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Abstract27

Lymphangioleiomyomatosis (LAM) is a rare disease in which clonal ‘LAM’ cells infiltrate the lungs and28

lymphatics. In association with recruited fibroblasts, LAM cells form nodules adjacent to lung cysts. It is29

assumed LAM nodule derived proteases lead to cyst formation although, this is uncertain. We profiled30

protease gene expression in whole lung tissue and observed cathepsin K was 40 fold over-expressed in LAM31

compared with control lungs (p≤0.0001). Immunohistochemistry confirmed cathepsin K protein in LAM 32 

nodules but not control lungs. Cathepsin K gene expression, protein and protease activity was detected in33

LAM associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immuno-34

reactivity was predominantly co-localised with LAM associated fibroblasts. In vitro, extra-cellular cathepsin35

K activity was minimal at pH 7.5 but significantly enhanced in fibroblast cultures at pH 7 and 6. 621-10136

cells reduced extracellular pH by 0.5 units over 24 hours. Acidification was dependent upon 621-101 cell37

mTOR activity and net hydrogen ion transporters, particularly sodium/bicarbonate co-transporters and38

carbonic anhydrases which were also expressed in LAM lung tissue. In LAM cell/fibroblast co-cultures,39

acidification paralleled cathepsin K activity and both were inhibited by sodium bicarbonate co-transporter40

(p≤0.0001) and carbonic anhydrase inhibitors (p=0.0021). Our findings suggest cathepsin K activity is 41 

dependent on LAM cell/fibroblast interactions and inhibitors of extracellular acidification may be potential42

therapies for LAM.43
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Introduction44

45

Lymphangioleiomyomatosis (LAM) is a lung and lymphatic disease which may eventually lead to respiratory46

failure. In LAM, the lung parenchyma is progressively replaced by cysts surrounded by heterogeneous47

groups of cells1. These groups of cells, termed LAM nodules, contain LAM cells, which are clonal and have48

inactivating mutations in either TSC1 or more often TSC2. The protein products of TSC1 and TSC2, hamartin49

and tuberin respectively, form a heterodimer which, by inactivating the small GTPase Rheb, in turn50

suppresses the activity of the mechanistic target of rapamycin (mTOR)2. In LAM cells, constitutive activation51

of mTOR leads to abnormal proliferation, migration, inhibition of autophagy and metabolic dependence on52

glycolysis3-6. LAM cells express markers of both smooth muscle, including α-smooth muscle actin (α-SMA) 53 

and melanocyte lineages with microphthalmia transcription factor (MITF), glycoprotein 100 (gp100) and54

PNL27. This mixed phenotype is characteristic of the perivascular epithelioid cell (PEC) group of neoplasms8.55

Genetic, and more recently, histologic studies have shown that LAM nodules also contain a significant56

population of recruited wild type cells9 including fibroblasts10, mast cells11 and other inflammatory cells12.57

58

The mechanism of cyst formation is not well understood although lung cysts are thought to arise as a result59

of LAM nodule derived matrix degrading proteases2. The expression of various protease families has been60

described in LAM. The matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases61

with roles in many biological processes including extra-cellular matrix turnover, inflammation,62

angiogenesis, metastasis, regulation of growth factor and chemokine activity13. LAM lung nodules express63

MMPs -1, -2 and -1414-16, MMP-2 is over expressed by TSC2 knockout cells17, and we and others have shown64

that women with LAM have higher levels of MMP-2 and -9 in serum and MMP-9 in urine than healthy65

women18-20. However a recent study of MMP inhibition using doxycycline did not reduce decline in lung66

function despite suppression of MMP-9, suggesting other proteases are responsible for lung destruction20.67

The serine protease, plasmin is increased in LAM lung whilst its inhibitor, plasminogen activator inhibitor68

(PAI-1), is reduced suggesting activation of this protease axis21. Cathepsin K is a cysteine protease which is69
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expressed in LAM lung nodules and other PEC neoplasms22, 23. Unlike the MMPs and plasmin, cathepsin K is70

not present in normal lung tissue, but is classically expressed by osteoclasts as a bone remodelling71

protease24 and by tumour stromal fibroblasts25. Cathepsin K requires low pH for its activation. Inside the72

cell this generally occurs in lysosomes whereas in tumour stroma, cathepsin K activation is dependent upon73

acidification of the extra-cellular space by membrane transporters including carbonic anhydrases (CA),74

vacuolar-type H⁺-ATPases (V-ATPases) and sodium bicarbonate co-transporters26-28.75

