiro-Wilk tests. The differences in heart rate, mean/systolic/diastolic
200	arterial blood pressure, blood gas variables, lactate, glucose and electrolytes between
201	genders were compared using an unpaired t-test. For a more detailed analysis of
202	changes over time, these variables were also analyzed by two-way repeated-
203	measures ANOVA (one factor repetition) for the time points between baseline anaesthesia

204	and 120 minutes after alfaxalone infusion with Sidak's correction for multiple
205	comparisons.
206	
207	Results
208	Anaesthetic induction and instrumentation were completed without difficulty in all
209	animals. All animals underwent a total of 230 \pm 20 minutes of alfaxalone anaesthesia
210	consisting of a 120 minutes of a PK/PD study followed by an electrophysiology study.
211	Only results from the former are reported here.
212	
213	Pharmacokinetics
214	The shape of the concentration-time curve following a loading dose and then constant
215	rate infusion was typical of those observed for anaesthetic induction drugs exhibiting an
216	initial steep phase after the loading dose followed by a gradual increase until steady
217	state was achieved. The plasma concentrations were substantially different between the
218	sexes (Figure 1).
219	The pharmacokinetic parameters calculated by an IV infusion one compartmental model
220	are shown in Table 1. Logarithmic transformed data for clearance and $t_{1/2}$ was
221	significantly different between the male and female rats by the two-tailed <i>t</i> -test. As
222	would be expected the MRT was also significantly different between genders.
223	
224	Pharmacodynamics
225	Cardiopulmonary data are presented in Table 2.

226	After a 2.5 minute loading dose all rats showed an initial short lived decrease in arterial
227	blood pressure, heart rate and respiratory rate as a result of concomitant administration
228	of inhalant and alfaxalone. Within the next 5 minutes following discontinuation of
229	isoflurane, all rats demonstrated an increase in blood pressure from baseline reading
230	under isoflurane and nitrous oxide anaesthesia. Blood pressure (mean, systolic,
231	diastolic), heart rate and respiratory rate at baseline were not significantly different
232	between male and female rats under isoflurane anaesthesia.
233	Heart rates remained stable during alfaxalone anaesthesia and there was no significant
234	difference between the sexes at any time points.
235	Systolic, mean and diastolic arterial pressures all increased from baseline under
236	isoflurane anaesthesia, reached a peak (between 60 and 90 minutes) and thereafter
237	showed a trend of decreasing with time. Mean arterial blood pressure was significantly
238	different between males and female rats ($p = 0.026$), however the interaction with time
239	(p < 0.0001) differed between the genders for mean (and systolic and diastolic) pressure
240	and makes the interpretation of these data difficult (Fig. 2). Significant differences were
241	analyzed post hoc using Sidak' multiple comparison test. Mean arterial blood pressure
242	was significantly increased compared to baseline in male rats at 30, 60, 90 and 120
243	minutes from starting the alfaxalone (p < 0.0005), as were systolic and diastolic
244	pressures. Mean arterial blood pressure was only significantly greater than baseline in
245	the female rats at 60 minutes. In 4 of 12 animals (2 males and 2 females)
246	cardiopulmonary depression, indicated by a decrease in blood pressure or respiratory
247	rate, necessitated discontinuation of the isoflurane and nitrous oxide before the 2.5

248	minute time point. Within 60 seconds of discontinuation of the isoflurane and nitrous
249	oxide, heart rate and blood pressure began to rise in all animals.
250	All female rats ventilated spontaneously throughout the experiment, whereas 2 of 6
251	male rats required mechanical ventilation as judged by apnoea, or a rise in end tidal
252	carbon dioxide coupled with a decrease in respiratory rate and effort.
253	Blood gas parameters and biochemistry values are presented in Table 3. There were no
254	significant differences between sexes for these parameters except for pH ($p = 0.0027$),
255	which was lower in the female rats in conjunction with higher partial pressures of
256	carbon dioxide. The clinical significance of this is unknown and of little significance.
257	Partial pressures of oxygen were different between baseline and subsequent time points,
258	trending towards higher values under total intravenous anaesthesia compared to
259	inhalational anaesthesia.
260	
261	Hypnotic effect
262	The plane of anaesthesia was continually evaluated by serial cardiopulmonary
263	measurements, blood gas analysis and reflex responses. Subjective evaluation of this
264	hypnotic effect of the alfaxalone in all 12 rats was excellent. No rats demonstrated gross
265	purposeful movement or required a change in the infusion rate to improve the plane of
266	anaesthesia.
267	
268	Vaginal smears

The same investigator read all slides (3 per rat) and evaluated the whole slide to give an impression of the smear, rather than exact cell counts. Three rats were characterized as in dioestrus, one in proestrus, one in oestrus, and one in metoestrus.

