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Goal-directed behavior in a complex world requires the maintenance of goal-relevant information despite multiple sources of distraction. 
However, the brain mechanisms underlying distractor-resistant working or short-term memory (STM) are not fully understood. While early 
single-unit recordings in monkeys and fMRI studies in humans pointed to an involvement of lateral prefrontal cortices, more recent studies 
highlighted the importance of posterior cortices for the active maintenance of visual information also in the presence of distraction. Here, we 
used a delayed match-to-sample task and multivariate searchlight analyses of fMRI data to investigate STM maintenance across three 
extended delay phases. Participants maintained two samples (either faces or houses) across an unfilled pre-distractor delay, a distractor-filled 
delay, and an unfilled post-distractor delay. STM contents (faces vs. houses) could be decoded above-chance in all three delay phases from 
occipital, temporal, and posterior parietal areas. Classifiers trained to distinguish face vs. house maintenance successfully generalized from pre- 
to post-distraction delays and vice versa, but not to the distractor delay period. Furthermore, classifier performance in all delay phases was 
correlated with behavioral performance in house, but not face trials. Our results demonstrate the involvement of distributed posterior, but not 
lateral prefrontal, cortices in active maintenance during and after distraction. They also show that the neural code underlying STM maintenance 
is transiently changed in the presence of distractors, and re-instated after distraction. The correlation with behavior suggests that active STM 
maintenance is particularly relevant in house trials, whereas face trials might rely more strongly on contributions from long-term memory. 
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1 Introduction 
Short-term memory (STM) is the ability to actively maintain task-
relevant information over brief periods of time. Monkeys and 
humans can maintain such information even when distractors 
intervene between encoding and recall. In a now classic study, 
Miller et al. (1996) showed that individual lateral prefrontal neurons 
maintained sample-selective delay activity in a delayed match-to-
sample (DMS) task despite multiple distractors intervening between 
sample and probe, with sample-selective delay activity defined as 
increased delay-related activity to the "preferred" stimulus of the 
respective neuron. Recording from prefrontal neurons that showed 
a modulation of activity in at least one phase of their DMS task, 
Miller et al. (1996) showed sample-selective delay activity in 28% of 
these neurons. This finding lead them to conclude that the lateral 
prefrontal cortex plays an important role in distractor-resistant STM. 
Interestingly, however, it seems that neurons with sample-selective 
delay activity did not show sample selectivity while the distractors 
were presented (see Fig. 5 in Miller et al., 1996). Thus, the question 
arises how information about the sample is maintained during 
distractor presentation, a question that was not addressed by Miller 
and colleagues. We hypothesize that in principle, there are two 
possible mechanisms by which sample-related information may 
survive distractor delays: active and passive maintenance. Active 
maintenance would involve persistent neuronal activity, although 
the level of neuronal activity might be substantially reduced relative 
to stimulus presentation. As this form of maintenance requires 
ongoing neuronal activity, its metabolic effects should in principle 
be detectable with fMRI. Passive maintenance, on the other hand, 
could be described as a state of heightened accessibility of 
information (as, e.g., assumed in the working memory model of 
Cowan, 2001), in the absence of active maintenance and thus also 
without persistent neuronal firing or increased fMRI activation. 

Only a limited number of studies have so far investigated short-
term or working memory maintenance in the presence of 
distractors. In one of these studies, Jacob and Nieder (2014) used a 
delayed match-to-numerosity paradigm to study distractor-resistant 
STM in macaque monkeys, while recording simultaneously from 
lateral prefrontal cortex and the ventral intraparietal area (VIP). 
Monkeys had to maintain information about the number of dots 
shown as sample across a pre-distractor, a distractor, and a post-
distractor delay; distractors were also dots, but their numerosity was 
task-irrelevant. In line with Miller et al. (1996), Jacob and Nieder 
found that prefrontal neurons displayed sample-selective delay 
activity even after distraction. Going beyond Miller et al., Jacob and 
Nieder also studied neuronal activity during the distractor delay 
itself and found that distractors interfered with numerosity 
representations in prefrontal cortex, suggesting that STM 
representations may not be actively maintained in the prefrontal 
cortex while distractors are presented. Unexpectedly, however, 
Jacob and Nieder found that VIP neurons displayed distractor-
resistant response properties: many VIP neurons maintained sample 
selectivity even in the distractor delay. These findings suggest that 
posterior, not lateral prefrontal cortices play a major role in 
representing the distractor-resistant representation of STM 
information.  

Initial support for this hypothesis for humans comes from an fMRI 
DMS study with faces and shoes as samples and distractors (2 x 2 
factorial design), reported by Jha et al. (2004). These authors 
observed increased activity in the right fusiform face area (FFA) 
when participants maintained faces in memory and faces were at 
the same time presented as distractors. This could suggest that FFA 
was involved both in maintaining the memoranda and processing 
the distractors. However, more detailed analyses did not fully 
support this assumption, leading the authors to conclude that 
heightened FFA activity might in fact be due to increased FFA 
inhibition to filter out distractors when samples and distractors 
come from the same category, or due to an interaction of 
maintenance and inhibition. More recently, Bettencourt and Xu 

(2015) investigated the roles of visual areas V1 to V4 and of a load-
sensitive segment of the posterior intraparietal sulcus in distractor-
resistant STM. They demonstrated that orientation of grating stimuli 
maintained in memory could be decoded from the posterior 
intraparietal sulcus during the presence of distraction (DMS task; 
delay length 11 s). In addition, when the presence of distractors was 
not predictable, distractor-resistant maintenance was also found in 
lower visual areas V1-V4. These findings, thus, provide converging 
evidence that also in humans, posterior cortices are involved in the 
distractor-resistant maintenance of information in STM.  

However, while the studies of Bettencourt and Xu (2015) and Jha 
et al. (2004) suggested that—at least under some conditions—there 
is active maintenance of information during distractor delays, this 
has not been a consistent finding. Using a variant of the DMS task, 
Lewis-Peacock et al. (2012; see also Lewis-Peacock & Postle, 2012) 
found that the sample category could not be decoded once the 
distractor presentation commenced, despite successful 
performance on the subsequent probe presentation. Instead, these 
authors were able to decode the category of the distractor pictures, 
even though these were irrelevant to the task. In Lewis-Peacock et 
al.’s (2012) Experiment 2, two samples from two different stimulus 
categories were encoded. Participants initially maintained both 
samples (Delay 1: 8 s), then were cued to attend to one of the 
samples (Delay 2: 7.5 s), before being cued to continue attending to 
the same sample, or to switch their attention to the other sample 
(Delay 3: 8 s). During Delay 2, only the category of the attended 
sample could be decoded, even though the unattended sample 
might again become relevant again in Delay 3 and in that case also 
could be decoded during Delay 3. The results of Lewis-Peacock et 
al. suggest that successful performance in STM tasks does not 
always have to rely on active maintenance of sample information; in 
tasks involving diversion of attention away from STM contents, it 
seems to rely partly on what we have described above as passive 
maintenance and a subsequent reactivation or recovery stage once 
the distraction ends (cf. Sprague et al., 2016). As a result of this, the 
sample information would then again be held in STM (and thus 
become accessible to fMRI-based decoding). There is some 
evidence that such recovery after distraction is supported by medial 
temporal lobe structures (cf. Sakai et al., 2002a; Sakai & 
Passingham, 2004). 

Previously, a number of further influential fMRI studies have 
investigated the effects of distractors presented in the encoding 
phase or the effects of briefly presented distractors in the delay 
phase (e.g., Bloemendaal et al., 2014; Clapp et al., 2010; Gazzaley 
et al., 2005; Yoon et al., 2006; Zanto & Gazzaley, 2009). However, 
as a result of their design, these studies provide no further evidence 
regarding whether or not STM contents are actively maintained in 
the distractor delay, and, if so, whether or not the maintenance-
related neural processes in the distractor delay differ from those in 
unfilled delays. To investigate these questions, the present fMRI 
study utilized a variant of the DMS task in which participants were 
asked to maintain two faces or two houses over three extended 
delay periods, with distractors being presented in the middle delay 
period (Fig. 1). This design allowed us to apply multivariate pattern 
analysis (MVPA) to (i) decode which type of stimulus (faces vs. 
houses) is maintained in memory within each individual delay period 
(within-delay analyses) as well as to (ii) investigate the generalization 
of activity patterns across delay periods (across-delay analyses). By 
presenting pictures of faces and houses as well as scrambled 
pictures as distractors, we furthermore investigated (iii) how the 
perceptual similarity of distractors and samples affected the 
decodability of sample information. In addition to the DMS task, we 
acquired an independent data set to functionally localize face-
preferential and house-preferential brain regions in order to 
investigate if these stimulus-preferential areas (in particular FFA and 
the parahippocampal place area/PPA) overlap with areas exhibiting 
above-chance decoding in the DMS task. 
 