76

Here we have investigated the expression of cathepsin K and the mechanism of cathepsin k activation by77

extra-cellular acidification using in vitro models of LAM and LAM lung tissue.78

79

Methods80

81

Patients and tissue82

Women with LAM receiving clinical care at the UK LAM Centre, are enrolled in a comprehensive cohort83

study. Informed consent was obtained for the use of tissue taken as part of clinical care, including84

diagnostic biopsy or diseased LAM lung removed at the time of lung transplantation to be used for cell and85

tissue culture. LAM lung tissue removed at the time of transplantation was received from UK transplant86

centres and the National Disease Research Interchange (USA). The study has approval from the Nottingham87

research ethics committee (Ref. 13/EM/0264) and written informed consent was obtained from all88

patients.89

90

Cell isolation and culture91

Fibroblast-like cells, now termed LAM-Associated Fibroblasts (LAFs), were obtained from collagenase92

digested fresh LAM lung tissue, cultured in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-1293

(DME-F12, Life Technologies Ltd, Paisley, UK) and were used between passages 3 and 6. LAF do not have94

TSC mutations, express full-length tuberin protein and suppressible mTOR activity in the absence of serum95
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consistent with wild-type cells as previously described10. 621-101 cells were derived from the renal96

angiomyolipoma of a patient with sporadic LAM, have inactivation of both alleles of TSC2, express97

oestrogen receptor α and β29 and were a gift from Lisa Henske (Harvard). These cells were maintained in98

DME-F12 with 10% FCS. TSC2-/- and TSC2+/+ murine embryonic fibroblasts (MEF) were a gift from David99

Kwaitkowski and were derived as described in Onda et al30. Normal Human Lung Fibroblasts (NHLFs) from100

female premenopausal donors were purchased from Lonza (Slough, UK) and Promocell (Heidelberg,101

Germany) and were maintained in DME-F12 with 10% FCS.102

103

Cell and tissue models104

Co-cultures were established either in 12-well Boyden chamber Transwells or as direct contact co-cultures.105

In the Transwell system LAF and 621-101 cells were incorporated in a 10:1 ratio. Polycarbonate membrane106

Transwell inserts (0.4μm pore size, Corning Life Sciences, SLS, Nottingham UK) were equilibrated for one 107 

hour at 37°C and 5% CO2 prior to adding cells. LAF were seeded at 5x105 cells per ml in the lower chamber108

and 5x104 621-101 cells (500μl) in the upper chamber. Mono-cultures of both cell types maintained the 109 

same cell number as co-cultures. Direct contact LAF and 621-101 co-cultures were set up using a total of110

5x104 cells in a 1:1 ratio. A mixture of cells was resuspended in serum-free DME-F12 and then cultured in111

tissue culture treated plastic. Mono-cultures of both cell types were set up using 5x104 cells per well. For112

pH measurement, 5x104 621-101 cells, TSC2-/- MEFs (rapamycin or vehicle treated) or TSC2+/+ MEFs were113

cultured in 24-well tissue culture plates.114

115

Fresh ex-vivo LAM lung tissue obtained from transplant lungs was washed thoroughly in Dulbecco’s116

Phosphate Buffered Saline (DPBS, Sigma, Dorset, UK) and Dulbecco’s Modified Eagle Medium containing117

Penicillin/Streptomycin/ Amphotericin B (Sigma, Dorset, UK). Tissue from different areas in the lung118

parenchyma was cut into 3mm cubes and placed in 24-well tissue culture plates. Tissue was equilibrated119

overnight in serum-free DME-F12 after which it was treated with vehicle or 10nM Rapamycin or 10nM120

Oestrogen or both in serum-free DME-F12 for 48 hours.121
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122

MTT assay123

An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay was performed to124

assess cell viability after treatment with low pH media or inhibitors of mTOR or membrane transporters and125

proton pumps. LAF, 621-101 cells or TSC2+/+ and TSC2-/- MEF cultured in unbuffered medium were treated126

with a sterile 0.5mg/ml MTT (Sigma) solution for 4 hours at 37°C and 5% CO2. Remaining MTT solution was127

discarded after 4 hours and the resulting formazan crystals were dissolved in propan-2-ol. Samples were128

then transferred to a 96-well plate and absorbance was read at 570nm with a background subtraction of129

690nm.130

131

Quantification of gene expression132

Total RNA was extracted from 106 LAF, NHLF or 621-101 cells cultured in 6-well tissue culture plates for 24133

hours using GenElute Mammalian Total RNA Miniprep Kit (Sigma, Dorset, UK). RNA from treated and134

untreated tissue explants was extracted by first homogenising the tissue using an IKA-ultra-turrax® T25135

homogeniser (IKA, Oxford, UK) followed by shearing, centrifuging and filtering to remove tissue debris.136

Contaminating genomic DNA was removed using On-Column DNase I digest set (Sigma, Dorset, UK). cDNA137

was synthesised using Superscript III First-Strand Synthesis System (Invitrogen, Life Technologies Ltd,138

Paisley, UK) with random hexamer primers as per the manufacturer’s instructions. Relative gene expression139

of MMPs -1, -2, -9, -12, -13, -14, tissue inhibitor of metalloproteinases (TIMPs) 1-3, cathepsins B,D,H,K,L,S,140

urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), PAI-1, ADAM metallopeptidase domain141