Discussion

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

The major finding from this study is that consideration must be given to the dose of anaesthetic delivered to male and female subjects. Without this interrogation of the experimental model there remains the danger that studies will be carried out under what is assumed to be identical 'planes' of anaesthesia, when in reality one sex may be more or less profoundly anaesthetized such that, for example, hormonal or neuroendocrine responses will be affected. The data reported here were part of an electrophysiological study investigating diffuse noxious inhibitory controls of nociceptive withdrawal reflexes and is part of a larger study of descending control in chronic osteoarthritis, which in humans is more prevalent in females, and highlights the potential risk that using one sex may contribute to the failure of Phase 1 trials or misleading conclusions. In many studies, the influence of the anaesthetic is ignored, or so poorly reported that ensuring a consistent plane of anaesthesia is impossible. Although rats are frequently used in laboratory studies involving anaesthesia, it is typically males used to reduce experimental variability (Zucker & Beery 2010). The limitation of this approach is that basic science intended to be translated into the human population is potentially compromised by the use of one sex (Clayton & Collins 2014). This perceived variability in females is often used as a reason for excluding females from studies. A meta-analysis of 293 studies in which

murine behavioural, morphological, physiological, and molecular traits were monitored

292	in both sexes showed variability was not significantly greater in females for any
293	endpoint but several traits contributed to substantially greater variability in the males in
294	this analysis, including the influence of group housing (Prendergast et al. 2014).
295	Commendably, there is a movement towards trying to include more female subjects in
296	studies.
297	The small sample size in our study makes it impossible to postulate that differences
298	within the females are a result of the differences in the oestrous cycle or as a result of
299	normal variability; nonetheless it demonstrates that if steroid hormones can affect
300	alfaxalone efficacy, the stage of the oestrous cycle may also contribute. It is possible
301	that the three female rats requiring additional isoflurane for several minutes between
302	minute 6 and 10 after commencing the alfaxalone may be a result of the stage of the
303	oestrous cycle, but this is impossible to prove definitively.
304	In the research community there remains a collective responsibility for a thoroughness
305	of reporting anaesthesia conditions in order that the anaesthesia is not 'the elephant in
306	the room'.a
307	
308	Other species e.g. cats display similar pharmacokinetic characteristics to this rat study
309	(Whittem et al. 2008a). The characteristic rapid hepatic metabolic clearance of
310	alfaxalone by the liver has been identified <i>in-vivo</i> and <i>in-vitro</i> in rats (Sear & McGivan

^a "Elephant in the room" is an English metaphorical idiom for an obvious truth that is either being ignored or going unaddressed. The idiomatic expression also applies to an obvious problem or risk no one wants to discuss.

311 1980; Sear & McGivan 1981). Gender based differences in drug metabolism are the 312 primary cause of sex-dependent pharmacokinetics and reflect differences in the 313 expression of hepatic enzymes active in the metabolism of many extrinsic and intrinsic 314 chemicals, including cytochrome P450 (Waxman & Holloway 2009). Rodent studies 315 have identified more than a 1000 genes whose expression is dependent on sex and these genes modulate liver metabolic function and create sexual dimorphism in liver function 316 317 (Tanaka 1999). Differences in bioavailability, distribution, metabolism, and/or excretion 318 in different sexes are multifactorial and complicated (Soldin & Mattison 2009). Drug 319 distribution can also be sex linked, influenced by factors such as body fat, plasma 320 volume and differential perfusion of organs. However, in this study no significant 321 difference was recorded between male and female Vss suggesting this was not an issue. In general, however, sex differences in metabolism are thought to be the primary 322 323 determinant of variation in pharmacokinetics and this is most likely the reason for the 324 differences seen in this study. 325 326 The quality of anaesthesia was subjectively judged as excellent in all rats. Contrary to 327 previous studies (Brammer et al. 1993), this anaesthetic combination provided very 328 good conditions, stability and survival beyond 180 minutes. The lower blood pressures 329 observed in female rats in this study would suggest that these animals were more 330 profoundly anaesthetized than the males. There was no difference in heart rates between 331 the groups, and the depth of anaesthesia was not so sufficiently profound as to cause 332 apnoea in the females. This is likely to be a pharmacokinetic effect as the females' 333 clearance of alfaxalone is so much less than in the male rats. The consistency of the