3 

2 Methods 
2.1 Participants 

Twenty-two participants (10 female) took part in the experiment. 
One male participant was excluded due to multiple movements 
clearly exceeding the size of one voxel in the functional runs. The 
mean age of the remaining 21 participants was 27.1 years (SD = 3.3, 
range 22–34). All participants were right-handed (laterality quotient 
of > 50 in the Edinburgh Inventory; Oldfield, 1971), had normal or 
corrected-to-normal vision and reported no deficits in color vision. 
No participant reported a history of neurological, major medical, or 
psychiatric disorder. The study was approved by the local ethics 
committee and written consent was obtained from all participants.  

 
2.2 Design and stimuli of the delayed match-to-sample task 

The present study employed a variant of the delayed match-to-
sample (DMS) task (Fig. 1). On each trial, participants encoded 
either two faces or two houses (2.1 s each, inter-trial interval 0.1 s) 
and maintained these stimuli across three delay periods. The first 
delay was unfilled (fixation cross, 8.8 s). The second delay was filled 
with six distractor pictures (6.6 s, 1.1 s per distractor): In the object 
condition, pictures of three faces and three houses were 
sequentially presented as distractors (distractors came from both 
categories to keep the distractor-related visual input for faces and 
houses constant in all trials). In the scrambled condition, six phase-
scrambled pictures were presented. To ensure that distractors were 
attended, all distractor pictures were overlaid with a slight blue or 
red color gradient and participants had to indicate the color by a 
button press. Responses were given with the right index finger 
(blue) or the right middle finger (red); maximum response time was 
1.1 s. The order of colors and distractor categories was randomized 
with the constraint that the same color or distractor category could 
not appear more than two times in a row. The distractor delay was 
followed by a final delay phase that was again unfilled (fixation 
cross, 8.8 s). Next, a probe picture was presented. The probability 
of a match to one of the samples was 50%, equated over the two 
samples. Responses were again given with the right index finger 
(match) or the right middle finger (no-match); maximum response 
time 3 s. About 25% of the probe stimulus were unpredictably 
covered, either in vertical or horizontal direction (cf. Fig. 1), to 
ensure that participants could not successfully perform the task by 
simply encoding a specific feature of the stimulus (e.g., an unusually 
shaped mouth) and compare this feature with the probe stimulus. 
Overall, there were four conditions: face samples/object distraction, 

face samples/scrambled distraction, house samples/object 
distraction, and house samples/scrambled distraction. Each trial was 
followed by an inter-trial interval of varying length (4.4, 6.6, or 8.8 
s), resulting in overall trial lengths of 35.2, 37.4, or 39.6 s (uniform 
distribution, controlled on a per-condition basis).  

The task was presented in two runs. Each run lasted 24.2 min 
and began with four dummy scans (to achieve steady-state 
magnetization), followed by a rest phase of 44 s (used for echo 
weighting, see below). Each run involved three task blocks of 7.5 
min each. After each task block, participants received feedback 
about their accuracy (separately for the memory probes and the 
color decision task; 2 s) and rested for 17.6 s. Each block consisted 
of 12 trials (three per condition). Accordingly, 72 trials were 
presented overall (18 per condition). In each block, direct 
repetitions of conditions were excluded and the remaining 
transitions were counterbalanced. Each block had six match and six 
no-match trials. Moreover, after two blocks the number of match 
and no-match trials for each condition was equalized (as there were 
three trials per condition per block, this was not possible within a 
single block).  

All pictures were presented individually in gray-scale in the 
center of the screen and subtended a visual angle of 2.6 × 3.5°. 
Pictures were shown only once as samples (thus, every encoding 
period involved two pictures that were not seen before). However, 
the no-match probes were previously presented as sample stimuli, 
to make sure that participants could not base their decision solely 
on stimulus familiarity (i.e., on whether or not they had seen a 
particular face or house before). Overall, 72 face and 72 house 
pictures were presented as samples and probes (if the very first trial 
of the experiment was a no-match trial, one additional probe 
picture was presented). The face pictures came from a set 
assembled by Endl et al. (1998), depicting males photographed in 
front of a uniform grey background (see Fig. 1). House pictures 
came from a set of face and house pictures assembled by Piekema 
et al. (2009). The left and right edges of house pictures were 
cropped to achieve the same aspect ratio as that of the face 
pictures (see Fig. 1). We only chose pictures in which the house was 
still clearly visible after cropping. 

Distractors also came from the set assembled by Piekema et al. 
(2009), but were not used as samples or probes. Distractors were 
shown twice, with a minimum of 36 intervening distractors before a 
repetition of the same picture could occur. To generate scrambled 
distractors, MATLAB version 2014b (Mathworks, Natick, MA) was 
used. For each picture, a fast Fourier transform was performed. 
Then, random phase information was added and an inverse fast 

 

 
Fig. 1: The delayed match-to-sample task employed in the present study. Participants had to encode and maintain two sample pictures 
(faces or houses) across three delay periods. The first delay period was unfilled (pre-distractor delay). For both face and house trials, the 
middle delay period was filled with distractor pictures which were either intact or scrambled (distractor delay). Overlaid on the distractors 
was a slight blue or red colour gradient (exaggerated in the figure to increase visibility) to which participants responded with index or 
middle finger button presses, respectively. The final delay period was again unfilled (post-distractor delay). At the end of the trial, a probe 
picture was presented that matched one of the sample pictures with a probability of 50%. About 25% of the probe stimulus were 
unpredictably covered to discourage the reliance on specific, salient features during stimulus encoding. All pictures were presented 
individually in the centre of the screen. 
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Fourier transform was performed to generate the scrambled picture. 
The color gradient overlaid onto the distractors was Gaussian-
shaped with the highest color intensity located in the middle of the 
image. Overall, 54 face and 54 house distractors were used.  

 
2.3 Design and stimuli of the functional localizer task 

In the functional localizer task, participants had to decide for each 
presented stimulus whether or not it matched the immediately 
preceding stimulus (1-back task; right index finger: match; right 
middle finger: non-match). There were separate blocks for face and 
house stimuli and ten trials were presented per block. Half of the 
blocks of each stimulus category had one 1-back target, and the 
other half had two 1-back targets, to ensure that participants would 
maintain attention up to the end of the block. Participants were 
instructed not to respond to the first stimulus in each block (as a 1-
back decision is not possible). The 1-back run lasted about 7 min 
and began with four dummy scans (to achieve steady-state 
magnetization), followed by a rest phase of 44 s (used for echo 
weighting, see below). Participants performed six face and six house 
blocks in alternating order; 50% starting with a face block, and the 
other half with a house block. A block lasted for 15 s and was 
followed by a 15-s rest period. Pictures were presented for 1 s, 
followed by a blank screen of 500 ms. The pictures used were a 
randomly selected subset of the pictures used as samples in the 
DMS task. No pictures apart from the 1-back targets were repeated. 

 
2.4 Procedures 

After being welcomed, participants were given general information 
about the study, received an MRI participant information form and 
gave informed consent. Next, they were given detailed instructions 
for the DMS task. The instructions stressed the requirement to 
encode and maintain the stimuli in a holistic manner (as opposed to 
individual features) and to actively rehearse the stimuli across all 
three delay phases. Subsequently, participants were given 12 
practice trials (3 of each condition) to familiarize themselves with the 
task. Stimuli used in the practice trials were not used in the 
experiment proper. Next, participants received instructions for and 
performed one face block and one house block from the 1-back 
task (again using stimuli not presented in the scanner). Then, 
participants were taken to the MRI room and scanning commenced. 
All participants performed the DMS task first, followed by the 1-
back task. After leaving the scanner, participants filled in a post-
experimental questionnaire and were debriefed. 

 
2.5 Data acquisition 

Imaging was performed using a 3-T Siemens Magnetom Trio 
scanner (Siemens Medical Solutions, Erlangen, Germany). In both 
runs of the DMS task, 660 images with 28 axial slices (3.2 mm in-
plane resolution, 3.3 mm slice thickness, 20% spacing) parallel to 
the AC-PC plane were acquired using a multi-echo EPI sequence 
(Poser et al., 2006) and a 32-channel head coil. The TR was 2,200 
ms, the flip angle 90°, and the echo times were 9.4, 21.2, 33, 45, 
and 57 ms. The field of view was 205 × 205 mm2. The first four 
images were discarded from the analysis. The next 20 images were 
rest scans that were later used to calculate weighting images (see 
below). Identical scanning parameters were used for the 1-back 
task, but only 190 images were acquired per run. In a separate 
scanning session, a high-resolution 3-D T1-weighted data set with 1 
× 1 × 1.25 mm3 resolution was acquired. 