17 (ADAM17), calpains (CAPNs) 1-2 was determined by amplifying cDNA via quantitative real-time PCR142

using the Brilliant III SYBR Green QPCR master mix (Agilent Technologies, Cheshire, UK). Pre-designed and143

validated KiCq Start SYBR Green Primers (Sigma, Dorset, UK) were used. Primers were selected on the basis144

of their rank and exon locations. Reactions were performed in triplicate. Expression levels of target genes145

were determined relative to a housekeeping gene β-actin using the comparative CT (2-ΔCT) method31.146
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147

Immunohistochemistry and Immunofluorescence148

Immunohistochemistry (IHC) was performed on formalin-fixed paraffin embedded (FFPE) sections. After149

deparaffinization, antigen retrieval, where required, was carried out in sodium citrate buffer solution, pH150

6.0, for 20 minutes in a steamer. Sections were then blocked with 3% hydrogen peroxide (Sigma, Dorset,151

UK) followed by 2.5% horse serum (Vector Laboratories, Peterborough, UK) before incubation with primary152

antibody at 4°C overnight. Sections were washed in PBS with 0.05% Tween 20 (PBS-T) then incubated with153

secondary antibody for one hour at room temperature. Chromogenic detection was carried out using154

ImmPact DAB (Vector Laboratories, Peterborough, UK). For double chromogenic IHC, following ImmPact155

DAB incubation, sections were blocked, incubated with the second primary antibody, washed in PBS-T, and156

then incubated with secondary antibody as described above. Chromogenic detection for second antibody157

was performed using Vector Blue Alkaline Phosphatase Substrate (Vector Laboratories, Peterborough, UK).158

Levamisole was added to block endogenous alkaline phosphatases. Sections were counterstained with159

Mayer’s Haematoxylin (Sigma, Dorset, UK) and mounted using Vectamount (Vector Laboratories). For160

double fluorescent IHC FFPE sections were sequentially incubated with primary antibodies against both161

antigens followed by washing and then incubation with both fluorophore conjugated secondary antibodies162

(pre-adsorbed against the other species), counterstaining with 4’,6-diamidino-2-phenylindole (DAPI) and163

mounted in Fluorescent Mounting Medium (Dako UK Ltd, Ely, UK).164

165

Immunofluorescent (IF) detection of proteins was carried out in cultured cells grown on 8-well Nunc Lab-166

Tek II Chamber Slide System (Fisher Scientific, Loughborough, UK) in DME-F12 with 10% FCS for 24h hours.167

The cells were then fixed in 4% formaldehyde overnight at 4°C, washed in PBS, then permeabilised in 0.15%168

Triton x100 in PBS for 10 minutes at room temperature. Samples were blocked in 10% goat serum,169

incubated with primary antibodies overnight at 4°C followed by incubation with fluorophore conjugated170

secondary antibodies for one hour at room temperature in the dark. Samples were incubated with DAPI171

and mounted in Fluorescent Mounting Medium (Dako UK Ltd, Ely, UK).172
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173

Primary antibodies used were: mouse anti-Cathepsin K (3F9, ab37259), 1:2000 (IHC), 1:100 (IF) (Abcam,174

Cambridge, UK); rabbit anti-Cathepsin K (11239-1-AP), 1:500 (IHC-F), 1:1000 (IHC) (Proteintech,175

Manchester, UK); anti-α-Smooth Muscle Actin (1A4, A2547), 1:10,000; anti-Fibroblast Surface Protein 176 

(1B10, F4771), 1:50 (Sigma, Dorset, UK); anti-Melanoma Associated Antigen PNL2(MSK082) 1:50 (Zytomed,177

Berlin, Germany); rabbit anti-Carbonic Anhydrase IX (ab15086), 1:500; rabbit anti-SLC4A4 (ab187511),178

1:2000 (Abcam, Cambridge, UK). Secondary antibodies used were: Vector ImmPress HRP anti-Mouse and179

anti-Rabbit (Vector Laboratories, Peterborough, UK), Alexa Flour 488 goat anti-mouse IgG antibody, Alexa180

Fluor goat anti-rabbit IgG antibody (Fisher Scientific, Loughborough, UK), anti-Mouse IgM peroxidase181

conjugate (Sigma, Dorset, UK).182

183

Cathepsin K activity assays184

Intracellular Cathepsin K activity was recorded in live cells using the Magic Red substrate185

(ImmunoChemistry Technologies, 2B Scientific, Bicester, UK). Cultured cells were grown on 8-well Nunc186

Lab-Tek II Chamber Slide System in DME-F12 serum free for 24 hours. Cells were then treated with187

unbuffered Dulbecco's Modified Eagle's Medium (DMEM) medium, pH 6.5 for 2 hours after which Magic188

Red substrate was added to the media at a 1:26 ratio in the presence and absence of Cathepsin K inhibitor189

L006235 (100nM), and cysteine protease inhibitor E64 (10μM) (Tocris, Abingdon, UK). The cells were then 190 

incubated for 16 hours at 37°C and 5% CO2. Cells were washed in PBS and nuclei labelled using 0.5% v/v191