haematology, biochemistry and blood gas values in all rats demonstrates the stability of
the protocol. Blood gas values are infrequently reported for rodent anaesthetics, in part
due to the technical nature of artery cannulation, and previously the volume of blood
required made repeated sampling impossible due to a deleterious depletion of the blood
volume of the animal. Newer point of care analyzers are able to process much smaller
volumes. Total blood volume removed was well below the limit of 10% blood volume
and this removal of blood in conjunction with a replenishment of balanced electrolyte
solution clearly had no impact on the animals. All biochemistry and haematology values
except chloride were similar to those provided by the supplier of the Sprague Dawley
rats in age-matched subjects. Invariably these samples were analysed with different
machines, but even with slight discrepancies usually seen between laboratories, plasma
chloride values in the study (mmol L^{-1}) (114 \pm 2.6 (females) 115 \pm 2.7 (males)) and
values in age matched conscious Sprague Dawley rats (109 \pm 1.4 (females), 103 \pm 1.00
(males) were different. A moderate corrected hyperchloraemia was present (when
measured sodium values were also taken into consideration). The most likely cause was
the administration of normal heparinized saline during cannula placement and through
flushing of the carotid cannula with heparinized saline to maintain patency for sampling
and blood pressure measurement. A concurrent acidosis was not observed, and sodium
values were almost identical between the supplied conscious values and those
measured. The potential deleterious effects of normal saline administration have been
raised (Handy & Soni 2008) and the administration of non-physiological saline and
balanced electrolyte solutions is warranted. The clinical impact of hyperchloraemia is
unknown in this study, but in humans there is an increasing awareness that

hyperchloraemia and hyperchloraemic acidosis can cause significant clinical
ramifications (Handy & Soni 2008).

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

358

357

Differences in efficacy of the older alfaxalone steroid (Alphathesin/Althesin) in male and female rats has been demonstrated, with males requiring four times the dose of females for surgical anaesthesia and analgesia, and it was concluded that the influence of sex hormones was responsible for this discrepancy (Fink et al. 1982). However a recent study disputed this and postulated that differences are more likely a result of the different formulations of alfaxalone and assay methodologies than differences between sexes (Lau et al. 2013). Notwithstanding these views it has also been shown that formulation is hugely influential; the toxicity of alfaxalone in Wistar rats was less in those animals receiving alfaxalone dissolved in 7-sulfobutyl-ether-β-cyclodextrin (SBECD) compared to alfaxalone in Cremophor EL (Goodchild et al. 2015). The current study directly comparing male and female Sprague Dawley rats receiving an HPCD alfaxan formulation seemingly favours a true sex difference due to pharmacokinetics, pharmacodynamics or both as the explanation. Sex based studies using rats anaesthetized with pentobarbitone have also demonstrated differences (Zambricki & Dalecy 2004). Sex differences have been detected in studies comparing IP and IV routes in rats (Estes et al. 1990) postulating that the lack of obvious sex differences with single IV dosing may be a result of the short duration of effect. Group sizes of 6 were deemed appropriate for evaluating a drug exhibiting within subject variability of less than 30% coefficient of variation of pharmacokinetic measures (Rowland & Tozer 2011) and recent studies comparing cardiovascular effects

of anaesthetic drugs have successfully used 5 rats per group (Bencze et al. 2013). It should also be noted that the presence of isoflurane and nitrous oxide at the outset of the loading dose is likely to have affected cardiopulmonary parameters in the very early stages of the infusion and conclusions drawn about differences at these time points are likely to be tenuous. However both groups underwent identical protocols so this influence would have been similar for both groups. The use of an inhalational agent such as isoflurane with minimal metabolism and rapid elimination ensured that the period of time from ceasing administration was as short as possible. The maximum possible duration of initial concurrent administration was 2.5 minutes.

In summary, there are pharmacokinetic and pharmacodynamic differences with alfaxalone in cyclodextrin in male and female rats. The plane of anaesthesia provided by this protocol is stable and clinically indistinguishable between sexes with no apparent cumulative effect. Half-life, clearance and mean residence time were significantly different between male and female rats indicating that a sex-linked effect was present. The protocol in our study provides excellent anaesthesia conditions but concludes that a dose alteration may be necessary for rat sex-based studies incorporating alfaxalone. This contrasts to previous published studies, which have dismissed a sex difference (Ferré et al. 2006; Berry 2015). Population pharmacokinetics are necessary to further investigate these findings.

Acknowledgements

Victoria Simmonds for technical assistance.