 
2.6 Data analysis 

2.6.1 Behavioral data analysis 

Behavioral and ROI data were analyzed with IBM SPSS 22 (IBM 
Corp., Amonk, NY) and IPython notebook (Pérez & Granger, 2007). 
Unless otherwise noted, error bars in line and bar plots represent 
95% within-subject confidence intervals (CIs; Cousineau, 2005; 

Morey, 2008). The calculations of Cohen's d disregarded cor-
relations, that is, the data were treated as between-subject data 
(Dunlap et al., 1996). 

 
2.6.2 Preprocessing of fMRI data 

FMRI data processing was carried out using FSL (FMRIB's Software 
Library; Smith et al., 2004). As we used a multi-echo sequence with 
five echoes, the reconstructed data consisted of five complete time-
series for each run, one for every echo time. In the first 
preprocessing step, these time-series were combined into a single 
time-series per run. To this end, we used the time-series from the 
first echo to compute motion-correction parameters using MCFLIRT 
(Jenkinson et al., 2002). These parameters were then applied to all 
time-series. Next, the five time-series were split into two parts, 
corresponding to the rest periods acquired at the beginning of each 
run (the ‘weighting time-series’) and the task proper (the ‘task time-
series’). The data corresponding to the weighting time-series were 
then used to compute weighting images as described previously 
(Poser et al., 2006). Briefly, the weight of a voxel in a particular 
weighting image depends on its mean signal strength and 
variability relative to this voxel's values in the other weighting time-
series. The weight will be high if a voxel's signal is strong and stable 
in a particular time-series relative to the other time-series. One 
weighting image was computed for each weighting time-series. 
Next, the five task time-series were multiplied by their 
corresponding weighting images and added up to create a single 
time-series that was used for the remainder of the analysis.  

The following preprocessing steps were then applied within 
FEAT (version 5.98): non-brain removal using BET (Smith, 2002), 
grand-mean intensity normalization of the entire 4-D dataset by a 
single multiplicative factor, and high-pass temporal filtering 
(Gaussian-weighted least-squares straight line fitting, 128 s). Finally, 
spatial smoothing was applied with a Gaussian kernel of 5 mm 
FWHM. 

 
2.6.3 Modeling and multivariate analysis 

Following the approach proposed by Mumford et al. (2012), the 
sample phase and all three delay phases of every single trial were 
modeled in separate general linear models (GLM) using a double-
gamma function; for each such GLM, all other events contributed to 
a single regressor of no interest. The sample (i.e., memory 
encoding) phase was modeled by an epoch of 4.4 s length. Unfilled 
delays (i.e., the pre-distractor and post-distractor delays) were 
modeled by a 4.4 s epoch placed in the middle of the 8.8 s delay 
period (Zarahn et al., 1997). Distractor delays were modeled by 6.6 
s epochs. Motion-correction parameters obtained during echo 
combination were used as confound regressors. For each 
participant, the parameter estimates (i.e., one beta image per trial 
period) from Run 2 were then spatially registered to Run 1, based 
on transformation matrices obtained from registering the middle 
volume of Run 2 to the middle volume of Run 1 using six degrees of 
freedom and normalized correlation as a cost function. To prepare 
the data for the multivariate analysis, the parameter estimates from 
all trial phases of all correctly answered trials were concatenated in 
the order in which they were acquired. If a participant made no 
errors, this resulted in a 4-D file with 288 volumes (i.e., 72 trials, 
parameter estimates for sample phase and three delay phases). For 
each image in the concatenated file, an attribute file labeled its 
sample category (i.e., face or house) and its phase in the trial (i.e., 
sample, pre-distractor, distractor, post-distractor). A separate set of 
attribute files was created that also labeled the type of distraction 
(object or scrambled). 

PyMVPA (Hanke et al., 2009; http://www.pymvpa.org/) was then 
used for linear detrending and z-transforming the data for each 
cross-validation fold. A searchlight analysis (Kriegeskorte et al., 
2006) with a radius of two voxels (33 voxels per searchlight) and a 
support-vector machine classifier with PyMVPA's default C 
parameter (which automatically scales C according to the norm of 
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the data) with cross-validation was performed to identify voxels that 
distinguished between maintenance of face vs. house information in 
the different delay phases. The chunks used for cross-validation 
were the blocks into which the runs were subdivided. Thus, for each 
participant, there were six chunks overall. For each cross-validation 
fold, five chunks were used for classifier training and the remaining 
chunk was used for classifier testing. For each fold of the cross-
validation procedure, we made sure that an equal number of 
training samples was available for face and house trials (a different 
approach was used for the analysis that correlated behavioral and 
decoding performance – see below). An example might help to 
illustrate this: There was a maximum of 30 correct trials per sample 
category in five chunks (i.e., five blocks × six trials per condition and 
block). If a participant had made no house trial errors, but two errors 
on face trials, only 28 face trials remained for training. The training 
procedure ensured that an equal number of house trials (i.e., 28) 
was then randomly chosen from the 30 available ones. To mitigate 
the effects of randomly selecting a subset for one category, we 
repeated this selection process five times for each fold, and 
averaged the classifier performance across the five repetitions 
(given that differences in trial numbers were typically very small, 
further increasing the number of repetitions had very little effect on 
the results).  

Classifier performance was evaluated by calculating the 
balanced accuracy averaged across the six folds. The balanced 
accuracy results from calculating accuracies per target category 
initially, before averaging over target categories. The advantage of 
this measure is that it is independent of the relative frequency of the 
target categories in a chunk used for testing. For example, if the 
classifier categorized zero out of three faces correctly (0% accuracy), 
and six out six houses (100% accuracy), the balanced accuracy will 
be 50%, reflecting the fact that the classifier failed at correctly 
identifying faces and simply predicted "house" each time. For an 
unbalanced measure of accuracy, however, the classification 
accuracy will be 66.6% (6 out of 9 correct), suggesting successful 
decoding.  

To speed up searchlight computations, the analysis was run 
using a Monte Carlo approach similar to the one described by 
Björnsdotter et al. (2011): PyMVPA's "scatter-rois" parameter was 
set to 1, indicating that at least one voxel had to be located 
between two neighboring searchlight centers (thus reducing 
computation time). Each voxel was then assigned the mean 
balanced accuracy of all searchlights to which it contributed (cf. 
Björnsdotter et al., 2011). Single-subject balanced accuracy maps 
were then non-linearly registered to MNI152 space using ANTs 
(Avants et al., 2011) and one-sample t-tests were performed to 
identify voxels with above-chance decoding performance. 
Correction for multiple comparisons was done using FSL’s cluster 
tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster) with a voxel-wise z-
threshold of 3.1 in combination with a cluster-level threshold of p < 
.05. For visualization, thresholded z-maps were then overlaid on the 
PALS-B12 atlas (Van Essen, 2005) using Caret (Van Essen et al., 
2001). 

We report two main types of decoding analyses. In within-delay 
analyses, the classifier was trained and tested on independent trials 
of the same type of delay phase (i.e., pre-distractor, distractor, or 
post-distractor) to assess whether brain activity in the respective 
phase carries information about STM contents (faces vs. houses). 
Across-delay analyses, on the other hand, tested if a classifier 
trained on one delay phase (e.g., the pre-distractor delay) 
generalizes to another (e.g., the post-distractor delay). To ensure 
that generalization works in both directions, we always ran both 
possible analyses (e.g., training on the pre-distractor delay and 
testing on post-distractor delay, and vice versa) and averaged the 
results.  

For the analysis that correlated behavioral and decoding 
performance, a slightly different approach for the selection of data 
samples was chosen. While the number of training data samples 
was still equal for face and house trials, we randomly selected a pre-

defined number of data samples from the available sets. This pre-
defined number was the number of data samples available in five 
chunks (as five chunks were used for training) for the lowest-
performing participant (16 correct house trials). This procedure 
ensured that the number of data samples available for training was 
independent of the performance of the participant. Without this 
procedure, a positive correlation between behavioral and decoding 
performance might reflect nothing but a confound between 
performance and the number of trials available in the training set. In 
addition, to mitigate the effects of randomly selecting a relatively 
small set of samples, we increased the number of repetitions per 
fold from 5 to 15 (again, further increasing the number of 
repetitions had very little effect on the results). Apart from these 
changes, this analysis was identical to the previously described 
approach. Correction for multiple comparisons of correlation 
coefficients used the permutation approach described by Yoder et 
al. (2004). Behavioral performance scores were randomly permuted, 
whereas classifier accuracies for the different delays were not 
(leaving the interrelations between these variables intact). The 
number of permutations was set to 100,000. 