Hoechst stain for 10 minutes at 37°C and 5% CO2. Samples were then mounted using PBS.192

193

Extra-cellular cathepsin K activity was measured using a Fluorometric Cathepsin K Activity Assay Kit (Abcam,194

Cambridge, UK). Indirect contact co-cultures and monocultures were run as described. Cells were cultured195

in 12-well plates and Transwell inserts in unbuffered DMEM supplemented with 0.584 gm/L L-glutamine196

and 0.004 gm/L folic acid at pH 6.0, 7.0 and 7.5 for 48 or 96 hours. Media were then harvested, clarified197

and concentrated five-fold using Vivaspin 2 Centrifugal Concentrators (Sartorius, SLS, Nottingham, UK). Ac-198
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LR-AFC substrate (200μM) was added to each concentrated media sample with cathepsin K reaction buffer. 199 

Samples were incubated in a black-walled 96-well plate at 37°C for 16-18 hours in the dark and200

fluorescence was read at a 400-nm excitation and 505-nm emission.201

202

pH measurement203

Unbuffered media were prepared by mixing 1 volume of 10x DMEM (Sigma, Dorset, UK) with 9 volumes of204

sterile deionised water and was supplemented with 0.584 gm/L L-glutamine and 0.004 gm/L folic acid205

(Sigma, Dorset, UK). Where required, starting pH was adjusted using 2M sodium hydroxide solution. pH was206

then measured over 24 or 48 hours using an Oakton Waterproof pH Spear Pocket pH Tester (Cole-Parmer,207

London, UK).208

209

Membrane transporters and proton pump inhibitors210

Inhibitors used were: Carbonic Anhydrases, S4 (IX and XII inhibitor) 100μM (Tocris, Abingdon, UK) and 211 

Acetazolamide (universal) 1mM (Sigma, Dorset, UK); Sodium H+ exchanger, BIX (Tocris, Abingdon, UK)212

100nM; Sodium HCO3
- co-transporter, S0859 (Sigma, Dorset, UK) 50μM; Vacuolar-type H⁺ATPase, 213 

Concanamycin A (Santa Cruz, Insight Biotechnology, Middlesex, UK) 100nM; mTOR, Rapamycin214

(Calbiochem, Merck Millipore, Watford, UK) 10nM.215

216

Statistical Analyses217

Statistical analysis was performed using Graphpad Prism version 6 software (Graphpad, La Jolla, USA).218

Paired experiments were analysed by t-test and multiple comparisons by two-way ANOVA with Dunnett's219

or Bonferroni’s correction with a P value of <0.05 regarded as significant.220

221

Results222

223

Cathepsin K is overexpressed in LAM lung tissue224
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mRNA was extracted from whole lung tissue of six patients with sporadic LAM. Normal human total lung225

RNA was obtained from Ambion (ThermoFisher Scientific, Paisley, UK). Quantitative RT-PCR was performed226

for candidate proteases and protease inhibitors MMPs -1, -2, -3, -9, -13, -14, TIMPs 1, 2, 3, cathepsins B, C,227

D, K, L, S, uPA, uPAR and PAI1. To determine that the method was appropriate, we first compared228

expression of the LAM specific genes premelanosome protein (PMEL), Melan-A (MLANA) and vascular229

endothelial growth factor D (VEGF-D) in control and LAM lungs. Transcripts for PMEL, MLANA and VEGF-D230

were 297, 267 and 2.47 fold more abundant in LAM than control lung tissue (supplemental figure S1).231

mRNA was detected for all proteases examined. Transcript expression was variable between individual232

donors. The most strongly expressed protease transcript in LAM lung was cathepsin K which was increased233

40 fold compared with normal tissue (control mean 0.00092 95% C.I. 0.177. LAM mean 0.375, 95% C.I.234

0.136 p≤0.0001). Cathepsins B and D and TIMP3 were significantly reduced in LAM, other proteases were235

unchanged (figure 1a).236

237

We next incubated fresh LAM lung tissue in culture with rapamycin, oestrogen or vehicle for 48 hours with238

cathepsin K expression measured by quantitative RT-PCR. Six tissue explants obtained from different areas239

of the lung parenchyma of two donors were assessed. Cathepsin K gene expression was detected in all240

tissue explants. Rapamycin (10nM) reduced cathepsin K gene expression to around one quarter of vehicle241

control treated levels (p<0.001). Oestrogen (10nM) had no significant effect upon cathepsin K levels (figure242