	ACCEPTED MANUSCRIPT
403	This study received alfaxalone (Alfaxan) donated by Jurox, Malvern, UK. No conflict
404	of interest are declared.
405	Authors' contributions
406	KLW, JH: study design and planning; KLW, JH: study conduct; KLW, SWP: data
407	analysis; all authors: paper writing.
408	

409	References
410	Andaluz A, Felez-Ocaña N, Santos L et al. (2012) The effects on cardio-respiratory and
411	acid-base variables of the anaesthetic alfaxalone in a 2-hydroxypropyl-β-
412	cyclodextrin (HPCD) formulation in sheep. The Veterinary journal 191, 389-
413	392.
414	Bauquier SH, Greenwood J, Whittem T (2013) Evaluation of the sedative and
415	anaesthetic effects of five different concentrations of alfaxalone in goldfish,
416	Carassius auratus. Aquaculture 396-399, 119-123.
417	Bencze M, Behuliak M, Zicha J (2013) The impact of four different classes of
418	anesthetics on the mechanisms of blood pressure regulation in normotensive and
419	spontaneously hypertensive rats. Physiol Res 62, 471-478.
420	Berry SH (2015) Injectable Anesthetics. (5th edn). Grimm KA, Lamont LA, Tranquilli
421	WJ, et al. (eds). Wiley Blackwell, Ames, Iowa. pp. 277-296.
422	Bouts T, Karunaratna D (2011) Evaluation of medetomidine-alfaxalone and
423	medetomidine-ketamine in semi-free ranging Bennett's wallabies (Macropus
424	rufogriseus). Journal of Zoo and Wildlife Medicine 42, 617-622.
425	Brammer a, West CD, Allen SL (1993) A comparison of propofol with other injectable
426	anaesthetics in a rat model for measuring cardiovascular parameters. Laboratory
427	animals 27, 250-257.
428	Child KJ, Davis B, Dodds MG et al. (1972) Anaesthetic, cardiovascular and respiratory
429	effects of a new steroidal agent CT 1341: a comparison with other intravenous
430	anaesthetic drugs in the unrestrained cat. British journal of pharmacology 46,
431	189-200.

432	Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies.
433	Nature 509, 282-283.
434	del Mar Granados M, Dominguez JM, Fernandez-Sarmiento A et al. (2012) Anaesthetic
435	and cardiorespiratory effects of a constant-rate infusion of alfaxalone in
436	desflurane-anaesthetised sheep. pp. 125-125.
437	Estes KS, Brewster ME, Webb AI et al. (1990) A non-surfactant formulation for
438	alfaxalone based on an amorphous cyclodextrin: Activity studies in rats and
439	dogs. International Journal of Pharmaceutics 65, 101-107.
440	Ferré PJ, Pasloske K, Whittem T et al. (2006) Plasma pharmacokinetics of alfaxalone in
441	dogs after an intravenous bolus of Alfaxan-CD RTU. Veterinary anaesthesia and
442	analgesia 33, 229-236.
443	Fink G, Sarkar DK, Dow RC et al. (1982) Sex difference in response to alphaxalone
444	anaesthesia may be oestrogen dependent. Nature 298, 270-272.
445	Goodchild CS, Serrao JM, Kolosov A et al. (2015) Alphaxalone Reformulated: A
446	Water-Soluble Intravenous Anesthetic Preparation in Sulfobutyl-Ether-beta-
447	Cyclodextrin. Anesth Analg 120, 1025-1031.
448	Goodwin Wa, Keates HL, Pasloske K et al. (2011) The pharmacokinetics and
449	pharmacodynamics of the injectable anaesthetic alfaxalone in the horse.
450	Veterinary anaesthesia and analgesia 38, 431-438.
451	Handy JM, Soni N (2008) Physiological effects of hyperchloraemia and acidosis.
452	British journal of anaesthesia 101, 141-150.
453	Harris J, Clarke RW (2003) Organisation of sensitisation of hind limb withdrawal
454	reflexes from acute noxious stimuli in the rabbit. J Physiol 546, 251-265.