 
2.6.4 Analysis of the functional localizer task and time-course 
analysis 

Preprocessing for the functional localizer task was identical to that 
of the main task, with the exceptions that the temporal filter was set 
to 100 s and that the blocked design was modeled with epoch 
durations of 15 s. A univariate GLM (with motion-correction 
parameters as confound regressors) was estimated using FILM with 
local autocorrelation correction (Woolrich et al., 2001); z statistic 
images were thresholded as described above. Face blocks were 
contrasted with house blocks to identify face-and house-preferential 
processing areas. To exclude significant clusters based on relative 
de-activations in the control condition, the resulting z-maps were 
additionally masked with the simple contrast of face or house, 
respectively, vs. the implicit baseline. It turned out that the cluster-
size correction was too conservative for the left FFA. Based on the 
strong a priori hypothesis about FFA location, we decided to re-run 
the face vs. house whole-brain analysis with z > 3.1, but without 
cluster-size correction to identify the left FFA. Using this approach, 
the left FFA was clearly identifiable (there were no other above-
threshold clusters within several centimeters) at the mid-fusiform 
sulcus (Weiner et al., 2014). We isolated the left FFA cluster using 
fslmaths and merged the resulting map with the face vs. house map 
generated with cluster-size correction. This combined map was 
used for visualization purposes and for computing the multivariate 
analysis focusing on FFA described below. To calculate time-
courses, the time-series from each run were shifted by two TRs, 
detrended, and z-scored. Next, all events belonging to the same 
condition were averaged within and then across runs. Finally, 
across-subject means and standard errors were calculated. For 
visualization, time-courses were upsampled using cubic inter-
polation. 

 

3 Results 
3.1 Behavioral results 

A 2 × 2 repeated-measures ANOVA with the factors sample 
category (face or house) and type of distraction (object or 
scrambled) indicated that mean response times to probes (Table 1) 
displayed a significant main effect of distraction, F(1, 20) = 5.3, p = 
.03, partial η2 = .21, with RTs being slower after object relative to 
scrambled distraction. There was also a trend towards a main effect 
of stimulus category, F(1, 20) = 3.8, p = .07, partial η2 = .16, with 
RTs tending to be slower in house than face trials. The interaction 
was not significant, F(1, 20) = 1.6, p = .22. For mean probe 
accuracies (Table 1), there were no significant main effects or 
interactions (all p's > .17). Finally, a Pearson correlation showed that 
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accuracies for face and house trials were not significantly related, 
r(19) = .28, p = .22. 

Performance on the color task during distractor presentation 
(Table 2) was analyzed using 2 × 3 repeated-measures ANOVAs 
with the factors sample category (face or house) and type of 
distraction (face, house, or scrambled). Response times showed a 
significant main effect of distraction type, F(1, 20) = 32.9, p < .001, 
partial η2 = .78, due to faster color judgments for scrambled relative 
to face (t(20) = 7.1, p < .001) or house distractors (t(20) = 6, p < 
.001). No other effects were significant (all p's > .4). Analogously, 
higher mean accuracies were found for scrambled distractors (main 
effect distraction type, F(1, 20) = 13, p < .001, partial η2 = .58; 
scrambled vs. face: t(20) = 4.6, p < .001; scrambled vs. house: t(20) 
= 4.1, p = .001). Again, no other effects were significant (all p's > 
.8). 

 
3.2 Functional MRI results 

3.2.1 Within-delay analyses 

As a first step, we examined whether or not it would be possible to 
decode within the different delay phases, which stimulus type (face 
vs. house) was maintained in STM (please note that the cross-
validation procedure ensured that training and testing data samples 
were independent). For the distractor delay, this initial analysis 
collapsed across distractor type (object or scrambled) to maximize 
power. Results showed that the SVM classifier could indeed decode 
whether participants maintained faces or houses with above-chance 
accuracy in all three delays. For the pre-distractor delay, the 
searchlight analysis revealed that information about STM content 
was present in a broad range of brain regions, including extensive 
parts of the occipital cortex, as well as parts of the parietal, 
temporal, and prefrontal cortex (see Table 3 and Fig. 2). As this 
initial delay phase is not the main focus of the present article, we 
will not describe these activations in further detail. For the distractor 

delay, regions with above-chance decoding strongly overlapped 
with the results for pre-distractor delay, but were restricted to 
posterior cortex (Table 3 and Fig. 2), including parts of the occipital 
cortex, parts of the parahippocampal, lingual and fusiform gyri, 
posterior parts of the temporal cortex, and the posterior parietal 
cortex around the paroccipital segment of the intraparietal sulcus 
(Zlatkina & Petrides, 2014). For the post-distractor delay, regions 
with above-chance decoding were very similar to those of the 
distractor delay, with additional clusters found in the mid-portion of 
the left superior temporal sulcus, the left inferior frontal gyrus (pars 
orbitalis), and the anterior frontomedian cortex (Table 3 and Fig. 2). 
Regions common to the three individual analyses are shown as an 
overlap map in the rightmost column of Fig. 2.  

 
3.2.2 Across-delay analyses of pre-distractor and post-distractor 
delays 

As a second step, we explored whether or not the MVPA classifier 
generalizes from pre- to post-distraction delay periods and vice 
versa. Successful decoding in these analyses would provide 
evidence that the neuronal code representing sample category 
information was either robustly maintained across distraction or 
reinstated after the distractor delay. We found that sample 
categories could be successfully decoded when training on the pre-
distractor delay and testing on the post-distractor delay, and vice 
versa. Regions with above-chance decoding in both analyses were 
found in the parahippocampal and fusiform gyri (Table 4, Fig. 3A), 
and overlapped with functionally defined FFA and PPA (see below).  

The areas identified in the present across-delay analyses 
overlapped with the anterior inferotemporal regions identified in all 
three within-delay analyses. This suggests that only in ventral 
temporal areas the category-specific pattern of activation could 
survive or be reinstated, whereas the pattern of activation in more 
posterior areas was modified after the presentation of the 

distractors. To formally test this 
observation, we created two ROIs based 
on the overlap map shown in Fig. 2, i.e., an 
ROI consisting of those voxels showing 
significant across-delay generalization and 
another ROI consisting of all remaining 
voxels in the overlap map (i.e., that did not 
generalize from pre- to post-distraction 
delay). We performed a 2 × 3 repeated-
measures ANOVA on the mean balanced 
accuracies (cf. Methods) retrieved from 
these ROIs with factors ROI (generalization 
or non-generalization) and analysis (pre-
distractor, post-distractor, or across-delay 
analysis).  

The results showed a main effect of 
ROI, F(1, 20) = 46.8, p < .001, partial η2 = 
.7, and a main effect of analysis, F(2, 40) = 
30.2, p < .001, partial η2 = .6 (Fig. 3B). 
Crucially, there was also a significant 
interaction effect, F(2, 40) = 9.4, p < .001, 
partial η2 = .59. For the across-delay 
analyses, the less accurate of the two 
within-delay analyses likely provides an 
upper limit for the generalization classifier 
performance. Therefore, in our post-hoc 
analyses of the interaction effect, the 
across-delay results will be evaluated 
relative to the less accurate within-delay 
analysis, i.e., the post-distractor delay. 
Note that these analyses are independent 
of how the ROIs were selected. In the non-
generalization ROI, decoding performance 
was indeed worse for the across-delay 
analysis, compared to the post-distractor 

 

 
Fig. 2: Results of the within-delay searchlight analyses decoding STM representations of 
faces vs houses. For these analyses, a multivariate classifier was trained and tested on 
independent chunks of the same delay phase. Depicted in color are areas where decoding 
performance was above chance (z > 3.1, cluster threshold p < .05). The rightmost column 
depicts the overlap in all three delay phases. 
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delay analysis, t(20) = 4.9, p < .001, Cohen’s d = 1.17, whereas 
there was no significant difference in the generalization ROI, t(20) = 
1.2, p = .23, Cohen’s d = 0.15. As a t-test cannot provide evidence 
for the null hypothesis, we also calculated the scaled JZS Bayes 
factor (Cauchy prior width = 0.707). The Bayes factor was 2.3, 
indicating that, given the data, the null hypothesis of no difference 
between the conditions resulted in being twice as likely, which can 
be considered weak evidence in favor of the null hypothesis. For the 
non-generalization ROI, a control analysis showed that the drop in 
accuracy in the pre-post analysis (5.7%) was almost identical (5.6%) 
when voxels with lower accuracies in the post-distractor analysis 
were omitted from the analysis (and, as a result, the mean accuracy 
of the generalization and non-generalization ROIs in the post-
distractor analysis was matched). This suggests that the observed 
pre-post analysis drop in accuracy in the non-generalization ROI is 
not driven by a subset of voxels with lower overall accuracies or 
higher levels of noise. Taken together, these analyses indicate that 
in bilateral ventral temporal cortex (fusiform and parahippocampal 
gyri) the patterns of activity for the two categories were stable 
across the pre-distractor and post-distractor delay (and thus a 
classifier trained on distinguishing these categories in one type of 
delay could also distinguish them in another), whereas in more 
posterior areas (involving occipital, posterior temporal, and parietal 
cortex) the patterns of activity changed over time, suggesting that 
in these latter areas the neural representations of memory contents 
were unique to the respective delay. 