1b).243

244

Cathepsin K protein was examined using immunohistochemistry in six lung biopsy and seven transplant245

tissues from women with LAM. LAM nodules were identified using immunostaining for α-SMA, the 246 

melanoma marker PNL2 and fibroblast surface protein (FSP). LAM nodules were located adjacent to lung247

cysts (figure 3). Cathepsin K was expressed within LAM nodules in all cases but was not present in248

surrounding uninvolved lung tissue from patients with LAM or in control patients (figure 3). Cathepsin K249
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expression was particularly strong in the spindle-like cells within nodules that were also immuno-positive250

for FSP and α-SMA (figure 2). 251 

252

Association of cathepsin K with fibroblast-like cells in LAM nodules253

LAM nodules are heterogeneous structures with a complex mixture of cell types. To determine which cell254

types are responsible for cathepsin K expression we first examined expression of the CTSK transcript by RT-255

PCR in normal human lung fibroblasts, LAF and 621-101 cells. CTSK transcript was present in both normal256

lung fibroblasts and LAF but was not significantly expressed by 621-101 cells (figure 4a).257

258

Using immunofluorescence, NHLF and LAF but not 621-101 cells were positive for cathepsin K protein which259

was concentrated in intra-cytoplasmic granules (figure 4b). To determine the presence of intra-cellular260

cathepsin activity, we then used Magic Red, a substrate that generates red fluorescence when processed by261

cathepsins. Red fluorescence was detected in LAFs which was partially inhibited by the cathepsin K inhibitor262

L006235 and completely inhibited by the broad-spectrum cysteine protease inhibitor E64 (figure 4c).263

264

To determine if LAF are the predominant source of cathepsin K in LAM lung tissue we co-immunostained265

using differential immunostaining with both chromogenic and fluorescent labels. Using both systems we266

observed strong co-localisation of cathepsin K and FSP in LAM nodules consistent with expression of267

cathepsin K by LAM lung fibroblasts. A lower level of cathepsin K staining could also be detected by268

immunofluorescence in FSP negative cells (figure 5).269

270

Cathepsin K activity is pH dependent271

We examined cathepsin K activity in vitro using four separate LAF primary cultures and 621-101 cells both272

separately as mono-cultures and combined in co-cultures. At physiological pH, cathepsin K activity was not273

significantly elevated above baseline values in any cell type or culture condition. As cathepsin K requires274

low pH for its activity, cell cultures were also studied at pH 7.0 and 6.0. Cell viability was unimpaired at pH 6275
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and above over 24 hours assessed by MTT reduction (supplemental figure S2). At pH 7.0 and 6.0, LAF276

cathepsin K activity was 1.7 and 2.2 fold higher (p=0.044 and 0.0017 respectively) than at pH 7.5, and277

almost 3 fold higher (p≤0.0001) in co-cultures. Cathepsin K activity in 621-101 cell supernatants was low at 278 

all pH values (figure 6a).279

280

TSC2-/- cells acidify the extracellular pH as a consequence of mTOR dysregualtion281

As LAF derived cathepsin K requires low pH for its proteolytic activity, we set out to determine if cells within282

LAM nodules could acidify tissue culture medium in vitro. 621-101 cells and LAFs were grown in unbuffered283

tissue culture medium at initial pH values of 7.5, 7.0 and 6.0. LAFs had no significant effect on culture284

medium pH over 24 hours. 621-101 cell culture medium fell by around half of one pH unit over 24 hours285

independent of the starting pH value (figure 6b).286

To determine whether extracellular acidification was a consequence of mTOR dysregulation, we examined287

MEFs lacking TSC2, a negative regulator of mTOR and their genotypic TSC2+/+ counterparts. MEFs and 621-288

101 cells were grown in unbuffered tissue culture medium at initial pH values of 7.5, 7.0 and 6.0. Cell289

viability of both TSC2+/+ and TSC2-/- MEFs was unimpaired at low pH over 24 hours (supplemental figure S3).290

TSC2+/+ MEFs had no significant affect upon extra-cellular pH over 24 hours. TSC2-/- MEFs and 621-101 cells291

reduced the culture medium pH by 0.35 and 0.51 pH units from a starting pH of 7.5 (p=0.0067 and292

p=0.0004 respectively) (figure 6c). Treatment of TSC2-/- MEFs and 621-101 cells with rapamycin completely293

abrogated the change in pH over 24 hours. Similar findings were observed at starting pH values of 7.0 and294

6.0 (data not shown).295

296

Expression of H+ ion transporters in LAM297

To determine the mechanism of extra-cellular acidification by 621-101 cells we profiled candidate298

membrane transporter expression in 621-101 cells using quantitative real time PCR. Carbonic anhydrases299

(CA), II, IX and XII, monocarboxylate transporters (MCT) 1 and 4, sodium bicarbonate (Na+/HCO3
-) co-300
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transporters, members of the NBC family (NBC) 1 / SLC4A4 and 3 / SLC4A7, sodium H+ (Na+/H⁺) exchanger, 301 

member of the NHE family (NHE) 1 / SLC9A1 and vacuolar-type H+-ATPases (V-ATPases) ATP6V1B2 and302

ATP6V0A4 were all expressed in 621-101 cells (figure 7a). When 621-101 cells were incubated with303

rapamycin, oestrogen or LAF conditioned medium, CA IX gene expression was reduced in the presence of304

rapamycin although no other changes were significant. In LAM and control lung tissue, gene expression for305