455	Harrison N, Simmonds M (1984) Modulation of the GABA receptor complex by a
456	steroid anesthetic. Brain research 323, 287-292.
157	Jurox (2010) Study Report JX9604.03-V027- Validation of an LC/MS Analytical
458	Method for the Analysis of Alfaxalone in Rat Plasma.
459	Kilkenny C, Browne W, Cuthill I et al. (2014) Improving Bioscience Research
160	Reporting: The ARRIVE Guidelines for Reporting Animal Research. Animals 4
461	35-44.
162	Kischinovsky M, Duse A, Wang T et al. (2013) Intramuscular administration of
163	alfaxalone in red-eared sliders (Trachemys scripta elegans) - effects of dose and
164	body temperature. Veterinary anaesthesia and analgesia 40, 13-20.
165	Knotek Z, Hrdá A, Knotková Z et al. (2013) Alfaxalone anaesthesia in the green iguana
166	(Iguana iguana). Acta Veterinaria Brno 82, 109-114.
167	Lau C, Ranasinghe MG, Shiels I et al. (2013) Plasma pharmacokinetics of alfaxalone
168	after a single intraperitoneal or intravenous injection of Alfaxan in rats. J Vet
169	Pharmacol Ther 36, 516-520.
470	McMillan MW, Leece EA (2011) Immersion and branchial/transcutaneous irrigation
471	anaesthesia with alfaxalone in a Mexican axolotl. Veterinary anaesthesia and
172	analgesia 38, 619-623.
473	Michou JN, Leece EA, Brearley JC (2012) Comparison of pain on injection during
174	induction of anaesthesia with alfaxalone and two formulations of propofol in
475	dogs. Veterinary anaesthesia and analgesia 39, 275-281.
176	Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10,
177	283-294.

478	Monagle J, Siu L, Worrell J et al. (2015) A Phase 1c Trial Comparing the Efficacy and
179	Safety of a New Aqueous Formulation of Alphaxalone with Propofol. Anesth
480	Analg 121, 914-924.
481	Muir W, Lerche P, Wiese A et al. (2009) The cardiorespiratory and anesthetic effects of
182	clinical and supraclinical doses of alfaxalone in cats. Veterinary anaesthesia and
183	analgesia 36, 42-54.
184	Navarrete-Calvo R, Gómez-Villamandos RJ, Morgaz J et al. (2014) Cardiorespiratory,
185	anaesthetic and recovery effects of morphine combined with medetomidine and
186	alfaxalone in rabbits. The Veterinary record 174, 95-95.
187	Prendergast BJ, Onishi KG, Zucker I (2014) Female mice liberated for inclusion in
488	neuroscience and biomedical research. Neuroscience and Biobehavioral
189	Reviews 40, 1-5.
190	Rowland M, Tozer T (2011) Variability. In: Clinical Pharmacokinetics and
191	Pharmacodynamics: Concepts and Applications. (4th Ed edn). Lippincott
192	Williams & Wilkins, Philadelphia. pp. 333-355.
193	Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and
194	neuropsychopharmacological perspectives. Trends in neurosciences 22, 410-
195	416.
196	Santos González M, Bertrán de Lis BT, Tendillo Cortijo FJ (2013) Effects of
197	intramuscular alfaxalone alone or in combination with diazepam in swine.
198	Veterinary anaesthesia and analgesia 40, 399-402.
199	Sarkar DK, Chiappa SA, Fink G et al. (1976) Gonadotropin-releasing hormone surge in
500	pro-oestrous rats. Nature 264, 469-463.

501	Sear JW, McGivan JD (1980) The metabolism of alphaxalone by isolated rat
502	hepatocytes. Biochem Pharmacol 29, 248-248.
503	Sear JW, McGivan JD (1981) Metabolism of Alphaxalone in the Rat: Evidence for the
504	Limitation of the Anaesthetic Effect By the Rate of Degradation Through the
505	Hepatic Mixed Function Oxygenase System. British journal of anaesthesia 53,
506	417-424.
507	Sherwood NM, Chiappa SA, Sarkar DK et al. (1980) Gonadotropin-Releasing Hormone
508	(GnRH) in Pituitary Stalk Blood from Proestrous Rats: Effects of Anesthetics
509	and Relationship Between Stored and Released GnRH and Luteinizing
510	Hormone. Endocrinology 107, 1410-1417.
511	Soldin OP, Mattison DR (2009) Sex Differences in Pharmacokinetics and
512	Pharmacodynamics. Clinical Pharmacokinetics 48, 143-157.
513	Tammisto T, Takki S, Tigerstedt I et al. (1973) A comparison of althesin and
514	thiopentone in induction of anaesthesia. British journal of anaesthesia 45, 100-
515	107.
516	Tanaka E (1999) Gender-related differences in pharmacokinetics and their clinical
517	significance. Journal of clinical pharmacy and therapeutics 24, 339-346.
518	Turner DM, Ransom RW, Yang JS et al. (1989) Steroid anesthetics and naturally
519	occurring analogs modulate the gamma-aminobutyric acid receptor complex at a
520	site distinct from barbiturates. The Journal of pharmacology and experimental
521	therapeutics 248, 960-966.
522	Villaverde-Morcillo S, Benito J, García-Sánchez R et al. (2014) Comparison of
523	isoflurane and alfaxalone (Alfaxan) for the induction of anesthesia in flamingos