 
3.2.3 Across-delay analyses involving the distractor delay 

As a third step, we tested whether or not generalization was still 
possible when the analyses involved the distractor delay. First, we 
trained on the pre-distractor delay and attempted to classify in the 
distractor delay, and vice versa. The searchlight analysis did not 
show any areas with above-chance decoding. Next, we trained on 
the distractor delay and attempted to classify in the post-distractor 

delay, and vice versa. Again, sample category could not be 
successfully decoded. An inspection of the mean balanced 
accuracies for the above analyses in the overlap areas shown in 
Figure 2 revealed that these accuracies were slightly below chance 
(pre-distractor and distractor: M = 47.3%, SD = 2.2; post-distractor 
and distractor: M = 49.2%, SD = 2.4). To further explore the null 
effects in the decoding analyses, directional Bayes factors 
(alternative hypothesis: M > 50%; Cauchy prior width = 0.707) for 
the mean balanced accuracies in the overlap ROI were computed. 
The Bayes factors were 19.4 and 10, respectively, constituting 
strong evidence in favor of the null hypothesis. Thus, while it was 
possible to decode STM contents when training and testing was 
based on the distractor delay, decoding did not generalize between 
unfilled delay periods and the distractor delay period, suggesting 
that some information about the sample category is maintained 
during the distractor delay, but that the pattern of activity 
representing this information is fundamentally different from the 
other delays. This indicates that activation patterns representing 
STM contents in the ventral temporal cortex are not maintained 
across all delays, but are reinstated after distraction. 

A potential problem of the previous across-delay analyses 
involving the distractor delay is that the distractor delay is the only 
delay in which stimuli were presented. Thus, for example, training 
on the pre-distractor delay and testing on the distractor delay 
involves training in the absence of perceptual input, and testing in 
the presence of perceptual input. To address this issue, we 
repeated the analyses after training on the encoding phase. Using 
this approach, the classifier generalized to the pre- and post-
distractor delay phases (in both directions). The regions found in 
these analyses overlapped with those identified in the above-
reported within-delay analyses (results not shown). However, 
decoding for the distractor phase was still not successful. These 
results strengthen our conclusion that the pattern of activation 
representing information about samples is qualitatively different in 
the distractor delay.  

 
Fig. 3: A) Results of the across-delay analysis of face vs. house representations involving the pre-distractor and the post-distractor delays. 
Depicted in color are areas where decoding performance was above chance (z > 3.1, cluster threshold p < .05), indicating that in these areas 
the pattern of pre-distractor maintenance-related activity was reinstantiated after distraction. A ventral view of the PALS-B12 atlas brain is 
shown. B) Results of a region-of-interest (ROI) analysis further investigating the reinstatement of maintenance-related activity patterns. The 
analyses labeled "Pre-distr." and "Post-distr." are the respective within-delay analyses. The analysis labelled "Pre D Post" is the across-delay 
analysis involving training and testing on the pre-distractor and post-distractor delays. The ROIs were defined based on the overlap map 
shown in Fig. 2. The generalization ROI ("Gen.") corresponds to areas within the overlap map where evidence was reinstated after the 
distractor delay, the non-generalization ROI ("Non-gen.") corresponds to areas within the overlap map where evidence was not reinstated. The 
main result of this analysis is that the balanced classifier accuracy in the non-generalization ROI drops significantly in the Pre D Post analysis 
relative to the post-distractor analysis, whereas this is not the case for the generalization ROI. Error bars represent 95% within-subject 
confidence intervals. C) Results of the across-delay analysis involving object and scrambled distractor delays. Depicted in color are areas where 
decoding performance was above chance (z > 3.1, cluster threshold p < .05), indicating that these areas represented sample information in the 
distractor delay in a similar way irrespective of the type of distractor.  
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3.2.4 Decoding sample category during object and scrambled 
distraction 

To maximize power, our initial analysis collapsed across distractor 
type (i.e., object and scrambled distractors). As a result, successful 
decoding during the distractor phase might be dominated by 
samples and targets of one of the distractor types. A more rigorous 
demonstration of maintenance during the distractor delay would be 
to show that it is possible to train the classifier to distinguish the 
sample categories during one type of distraction and then decode 
them during the other. As Fig. 3C shows (see also Table 5), this 
analysis was indeed successful. The regions common to both 
analyses were highly similar to the distractor-type independent 
analysis (Fig. 2, 2nd column) and involved the occipital cortex and 
the posterior fusiform gyrus. This suggests that in these regions, a 
specific pattern of activity is present during both types of distractor 
delay.  

 
3.3 Relationships between behavior and decoding 

Our decoding analyses showed that it was possible to distinguish 
face from house maintenance in all three delay periods. However, 
these analyses cannot tell us if face and house information was 
actively maintained throughout all delay periods, or if perhaps 
different strategies were employed for the different stimulus 
categories. For example, previous studies have shown that there is a 
long-term memory contribution to short-term maintenance of faces 
(Warrington & Taylor, 1973; but see Race et al., 2013). This could 
suggest that active maintenance was more relevant for house trials 
than for face trials. To investigate this possibility, we correlated 
behavioral and decoding performance. To evaluate the decoding 
performance, the mean balanced accuracy across those voxels 
involved in all three delay periods (see Fig. 2, right) was retrieved. 
Note that all decoding analyses were based exclusively on correct 
trials and thus cannot be influenced by error trials. In addition, we 
ensured that the number of trials contributing to a training set was 
orthogonal to the behavioral performance of a participant (see 
Methods). Permutation analyses corrected for multiple comparisons 
showed that for face trials there was no relationship between 
behavioral and classifier performance (Fig. 4, upper panel). For 
house trials (Fig. 4, lower panel), behavioral and classifier 
performance in pre-distractor and post-distractor delays was 
significantly correlated (p = .045 and p = .007, respectively; one-
tailed p-values). For the distractor delay, the relationship was 
marginally significant (p = .062, one-tailed; but see semipartial 

correlation reported below). This result suggests that participants 
who were good at correctly identifying old vs. new house pictures 
also had superior representations of the sample pictures during the 
delay periods.  

As the across-delay analysis for the pre-distractor and the post-
distractor delay indicated that for a subset of brain areas in the 
temporal lobe the pattern of activity was recovered following 
distraction, we investigated if the success in recovering the pattern 
of activity (as indexed by the accuracy achieved by training on the 
pre-distractor delay and testing on the post-distractor delay, and 
vice versa) would also be related to the behavioral performance in 
house trials. To this end, we correlated the average balanced 
accuracy for the across-delay analyses of the pre- and post-
distractor delays in the generalization ROI with the performance in 
house trials. Results showed that this correlation was significant, 
r(21) = .45, p = .018 (one-tailed permutation test), suggesting that 
participants whose patterns of activity were more similar in the pre-
distractor and the post-distractor delay performed better on house 
trials.  

 
3.4 Localizer and time-course analyses 

Table 6 and Fig. 5A present the results of the localizer contrasts. 
Face-preferential regions were relatively small (as noted in the 
Methods section, the left FFA could only be identified when no 
cluster-size correction was used), and restricted to the mid-fusiform 
sulcus (Weiner et al., 2014) and the right superior temporal sulcus. 
House-preferential regions on the other hand were extensive, 
covering parts of the parahippocampal gyrus (corresponding to the 
parahippocampal place area), the medial fusiform gyrus, the inferior 
temporal gyrus, the occipital gyri, and the superior parietal lobule.  