CA II, XII, MCT1, 4, NHE1, SLC4A4, SLC4A7, ATP6V1B2 and ATP6V0A4 was similar (figure 7b). We then306

examined the expression of the two most strongly expressed transporter proteins, CA IX and the Na+/HCO3
-307

co-transporter, SLC4A4, in lung tissue. Both CA IX and SLC4A4 were strongly expressed in LAM nodules.308

SLC4A4, but not CA IX was present in control lung tissue (figure 7c).309

310

Inhibition of membrane transporters affects 621-101 cell extra-cellular pH and cathepsin K activity311

We then used pharmacological inhibitors of these membrane transporters to determine if we could inhibit312

extra-cellular acidification by 621-101 cells. In unbuffered media, treated with vehicle control, 621-101 cells313

reduced extra-cellular pH by 0.75 pH units over 24 hours. Inhibition of V-ATPases, CAs, Na+/H+ exchanger314

and the Na+/HCO3 co-transporter- blocked extra-cellular acidification increasingly strongly. Interestingly the315

mTOR inhibitor rapamycin was more potent than any of the membrane transporter inhibitors and316

completely abolished extra-cellular acidification (figure 7d).317

318

To recapitulate the LAM nodule environment, we next examined if 621-101 cells were capable of acidifying319

their environment in the presence of LAF and whether this resulted in activation of LAF derived cathepsin K.320

621-101 / LAF co-cultures acidified the extra-cellular space, which was associated with cathepsin K activity321

in the co-cultures (figure 8). Membrane transporter inhibitors blocked extra-cellular acidification to the322

same degree as seen in 621-101 monocultures. Inhibition of pH change was also associated with reduced323

cathepsin K activity. Importantly, the Na+/HCO3
- co-transporter inhibitor was the strongest inhibitor of both324

acidification and cathepsin K activity, reducing activity by almost 75%. Inhibitors with more modest effects325

on acidification had had lesser effects on cathepsin K activity. Again, rapamycin was the strongest inhibitor326
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of acidification and reduced cathepsin K activity by around 50%. The inhibitors used did not affect cell327

viability (supplemental figure S4).328

329

Discussion330

Here we have shown that cathepsin K expression in LAM is mainly dependent upon the presence of331

fibroblasts within LAM nodules. In vitro LAF derived cathepsin K is only active below pH 7.0 and332

importantly, LAM-derived 621-101 cells, in common with other TSC2-/- cell lines, express net hydrogen ion333

exporters which acidify their local environment to the extent that cathepsin K is activated. Our findings334

show that cell-cell interactions within the LAM nodule stroma can generate the conditions in which335

proteolytic lung damage may occur.336

337

Cathepsin K has a primary role as a bone remodelling protease expressed by osteoclasts and dependent for338

its extra-cellular activity upon the low pH in bone resorbing lacunae generated by carbonic anhydrases, V-339

ATPases, Na+/H+ exchangers and chloride bicarbonate exchangers24, 32. Cathepsin K is a potent collagenase340

and elastase, but also selectively processes ELR chemokines which enhances their chemotactic activity33,341

suggesting a potential role in inflammatory cell chemotaxis. Unlike the metalloproteinases and serine342

proteases previously described in LAM, cathepsin K is not present in normal lung tissue but is expressed343

strongly by tumour stromal fibroblasts25. Expression of cathepsin K in LAM and other PEComas was first344

described by Chilosi and colleagues who also suggested cathepsin k expression may be mTOR dependent22.345

Here we show that by suppressing mTOR activity in LAM lung tissue with rapamycin; cathepsin K gene346

expression was significantly reduced. In the osteoclast, cathepsin K expression is dependent on MITF, a347

helix-loop-helix transcription factor which regulates melanocyte development, cyclin dependent kinase and348

anti-apoptotic gene expression34. MITF binds three consensus sites in the cathepsin K promoter as a349

heterodimer with various partners including TFE3 and is partially mTOR dependent35. Moreover, mTOR350

inhibition in human osteoclasts reduced cathepsin K protein expression and bone resorption35: raising the351
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possibility that inhibition of mTOR and cathepsin K may have synergistic effects on inhibition of lung352

destruction in LAM.353

354

The requirement for low pH to activate cathepsin K is well described36, 37. Monocyte-derived macrophages355

acidify their pericellular environment via vacuolar-type H⁺-ATPases thus enabling them to maintain 356 

cathepsin K in its active form38. Here we have shown that acidic conditions may exist within a LAM nodule357

and that this extra-cellular acidification is a consequence of mTOR dysregulation, likely to result both in the358

expression of membrane transporters including, carbonic anhydrases, monocarboxylate transporters and359