524	(Phoenicopterus roseus) undergoing orthopedic surgery. Journal of zoo and
525	wildlife medicine 45, 361-366.
526	Visser SAG, Smulders CJGM, Reijers BPR et al. (2002) Mechanism-based
527	pharmacokinetic-pharmacodynamic modeling of concentration-dependent
528	hysteresis and biphasic electroencephalogram effects of alphaxalone in rats. The
529	Journal of pharmacology and experimental therapeutics 302, 1158-1167.
530	Waxman DJ, Holloway MG (2009) Sex Differences in the Expression of Hepatic Drug
531	Metabolizing Enzymes. Mol Pharmacol 76, 215-228.
532	Whittem T, Pasloske KS, Heit MC et al. (2008a) The pharmacokinetics and
533	pharmacodynamics of alfaxalone in cats after single and multiple intravenous
534	administration of Alfaxan at clinical and supraclinical doses. Journal of
535	veterinary pharmacology and therapeutics 31, 571-579.
536	Whittem T, Pasloske KS, Heit MC et al. (2008b) The pharmacokinetics and
537	pharmacodynamics of alfaxalone in cats after single and multiple intravenous
538	administration of Alfaxan at clinical and supraclinical doses. Journal of
539	Veterinary Pharmacology and Therapeutics 31, 571-579.
540	Yawno T, Mortale M, Sutherland AE et al. (2014) The effects of betamethasone on
541	allopregnanolone concentrations and brain development in preterm fetal sheep.
542	Neuropharmacology 85, 342-348.
543	Zambricki EA, Dalecy LG (2004) Rat sex differences in anesthesia. Comp Med 54, 49-
544	53.
545	Zucker I, Beery AK (2010) Males still dominate animal studies. Nature 465, 690-690.
546	

549	Figure Legends
550	
551	Figure 1 Mean (± SD) alfaxalone plasma concentrations (ng mL ⁻¹) for 12 Sprague
552	Dawley rats (6 female, 6 male) after intravenous administration of alfaxalone 1.67 mg
553	kg ⁻¹ minute ⁻¹ for 2.5 minutes followed by 0.75 mg kg ⁻¹ minute ⁻¹ alfaxalone for 120
554	minutes using a one compartment infusion model.
555	
556	Figure 2 Mean (± SD) arterial blood pressure (MAP) (mmHg) for 12 Sprague Dawley
557	rats (6 female, 6 male) after intravenous administration of alfaxalone 1.67 mg kg ⁻¹
558	minute ⁻¹ for 2.5 minutes followed by 0.75 mg kg ⁻¹ minute ⁻¹ alfaxalone for 120 minutes
559	using a one compartment infusion model.
560	
561	
562	

Table 1 Pharmacokinetic parameters for 12 Sprague Dawley rats (6 female, 6 male) after intravenous administration of alfaxalone at a rate of 1.67 mg kg⁻¹ minute⁻¹ for 2.5 minutes followed by 0.75 mg kg⁻¹ minute⁻¹ for 120 minutes using a one compartment infusion model.

Rat ID	CL	T 1/2	Vdss	MRT	Cmax
	(mL		L kg ⁻¹	minutes	mg L ⁻¹
	minute -1				
	kg ⁻¹)			45	
Female 1	66.3	33.8	3.24	48.8	1.3
Female 2	40.4	29.8	1.74	43.0	2.3
Female 3	46.9	76.7	5.19	110.7	0.8
Female 4	58.2	30.9	2.60	44.6	1.6
Female 5	31.9	69.2	3.19	99.9	1.3
Female 6	42.3	34.1	2.08	49.2	2.0
Mean	47.7	45.8	3.00	66.0	1.5
Sd	8.86	20.7	0.6	30.7	0.6
Male 1	65.8	52.1	4.94	75.1	0.8
Male 2	79.9	13.2	1.53	19.1	2.6
Male 3	78.5	17.3	1.95	24.9	2.0
Male 4	117.9	10.3	1.75	14.8	2.2
Male 5	106.2	18.6	2.85	26.8	1.4

					30			
	1	ACCEPTED	MANUSCE	RIPT				
Male 6	101.2	26.5	3.87	38.3	1.0			
Mean	91.6	23.0	2.82	33.2	1.7			
Sd	19.9	15.3	1.36	22.0	0.7			
P value	0.0008***	0.0268*	0.710	0.027*	0.780			
					R			
CL = clearance, $t_{1/2}$ = half life, $Vdss$ = volume of distribution, MRT = mean residence								
time, Cmax = maximum plasma concentration								
CL , $t_{1/2}$ and MRT is significantly different between the male and female rats.								
Asterisks denote significant difference *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.								