As apparent when comparing Figs. 5A and 2, both face- and 
house-preferential areas overlapped with regions involved in all 
three delay periods. Given the small size of the FFA, it is possible 
that information for distinguishing between sample categories that 
is actually represented outside the FFA may have been assigned to 
voxels within the FFA (as voxels were assigned the mean accuracy 
of all searchlights to which they contributed; cf. Etzel et al., 2013, 
for detailed discussion). To address this potential issue, we ran an 
additional analysis restricted to the left and right FFA, considering 
all voxels in the ROI simultaneously. Results showed that sample 
category could be decoded significantly above chance from all 
delay periods, i.e., pre-distractor delay: mean balanced accuracy 
66.7%, t(21) = 7.1, p < .001, 95% between-subject CI [62.1, 71.4], 
Cohen's d = 1.54; distractor delay: 57.1%, t(21) = 4, p = .001, CI 

[53.6, 60.5], Cohen's d = 0.87; post-
distractor delay: 59.3%, t(21) = 4.9, p < 
.001, CI [55.6, 63.1], Cohen's d = 1.06. 

Finally, to evaluate the potential 
contribution of univariate effects in 
stimulus-preferential ROIs, we also 
analyzed univariate BOLD effects. The 
results (Fig. 5B) showed that while there 
were clear univariate category effects 
during the sample phase and early in 
the pre-distractor delay, these effects 
were absent in the remainder of the 
delay periods. In the distractor phase, 
face-preferential areas showed a 
response only in object distractor trials 
(where faces and houses were 
presented), while house-preferential 
areas were also activated by scrambled 
distractors. Interestingly, responses to 
distractors in house-preferential areas 
were slightly reduced when houses 
were maintained.  

As the time-course analysis 
suggested that activity in house-

 

 
Fig. 4: Analyses correlating classifier performance in the three different delay intervals with 
behavioral performance in face and house memory trials. Notably, behavioral accuracy in face 
trials is never correlated with classification accuracy, whereas behavioral accuracy in house trials is 
correlated with classification accuracy in all delay phases. 
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preferential areas tended to be generally suppressed in the 
distractor delay of house maintenance trials, we aimed to 
investigate if this suppression might a) help the classifier to 
distinguish the two sample categories and b) drive the correlation 
observed between behavioral house accuracy and classifier 
performance in the distractor delay (see Fig. 4). First, we calculated 
the degree of suppression in the distractor delay by calculating a 
mean beta image separately for face and house trials for every 
participant across the whole brain. The mean house beta image was 
then subtracted from the mean face beta image to calculate the 
suppression effect for every voxel (thus, higher scores correspond to 
more suppression). The resulting whole-brain maps were masked by 
the overlap map shown in Fig. 2 (i.e., the resulting map included the 
same voxels that were used to calculate the correlations reported in 

Fig. 4) and the suppression scores in the remaining voxels were 
averaged. The result of these processing steps is, for every 
participant, a single number reflecting the degree of suppression 
observed in house trials relative to face trials during the distractor 
delay. Next, we calculated a Pearson correlation between the 
suppression scores and the decoding accuracy in the distractor 
interval. The result showed that these were indeed correlated, r(21) 
= .60, p = .004, suggesting that the suppression effect may have 
helped the classifier to distinguish the sample categories in the 
distractor delay. We then asked if this effect underlies the 
correlation observed for behavioral and decoding accuracy shown 
in Fig. 4. To investigate this, we computed a semi-partial correlation 
between behavioral and decoding accuracy, controlling for the 
effect of suppression on decoding accuracy. The result showed that 
behavioral and decoding accuracy in the distractor delay were 
significantly correlated, rY(1.2)(21) = .62, p = .004. This suggests that 
while suppression in house trials has an influence on the decoding 
accuracy, the suppression effect does not drive the correlation of 
behavioral and decoding accuracy. 

 

4 Discussion 
The present study investigated the neural correlates of distractor-
resistant short-term memory (STM) employing a delayed match-to-
sample (DMS) task with face or house stimuli. The task had three 
delay phases, a pre-distractor, a distractor, and a post-distractor 
delay. Using fMRI and multivariate searchlight analyses, we found 
that a support vector machine classifier could successfully 
distinguish face from house maintenance in all three delay phases 
when trained and tested on the same delay phase (within-delay 
analyses). Thus, our results provide support for active maintenance 
in all three delay intervals. Using across-delay analyses (where the 
classifier was trained on one delay and tested on another), we found 
that the classifier generalized from the pre-distractor to the post-
distractor delay (and vice versa) in ventral temporal lobe areas 
overlapping with functionally defined face- and house-preferential 
areas. However, generalization failed when the training or the 
testing data set included the distractor delay, suggesting that 
patterns of maintenance-related activity were different when 
distractors were present. Our task employed two different types of 
distractors, scrambled and object pictures. Results showed that it 
was possible to train on one type of distractor, and decode the 
memory content while the other distractor type was presented. This 
result suggests that the type of distractor had no major effect on 
how memoranda were maintained in the distractor delay.  

In a correlational analysis, we were furthermore able to 
demonstrate that behavioral performance in house memory trials 
was positively correlated with decoding accuracy in posterior 
cortical areas. This suggests that, for house trials, the patterns of 
activity in the different delay intervals reflected how well sample-
related information was maintained. Presumably, these patterns 
allowed the classifier to distinguish between the sample categories, 
leading to improved classifier performance, and allowed the 
participant to more precisely match sample and probe, leading to 
improved behavioral performance. Another correlational analysis 
showed that the success of classifier generalization in ventral 
temporal areas where activity patterns were recovered after 
distraction was also correlated with performance in house trials. This 
suggests that for these temporal areas the fidelity of recovery was 
relevant for task performance. It is noteworthy that no analogous 
brain-behavior correlation was observed for performance on face 
maintenance trials. We discuss possible reasons for this differential 
finding below (see Section 4.3). 

The remainder of our discussion will initially focus on how our 
study relates to previous STM research (focusing on distractor 
resistance), and what it contributes to this research. We will then 
move on to a discussion of possible reasons as to why some 
previous studies failed to find evidence for active maintenance in 

 
Fig. 5: A) Results of the 1-back task used as a functional localiser (z 
> 3.1, cluster threshold p < .05). Face-preferential activations were 
restricted to the FFA and the superior temporal sulcus. House-
preferential activations were much more extensive, involving parts 
of the temporal, occipital and parietal cortex. B) Mean univariate 
BOLD time-courses (± SEM) for face- and house-preferential areas. 
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distractor delays. Finally, we will discuss limitations of our approach 
and open questions. 

 
4.1 Relation to previous studies 

Miller et al.'s (1996) classic study showed that lateral prefrontal 
neurons in macaques are involved in the recovery of STM contents 
after distraction. However, this study did not address the question if 
STM contents are actively maintained during distraction. Recently, 
Jacob and Nieder (2014) showed that parietal area VIP neurons do 
maintain such distractor-resistant representations in a numerosity 
task, thus highlighting the role of posterior cortices in distractor-
resistant memory. Our fMRI results obtained in humans concur with 
these results in that they also implicate posterior cortices. However, 
using a task that required maintenance of information about visual 
appearance (as opposed to numerosity), we found that more 
posterior and ventral areas were involved in STM maintenance 
during distraction.  

The present study differs from previous fMRI studies 
investigating distractor-resistant STM (Bettencourt & Xu, 2015; Jha 
et al., 2004; Sakai et al., 2002b) by having three extended delay 
phases, which allowed us to use MVPA not only to study delay-
specific STM maintenance, but also to study the generalization of 
activity patterns across delays. The results showed that the presence 
of distractors altered the neural code for sample maintenance in a 
way that classifiers that could decode STM contents during 
maintenance-only (and, in a control analysis, during stimulus 
encoding) could not decode the contents of STM in the presence of 
distractors. This suggests that the pattern of maintenance-related 
activity is modified when STM contents have to be shielded against 
distraction. Generally, STM is thought to operate by maintaining 
activity that is similar to the activity originally elicited by the sample 
(D'Esposito & Postle, 2015). Thus, the presentation of distractors 
might elicit activity similar to the sample, and this might lead to 
interference between the neural representations of the information 
in memory and the distractor. One strategy to deal with this may be 
to alter the maintenance-related neuronal code in a way that makes 
it less similar to activity elicited by distractors. 

Another important difference between our study and previous 
studies investigating distractor-resistant maintenance is that we 
required participants to actively process the distractor pictures, 
whereas the studies by Bettencourt and Xu (2015) and by Jha et al. 
(2004) used passive distractor conditions where participants were 
instructed to simply watch the distractors. We chose an active 
distractor condition (i) to ensure that participants attended the 
distractors and (ii) to investigate if we could replicate the results of 
Lewis-Peacock et al. (2012; Experiment 1) who, using an active 
distractor task, had found that task-irrelevant distractors made it 
impossible to decode the currently maintained category. In 
contrast, our results show that even when the distractor task is 
attention-demanding, there are conditions under which it is possible 
to decode STM contents. Further below, we will address possible 
reasons as to why our results differ from those of Lewis-Peacock and 
colleagues.  