Na+/HCO3
- co-transporters and mTOR dysregulation causing the Warburg effect, a metabolic dependence360

on aerobic glycolysis (figure 9). In 621-101 cell / LAF co-cultures, the transporters acidify the extra-cellular361

space to resulting in activation of cathepsin K, whilst their inhibition, particularly the Na+/HCO3
- co-362

transporters, block both extra-cellular acidification and protease activation. Strikingly, rapamycin363

completely and rapidly, abrogated acidification in culture despite only suppressing the transcription of CA364

IX, suggesting that the part of the effect may have been on 621-101 cell metabolism rather than exclusively365

on the transporters themselves.366

367

Inhibition of the mTOR pathway is the only proven treatment for LAM but does not arrest lung destruction368

in all cases39. Our findings suggest that part of the beneficial effect of mTOR inhibition may be suppression369

of Warburg metabolism and extracellular acidification, a phenomenon also observed in lymphoma370

models40. Small molecule inhibitors of carbonic anhydrases and sodium bicarbonate co-transporters have371

been successfully used in pre-clinical cancer models41-44 and may have synergistic benefits with mTOR372

inhibition in LAM to reduce destructive protease activation. In addition, direct inhibition of cathepsin K has373

been shown to reduce bone loss in osteoporosis45. Combinations of these therapeutic approaches may be374

superior to mTOR inhibition alone in reducing lung destruction in LAM.375

376
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Whilst the 621-101 cell and LAF in culture may not completely recapitulate the LAM nodule environment,377

we have been careful to show that in addition to our in vitro studies that the elements necessary to378

synthesise and activate cathepsin K are present in human lung tissue. Whilst we have not directly shown379

that there is an acidic environment in human LAM lung nodules, the presence of these components and the380

existence of an analogous situation in human cancers, suggest this is likely to be the case.381

382

Taken together, our findings suggest that LAM cell / LAF interactions within LAM nodules promote disease383

progression by protease activation in a similar manner to tumour cell / cancer associated fibroblast384

interactions in cancer. These similarities are consistent with the idea that LAM is a low grade neoplastic385

disease, with a stroma similar to cancer46. Moreover, mTOR inhibitors which reduce lung function decline in386

LAM39, 47, 48, may exert some of their protective action in the lung upon LAM cell related extracellular pH,387

cathepsin K activation and expression. The expression of transporters including the Na+/HCO3
- co-388

transporter are downstream of mTORC1 / hypoxia inducible factor 1α49, 50. Further studies are required to389

understand, how mTOR activation and the expression of membrane transporters are related and whether390

inhibition of these transporters or cathepsin K activity will be of benefit in addition to mTOR inhibitors for391

LAM.392
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Main Figure Legends534

535

Figure 1536

Relative protease gene expression in human LAM and control lungs. A: Whole lung RNA was extracted537

from 6 patients with LAM and 3 control patients without LAM. Protease gene expression was analysed by538

quantitative real time PCR. Figure shows mean (± standard deviation) protease gene expression normalised539

to β-actin. MMP (matrix metalloproteinase), TIMP (tissue inhibitor of metalloproteinase, CTS (cathepsin), 540 

CAPN (calpain) B: Lung tissue was incubated for 48 hours with rapamycin (10nM), oestrogen (10nM),541

oestrogen and rapamycin or vehicle and gene expression measured by quantitative RT-PCR. *p<0.05,542

**p<0.01, ***p<0.001.543

544

Figure 2545

Expression of cathepsin K in LAM. Immunohistochemical images of three representative LAM lung tissues.546

α-SMA identifies LAM nodules (black arrowhead) adjacent to cysts which have positive staining for 547 

cathepsin K. Magnification x2.5, scale bar 1mm.548

549

Figure 3550

Cathepsin K expression within LAM lung nodules. Immunohistochemical staining for cathepsin K (CTSK), α 551 

smooth muscle actin (α-SMA), fibroblast specific protein (FSP) and melanoma marker antibody (PNL2) in 552 

two patients with LAM and normal lung tissue. Magnification x10, scale bar 200μm. 553 

554

Figure 4555

Expression and activity of cathepsin K in cultured cells. A: Quantitative real-time PCR for cathepsin K in556

LAM associated fibroblasts (LAF, n=4), normal human lung fibroblasts (NHLF, n=3) and 621-101 cells.557

*p<0.05. B: Immunofluorescent detection of cathepsin K protein in two LAF, NHLF and 621-101 cell558
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cultures. Magnification x20, scale bar 200μm. C: Intra-cellular cathepsin K activity is visible as red 559 

fluorescence in two LAF cultures. Fluorescence is reduced by the cathepsin K specific inhibitor L006235 and560

completely abrogated by the cysteine protease inhibitor E64. Magnification x20, scale bar 200μm. 561 