Table 2 Cardiopulmonary parameters for 12 Sprague Dawley rats (6 female, 6 male) after intravenous administration of alfaxalone at a rate of 1.67 mg kg⁻¹ minute⁻¹ for 2.5 minutes followed by 0.75 mg kg⁻¹ minute⁻¹ for 120 minutes using a one compartment infusion model.

Variable	Sex	-5	2.5	10	30	60	90	120
MAP	Male	97 ± 7	71 ± 7	110 ± 32*	127± 17****	138 ± 11****	135 ± 16****	132 ± 9****
	Female	89 ± 13	90 ± 20	110 ± 17	114 ± 18	121 ± 14**	113 ± 23	114 ± 21
SAP	Male	98 ± 8	96 ± 9	132 ± 33**	153 ± 22****	167 ± 17****	167 ± 17****	158 ± 11****
	Female	108 ±	111 ±	127 ± 14	133 ± 15	144 ± 15**	138 ± 25*	138 ± 24*
DAP	Male	69 ± 7	60 ± 9	98 ± 32*	114 ± 15***	124 ± 11****	119 ± 19****	120 ± 8****
	Female	79 ± 14	79 ± 21	101 ± 19	104 ± 19	109 ± 14*	100 ± 22	101 ± 21
HR	Male	440 ±	442 ±	440 ± 15	455 ± 23	447 ± 28	438 ± 34	423 ± 23

		25	28					
	Female	440 ±	440 ±	436 ± 35	455 ± 23	445 ±22	415 ± 12	422 ± 16
		31	31					
RR	Male	58 ± 12	55 ± 10	56 ± 10	68 ± 10	57 ± 14	65 ± 7	71 ± 9
	Female	56 ± 10	54 ± 7	56 ± 6	55 ± 5	63 ± 5	68 ± 4	69 ± 4

MAP: mean arterial pressure (mmHg); SAP: systolic arterial pressure (mmHg); DAP: diastolic arterial pressure (mmHg); HR:

heart rate (beats per minute); RR: respiratory rate (breaths per minute)

Baseline (-5 minute) samples were all measured under isoflurane (2% vaporizer setting) in N_2O and O_2 . Data are mean \pm SD.

Asterisks denote significant difference from baseline (-5 mins) within a group. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001

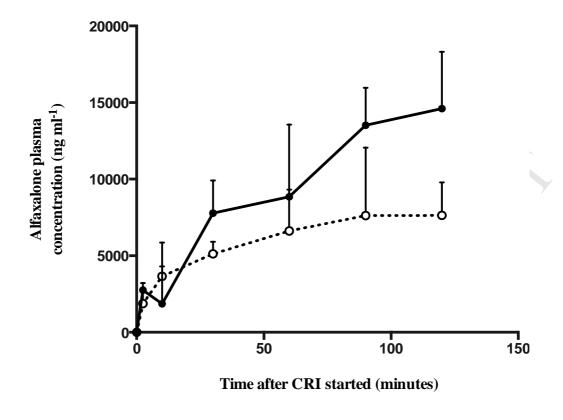

using 2 way ANOVA with multiple comparisons.

Table 3 Measured blood gas variables and clinical biochemistry parameters for 12 Sprague Dawley rats (6 female, 6 male) after administration of alfaxalone at a rate of 1.67 mg kg $^{-1}$ min $^{-1}$ for 2.5 minutes followed by 0.75 mg kg $^{-1}$ min $^{-1}$ alfaxalone for 120 minutes using a one compartment infusion model. Data are mean \pm SD.

Variable	Sex	Minutes relative to the alfaxalone infusion start time				
		-5	30	60	90	120
pH *	Male	7.36 ± 0.10	7.42 ± 0.12	7.44 ± 0.08	7.41 ± 0.08	7.40 ± 0.06
	Female	7.36 ± 0.14	7.36 ± 0.14	7.35 ± 0.12	7.32 ± 0.10	7.37 ± 0.08
PCO ₂ (mmHg)	Male	36 ± 6	35 ± 12	39 ± 4	40 ± 0.4	30 ± 4
	Female	40 ± 16	44 ± 21	44 ± 16	43 ± 13	37± 7
PO ₂ (mmHg)	Male	140 ± 13	218 ± 19	249 ± 13	258 ± 16	$276\ \pm 18$
	Female	190 ± 31	318 ± 130	265 ± 54	263 ± 37	219 ± 70
HCO ₃ (mmol L ⁻¹)	Male	23 ± 5	25 ± 2	23 ± 3	23 ± 3	21 ± 3
	Female	24 ± 4	23 ± 4	22 ± 3	21 ± 3	21 ± 9
Sodium (mmol L ⁻¹)	Male	142 ± 2	143 ± 2	142 ± 4	143 ± 2	145 ± 3