We will now turn to a discussion of the areas from which above-
chance decoding during the distractor delay was possible. 
Bettencourt and Xu (2015) report data from individually defined 
intraparietal sulcus ROIs, and ROIs representing joint visual areas V1 
to V4. The intraparietal sulcus ROIs were defined based on multiple 
regression analyses for working memory capacity and based on 
their vicinity to coordinates previously reported by Todd and Marois 
(2004) and Xu and Chun (2006). Bettencourt and Xu do not report 
individual peak coordinates for these ROIs, but an inspection of the 
coordinates in Todd and Marois (2004) and Xu and Chun (2006) 
suggests that the ROIs were presumably located in the paroccipital 
segment of the intraparietal sulcus (Zlatkina & Petrides, 2014). In 
their Experiment 1, Bettencourt and Xu report a dissociation 
between the two ROIs, such that sample orientation could only be 
decoded from the parietal but not from the visual ROI. In their 

Experiment 3, however, sample orientation could be decoded from 
both regions. Bettencourt and Xu attribute this difference to a 
change in participant strategy (as distractors were predictable in 
Experiment 1 but not in Experiment 3), and suggest that the parietal 
ROI might be more relevant for distractor-resistant maintenance as 
it was implicated in both experiments.  

In our study, above-chance decoding during distraction was 
possible from the paroccipital segment of the intraparietal sulcus 
and from the occipital cortex. However, in our study, STM contents 
could also be decoded from the temporal cortex, including the FFA 
and the PPA. Likely, this extension along the ventral and medial 
temporal cortex is a consequence of the stimulus material used, as 
ventral and medial temporal cortices are known to be involved in 
processing object information (Reddy & Kanwisher, 2006). Our 
results show that these areas are also involved in distractor-resistant 
STM maintenance. 

Contrary to Bettencourt and Xu's (2015) results, we found that it 
was possible to decode during the distractor delay from visual 
cortex (similar to their Experiment 3) even though the distraction 
was predictable (similar to their Experiment 1). This shows that 
distractor predictability does not necessarily lead to a null decoding 
result for the visual cortex. As Ester et al. (2016) point out, 
Bettencourt and Xu's null result is difficult to interpret, and might 
indicate that these areas did not contribute to the task, but it might 
also indicate that the classifier failed to learn relevant patterns that 
may nevertheless be present in the data. Furthermore, Bettencourt 
and Xu's (2015) Experiment 4 showed that there is a positive 
correlation between the ability of a multivariate fMRI classifier and 
of a participant to distinguish two gratings. This relationship was 
observed both in V1 to V4 and in the intraparietal sulcus ROI. 
Bettencourt and Xu explain the effect in V1 to V4 as "a result of its 
role in the initial processing of the orientation information" (p. 7). 
Our results show that the role of visual cortices in distractor-resistant 
STM maintenance likely goes beyond initial stimulus processing. 
Our distractor interval onset was 8.8 s after stimulus encoding. Still, 
we observed a significant correlation between behavioral 
performance in house trials and decoding accuracy in the distractor 
delay. Thus, our results strengthen the hypothesis that not only the 
intraparietal sulcus, but also "lower-level" visual cortices contribute 
to distractor-resistant STM representations. 

Turning to the post-distractor delay, our human fMRI results 
differ from those reported for the macaque. Both Miller et al. (1996) 
and Jacob and Nieder (2014) reported recovery of STM contents in 
lateral prefrontal neurons after distraction. In contrast, we were not 
able to decode from lateral prefrontal cortices in the post-distractor 
delay. Again, such a null result is difficult to interpret, and a failure 
to successfully decode could simply be related to the methods 
employed (fMRI and/or MVPA). However, there is also evidence to 
suggest that the human prefrontal cortex plays a less important role 
for simple STM maintenance (D'Esposito et al., 2006). In addition, 
delays in our paradigm were much longer than the delays used in 
the monkey studies. If the prefrontal cortex would be particularly 
relevant at the onset of the post-distractor delay, our modeling 
approach would have been unable to identify this involvement. 
Future studies specifically designed to elucidate the role of the 
lateral prefrontal cortex in post-distractor recovery of STM contents 
might be able to shed more light on this issue. 

 
4.2 When is distractor-resistant active maintenance found? 

We will now turn to a discussion of possible reasons as to why some 
previous studies failed to find evidence for active maintenance in 
distractor delays. As explained in the introduction, we propose that 
there are two different, but not necessarily mutually exclusive, 
strategies to maintain stimulus information across a distractor delay. 
We referred to these strategies as active (associated with persistent 
neuronal activity) and passive (not requiring persistent firing) STM, 
and the degree to which one or the other strategy is used may 
depend on the requirements of the task. The fact that we could 
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decode the stimulus category of STM contents during distraction 
suggests that our task has encouraged active maintenance, which 
we attribute to the following reasons: 1. The samples on each trial 
were unique and had never been seen by the participants before – 
thus precluding familiarity-based task performance. 2. Distractors 
needed to be attended and were presented in the same location as 
the samples. Therefore, lower-level stimulus representations were 
presumably "overwritten", which might have impeded passive STM 
based on lower-level perceptual representations. 3. About 25% of 
the probe picture were covered by a black bar at an unpredictable 
location and non-match probe pictures were selected from the set 
of pictures previously presented as samples. Again, these factors 
presumably made the use of a passive strategy less likely to be 
successful. 4. Memory load was relatively low (2 items), being well 
within the typical working memory capacity (4±1 items; Cowan, 
2001). 

Some of these factors might explain why, as mentioned above, a 
recent study by Lewis-Peacock et al. (2012) was not successful at 
decoding memory content. In their Experiment 1, distractors always 
came from a category that was not currently maintained. Moreover, 
non-match probes were not different exemplars of the same 
category, but came from an irrelevant category. Furthermore, there 
were only 18 stimuli overall which had been learned before the fMRI 
scan, potentially allowing the formation of long-term memory 
representations. All of these factors may have reduced the 
likelihood that participants relied on active maintenance. In a 
second experiment by the same authors (Experiment 2), two 
samples were spatially separated and, apart from cues, no further 
stimuli were presented in the location of the samples. This might 
have left lower-level perceptual representations mostly intact and 
thus have facilitated reliance on passive memory mechanisms.  

None of the factors discussed as possible reasons for the 
inability to decode STM contents in Lewis-Peacock et al. (2012) 
apply to the study by Sakai et al. (2002b), raising the question why 
these authors observed no activation differences between correct 
and incorrect trials in the distractor delay. One possible explanation 
is that the authors applied a purely univariate approach to data 
analysis which might be less sensitive than current multivariate 
approaches. However, there is also a potentially more interesting 
explanation based on the nature of their tasks: In Sakai et al.’s study 
the combined memory load from main task and distractor task was 
ten items, which is considerably above the typical working memory 
capacity (Cowan, 2001) and makes it very unlikely that an active 
memory strategy could have succeeded.  

 
4.3 Limitations and open questions 

Some of our results suggest that faces and houses were treated 
differently by our participants. Performance in face and house trials 
was only weakly correlated, and decoding accuracy was only related 
to behavioral house, but not face trial performance. In a post-
experiment questionnaire, 59% of participants reported that one of 
the strategies they employed was to try to associate sample faces 
with persons known to them (e.g., friends or celebrities); an 
analogous strategy was only reported by 14% of participants in the 
house condition. As a result, although all of the samples were new 
to participants, long-term memory representations might have 
played a more important role for face trials. This might explain why 
decoding accuracy was correlated with behavioral accuracy for 
house trials, but not for face trials.  

Our results suggest that posterior cortices play a role in the 
active maintenance of information in long distractor delays. 
Currently, few functional imaging studies have investigated this 
issue and a number of open questions remain. For example, it is 
unclear for how long active maintenance during distraction is 
possible. In our task, the distractor delay was 6.6 s (using an active 
distractor task) and in the study by Bettencourt and Xu (2015) it was 
10.2 seconds (using passive distraction). Furthermore, it is uncertain 
which factors determine if active maintenance is used or not. The 

timing of the task, the memory load, the material to be 
remembered, the pre-existence of long-term memory 
representations, and the participant strategy might influence the 
results. Future research should also continue to investigate which 
areas contribute to distractor-resistant STM. While Bettencourt and 
Xu (2015) stressed the role of the posterior intraparietal sulcus, we 
could successfully decode in occipital, temporal, and parietal 
cortices.  