562

Figure 5563

Cathepsin K and fibroblast specific protein are co-localised in LAM lung tissue. A: Immunofluorescent564

staining in LAM lung tissue from three donors. Individual panels show DAPI staining of nuclei (blue),565

fibroblast specific protein (FSP, green), cathepsin K (CTSK, red) and the overlay with co-localisation of FSP566

and CTSK (yellow). Cathepsin K and FSP are strongly co-localised, with only modest cathepsin K expression567

outside of LAM associated fibroblasts. Images x20 magnification, scale bar 200μm. B: Dual chromogenic 568 

immunohistochemistry showing LAM nodules reacting with antibodies against both cathepsin K (blue) and569

fibroblast surface protein (brown). Left panels are x4 magnification, scale bar 500μm and right are inset 570 

area at x40, scale bar 50μm taken from the same three representative donors. All donors showed spindle-571 

shaped cells within nodules reacting with both antibodies.572

573

Figure 6574

Cathepsin K activity is pH dependent. A: 621-101 cells, LAM associated fibroblasts (LAF) and 621-101 / LAF575

co-cultures were grown in culture at a range of pH values. Cathepsin K activity was low at all pH values in576

621-101 supernatants but elevated at low pH in LAF cultures. Co-cultures had significantly higher cathepsin577

K activity than 621-101 cell or LAF cultures at pH 7.0 and 6.0. ** p<0.01, ***p≤0.001. B: 621-101 cells and 578 

LAF were cultured in unbuffered media for 24 hours at various starting pH values. LAF did not significantly579

affect pH whereas 621-101 cells acidified the media independent of starting pH. C: TSC2-/- and TSC2+/+ MEF580

were cultured in unbuffered media for 24 hours at pH 7.5. TSC2+/+ MEF and, TSC2-/- MEF and 621-101 cells581

treated with 10nM rapamycin did not affect pH whereas untreated TSC2-/- MEF and 621-101 cells582

significantly acidified media. **p≤0.01, ***p≤0.001. 583 

584
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Figure 7585

Expression of membrane transporters in LAM cells and lung tissue. A: Quantitative real time PCR for586

carbonic anhydrase (CA) II, IX, XII, monocarboxylate transporter (MCT) 1, 4, sodium bicarbonate (Na⁺/HCO3
-587

) co-transporters (NBC) 1 / SLC4A4, 3 / SLC4A7, sodium H⁺ (Na⁺/H⁺) exchanger (NHE) 1 / SLC9A1 and588

vacuolar-type H⁺-ATPases (V-ATPases) ATP6V1B2 and ATP6V0A4 in 621-101 cells treated for 24 hours with589

either vehicle, rapamycin (10nM), oestrogen (10nM) or LAF conditioned medium (LAF CM). B: Quantitative590

real time PCR for CA II, IX, XII, MCT 1, 4, Na+/H+ exchanger, NHE1, Na+/HCO3
- co-transporters SLC4A4,591

SLC4A7 and V-ATPases ATP6V1B2 and ATP6V0A4 in six LAM and three control patient derived lung tissues.592

C: Immunohistochemical staining of two representative LAM lung tissues showing positive staining in serial593

sections for CA IX and SLC4A4 within LAM nodules. Normal lung showed positive staining for SLC4A4 but594

not CA IX. Magnification x4, scale bar 500μm and x40, scale bar 50μm. D: Pharmacological inhibition of 595 

membrane transporters or mTOR inhibits extra-cellular acidification in 621-101 cell cultures. S4 and596

Acetazolamide - carbonic anhydrase inhibitors, BIX - Na+/H+ exchanger inhibitor, S0895 - Na+/HCO3
- co-597

transporter inhibitor and Concanamycin A - V-ATPase inhibitor.598

599

Figure 8600

Inhibition of membrane transporters blocks extracellular acidification and cathepsin K activity in LAM cell601

co-cultures. A: 621-101 / LAM associated fibroblast (LAF) co-cultures were grown in unbuffered media in602

the presence of either vehicle control or S4 (carbonic anhydrase IX, XII inhibitor), acetazolamide (non-603

specific carbonic anhydrase inhibitor), BIX (Na+/H+ exchanger inhibitor), S0895 (Na+/HCO3
- co-transporter604

inhibitor) concanamycin A (V-ATPase inhibitor) or rapamycin (mTOR inhibitor). B: Cathepsin K activity in co-605

culture supernatants treated as above showing strong inhibition of both acidification and cathepsin K606

activity by inhibition of the Na+/HCO3- co-transporter and mTOR. **p<0.01, ***p<0.001.607

608

Figure 9609
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Proposed mechanism of Cathepsin K activation in LAM. TSC2-/- LAM cells express carbonic anhydrases (CA)610

II, IX and XII within the cell which, in tandem, catalyse the conversion of CO2 and water to H+ and HCO₃⁻ 611 

ions. Na+/HCO3
- co-transporters (NBC) shuttle HCO₃Ё�ŝŽŶƐ�ŝŶƚŽ�ƚŚĞ�ĐĞůů�ƌĞƐƵůƟŶŐ�ŝŶ�ŶĞƚ�, + export into the612

extracellular space. Cathepsin K containing lysosomes of LAM associated fibroblasts (LAF) translocate to the613

cell membrane discharging cathepsin K where it is activated in the low extracellular pH.614
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