	Female	144 ± 6	143 ± 3	147 ± 2	148 ± 5	150 ± 6
Potassium (mmol L ⁻¹)	Male	4.6 ± 0.1	4.8 ± 0.2	4.8 ± 1.1	4.7 ± 0.9	4.5 ± 2.1
	Female	5.2 ± 0.9	4.6 ± 1.2	4.8 ± 0.9	4.7 ± 1.1	5 ± 1.6
Ionized Calcium (mmol L ⁻¹)	Male	1.50 ± 0.1	1.50 ± 0.18	1.47 ± 0.24	1.37 ± 0.34	1.34 ± 0.60
	Female	1.46 ± 0.22	1.50 ± 0.13	1.51 ± 0.19	1.43 ± 0.25	1.37 ± 0.34
Chloride (mmol L ⁻¹)	Male	110 ± 3	116 ± 4	116 ± 6	114 ± 6	117 ± 5
	Female	114 ± 8	110 ± 4	116 ± 4	117 ± 7	114 ± 4
Glucose (mmol L ⁻¹)	Male	12.4 ± 3	7.1 ± 3.6	7.02 ± 3.1	5.8 ± 0.6	5.8 ± 2.8
	Female	13 ± 2.5	7.8 ± 2.5	6.3 ± 3.2	5.4 ± 1	5.9 ± 3.9
Lactate (mmol L ⁻¹)	Male	1.1 ± 0.7	1.0 ± 0.2	1.0 ± 0.1	1.1 ± 0.2	0.6 ± 0.1
	Female	1.0 ± 0.1	1.1 ± 0.4	1.0 ± 0.3	1.1 ± 0.6	0.6 ± 0.1
Creatinine (µmol ^{L-1})	Male	20 ± 7	35 ± 16	28 ± 13	37 ± 13	33 ± 20
	Female	27 ± 12	33 ± 14	29 ± 14	37 ± 19	34 ± 14

Derived variables reported by the EPOC analyzer (actual bicarbonate, total CO ₂ , base excess of extra cellular fluid, base
excess of blood, oxygen saturation, anion gap, anion gap potassium, haemoglobin) were calculated but are not included in the
table. The baseline (-5 minute) samples were all measured under isoflurane (2% vaporizer setting) in N_2O and O_2 .
* denotes statistical difference between the groups (p<0.05).

• female rats

• • male rats

Figure 1 Mean (\pm SD) alfaxalone plasma concentrations (ng mL⁻¹) for 12 Sprague Dawley rats (6 female, 6 male) after intravenous administration of alfaxalone 1.67 mg kg⁻¹ min⁻¹ for 2.5 minutes followed by 0.75 mg kg⁻¹ min⁻¹ alfaxalone for 120 minutes using a one compartment infusion model.

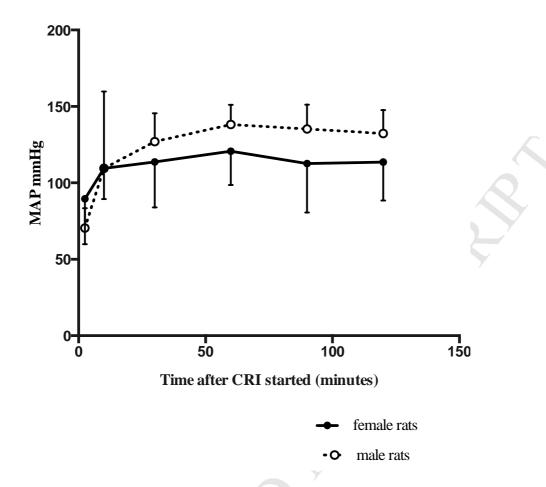


Figure 2 Mean (\pm SD) arterial blood pressure (MAP) (mmHg) for 12 Sprague Dawley rats (6 female, 6 male) after intravenous administration of alfaxalone 1.67 mg kg ⁻¹ min ⁻¹ for 2.5 minutes followed by 0.75 mg kg ⁻¹ min ⁻¹ alfaxalone for 120 minutes using a one compartment infusion model.