 

5 Conclusion 
The present study investigated the maintenance of visual 
information in STM in unfilled and distractor-filled delays. A 
multivariate searchlight analysis successfully decoded STM contents 
(faces or houses) in all delay phases. Regions with above-chance 
decoding in all delay phases were located in the occipital, temporal, 
and posterior parietal lobes. In ventral temporal cortex, including 
functionally defined areas FFA and PPA, activity patterns were 
reactivated after distraction. In more posterior regions, activity 
patterns were more flexible and depended on the delay phase. 
Classifier performance in all delay phases was correlated with the 
behavioral performance in house trials, but not face trials. The 
present results highlight the role posterior cortices play in the online 
maintenance of STM contents both in the presence and absence of 
distractors. 
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Table 1. Probe RT (ms) and accuracy (%) as a function of distractor type (object or scrambled) and sample category (face or house). 

 Probe RT (M and SD) Probe Accuracy (M and SD) 

Distractor type Face sample House sample Face sample House sample 

Object 1170 (216) 1196 (217) 80.7 (7.1) 85.1 (9.8) 

Scrambled 1117 (193) 1181 (213) 82.7 (11) 82.2 (12.2) 

 
 
Table 2. Distractor RT (ms) and accuracy (%) as a function of distractor type (face, house, or scrambled) and sample category (face or 
house). 

 Distractor RT (M and SD) Distractor Accuracy (M and SD) 

Distractor type Face sample House sample Face sample House sample 

Face 503 (56) 508 (47) 93.5 (4.8) 93.7 (5.4) 

House 498 (47) 497 (46) 93.8 (6.2) 94.3 (4.6) 

Scrambled 471 (51) 474 (45) 97.5 (2.9) 97.4 (2.9) 

 
 
Table 3. Within-delay analyses. The z maps were thresholded using clusters determined by z > 3.1 and a corrected cluster significance 
threshold of p < .05. Peaks are at least 25 mm apart. Up to ten peaks per cluster are reported. 

Location Volume (mm3) z-value x,y,z 

Pre-distractor delay    

Inferior temporal gyrus, cerebellum 555,840 6.44 -44,-46,-30 

Parahippocampal gyrus, collateral sulcus, cerebellum  5.79 -20,-36,-22 

Collateral sulcus  5.47 -26,-50,0 

Intraparietal sulcus  5.33 -22,-56,44 

Postcentral gyrus  5.27 -56,-14,46 

Transverse occipital sulcus  5.25 -20,-82,16 

Cerebellum, collateral sulcus  5.94 16,-44,-18 

Lateral occipital gyrus  5.54 28,-88,20 

Cerebellum  5.35 52,-58,-30 

Fusiform gyrus  5.26 38,-28,-22 

Superior frontal gyrus 21,376 4.6 30,58,30 

Superior frontal sulcus  4.46 24,22,34 

Inferior precentral sulcus  4.39 54,10,44 

Inferior frontal gyrus  4.21 52,32,14 

Superior frontal gyrus  3.7 0,58,42 

Middle frontal gyrus 8,144 4.44 -36,40,38 

Paracingulate sulcus  3.82 -8,40,32 

Middle frontal gyrus  3.77 -38,56,18 

    

Distractor delay    

Fusiform gyrus 230,008 6.8 -42,-58,-14 

Lateral occipital gyrus  6.55 -32,-94,14 

Fusiform gyrus  6.44 -26,-80,-10 

Superior temporal sulcus  4.26 -50,-46,10 

Lateral occipital gyrus  6.86 34,-86,10 

Fusiform gyrus  6.72 30,-66,-14 

Superior occipital gyrus  4.9 12,-94,24 

Inferior temporal gyrus  4.78 56,-66,2 

Middle temporal gyrus  4.68 68,-44,4 

Lingual gyrus, parahippocampal gyrus  4.66 16,-38,-14 

    

	
   	
  



 

Post-distractor delay    

Lateral occipital gyrus 231,592 5.74 -22,-86,14 

Superior temporal sulcus  5.04 -56,-58,18 

Fusiform gyrus  4.94 -22,-74,-12 

Lateral occipital gyrus  4.89 -44,-78,30 

Fusiform gyrus  4.77 -28,-46,-14 

Lingual gyrus  5.03 12,-58,4 

Lingual gyrus  4.97 12,-82,-12 

Inferior temporal gyrus  4.93 56,-60,-18 

Occipitotemporal cortex  4.81 58,-64,18 

Fusiform gyrus  4.73 30,-42,-20 

Superior parietal lobule 8,312 3.76 -8,-70,58 

Superior parietal lobule  4.89 18,-60,60 

Cingulate sulcus  3.81 14,-36,42 

Parahippocampal gyrus 3,856 4.13 26,-6,-32 

Temporal pole 3,840 5.15 -50,22,-18 

Rostral gyrus 2,424 3.74 -4,46,-14 

 
 

Table 4. Across-delay analyses for the pre- and post-distractor delays. The z maps were thresholded using clusters determined by z > 
3.1 and a corrected cluster significance threshold of p < .05. Peaks are at least 15 mm apart. 

Location Volume (mm3) z-value x,y,z 

Train on pre-, test on post-distractor delay    

Collateral sulcus 18,400 4.91 -30,-38,-16 

Fusiform gyrus  4.15 -30,-58,-14 

Collateral sulcus 9,568 4.31 26,-38,-16 

Parahippocampal gyrus  3.9 36,-22,-24 

Lateral occipitoparietal cortex 2,096 3.68 -40,-84,26 

    

Train on post-, test on pre-distractor delay    

Occipitotemporal sulcus 19,808 4.46 -44,-44,-10 

Fusiform gyrus  4.29 -28,-44,-16 

Inferior temporal sulcus  3.55 -54,-30,-10 

Collateral sulcus 6,560 3.72 22,-42,-14 

Fusiform gyrus  3.57 36,-24,-26 

 
 

  



 

Table 5. Across-delay analyses for the object and scrambled distractor delays. The z maps were thresholded using clusters determined 
by z > 3.1 and a corrected cluster significance threshold of p < .05. Peaks are at least 20 mm apart. 

Location Volume (mm3) z-value x,y,z 

Train object, test scrambled    

Lateral occipital gyrus 35,360 4.95 -34,-92,12 

Fusiform gyrus  4.82 -22,-86,-12 

Fusiform gyrus  4.6 -34,-70,-12 

Lateral occipital gyrus 21,840 4.64 34,-90,12 

Fusiform gyrus  4.27 28,-68,-18 

    

Train scrambled, test object    

Fusiform gyrus 59,554 5.95 -26,-80,-8 

Fusiform gyrus  5.71 -36,-60,-8 

Lateral occipital gyrus  5.64 -26,-94,24 

Paroccipital segment of the intraparietal sulcus  4.11 -22,-72,24 

Fusiform gyrus 45,592 5.99 30,-62,-12 

Lateral occipital gyrus  5.54 30,-84,10 

Parieto-occipital fissure  4.42 22,-62,18 

Paroccipital segment of the intraparietal sulcus  3.82 22,-60,42 

 
 
Table 6. Results of the functional localizer analysis. The z maps were thresholded using clusters determined by z > 3.1. A corrected 
cluster significance threshold of p < .05 was applied to the house vs. face map. No cluster correction was applied to the face vs. house 
map (see Methods). In addition, both maps were exclusively masked by contrasts against the implicit baseline. Peaks are at least 25 
mm apart. 

Location Volume (mm3) z-value x,y,z 

Face vs. House    

Mid-fusiform sulcus 240 4.3 -44,-46,-22 

Mid-fusiform sulcus 1,400 4.61 44,-48,-18 

Superior temporal sulcus 544 3.95 46,-46,18 

    

House vs. Face    

Collateral sulcus 53,232 6.69 -26,-46,-8 

Lateral occipital gyrus  6.42 -38,-88,14 

Fusiform gyrus  6.39 -26,-80,-14 

Paroccipital segment of the intraparietal sulcus  5.74 -26,-76,40 

Parieto-occipital fissure  5.02 -16,-62,12 

Inferior temporal gyrus  4.99 -50,-62,-6 

Occipital pole  4.71 -18,-100,0 

Collateral sulcus 53,280 7.42 24,-46,-10 

Lateral occipital gyrus  6.61 34,-84,20 

Superior parietal lobule  6.49 20,-72,52 

Parieto-occipital fissure  6.31 18,-58,16 

Fusiform gyrus  5.45 26,-88,-10 

Inferior temporal gyrus 632 4.3 52,-60,-12 

 
 
 




