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Highlights

• A new algorithm based on Subset Simulation is provided for general prognostics;

• The Subset Simulation method is used to obtain efficiency for rare events;

• A simulated example and a challenging case study are used to demonstrate its efficacy;

• Discussion is provided through comparison with a standard prognostics algorithm;
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Abstract

This work presents an efficient computational framework for prognostics by combining the particle filter-

based prognostics principles with the technique of Subset Simulation, first developed in S.K. Au and

J.L. Beck [Probabilistic Engrg. Mech., 16 (2001), pp. 263-277 ], which has been named PFP-SubSim. The

idea behind PFP-SubSim algorithm is to split the multi-step-ahead predicted trajectories into multiple

branches of selected samples at various stages of the process, which correspond to increasingly closer ap-

proximations of the critical threshold. Following theoretical development, discussion and an illustrative

example to demonstrate its efficacy, we report on experience using the algorithm for making predictions

for the end-of-life and remaining useful life in the challenging application of fatigue damage propagation

of carbon-fibre composite coupons using structural health monitoring data. Results show that PFP-SubSim

algorithm outperforms the traditional particle filter-based prognostics approach in terms of computational

efficiency, while achieving the same, or better, measure of accuracy in the prognostics estimates. It is also

shown that PFP-SubSim algorithm gets its highest efficiency when dealing with rare-event simulation.

Keywords: Prognostics, rare events, Stochastic modeling, Subset Simulation

1. Introduction

Prognostics is a key technology which allows us to manage assets based on their state of health, as op-

posed to scheduling periodic inspection and maintenance activities based on statistics of mean-time-to-failure

or similar information [1, 2]. In practice, prognostics uses information from health monitoring systems to

determine the state of health of components so as to make end-of-life (EOL) and remaining useful life (RUL)

predictions based on estimations of the time when specific critical thresholds will be exceeded [3, 4]. The

potential of prognostics in positively contributing to safety and asset availability relies in its capacity to

anticipate an anomalous or faulty condition. In particular, one of the challenging problems in prognostics

is to accurately predict the EOL/RUL of systems whose faulty behavior is unlikely [5, 6]. These problems
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can be encountered in practice when predicting the collapse of structures under fatigue degradation, catas-

trophic failures in nuclear plants, run-away conditions in batteries, etc. Due to the lack of data for such

improbable events, model-based instead of data-driven prognostics frameworks have attracted significant

attention in the Prognostic and Health Management (PHM) community for their ability to yield accurate

predictions using a limited amount of data [7]. Model-based prognostics uses the underlying first principles

on which the evolution of the fault indicator is based, thereby reducing the lack of knowledge uncertainty

often present in prognostics [8, 9]. Several examples are found in the literature dealing with model-based

prognostics frameworks for a widespread range of applications, like fatigue damage evolution in engineering

materials [10, 11], failure of electronic components [12], aging of batteries [13, 14], to name but a few. Be-

sides model uncertainty, other important source of uncertainty present in a typical prognostics problem

is the uncertainty coming from the use of a specific prognostics algorithm [15]. Sampling-based methods

(e.g. particle filters [PF]) [16, 17] are examples of algorithms used to efficiently approximate the probability

density function (PDF) of the predicted system states through a limited set of discrete particle paths, rep-

resenting sample trajectories of the system evolution in the state space [18]. Since multi-step ahead state

estimation is required in prognostics [19], then the statistical uncertainty that arises from the approxima-

tion by particles is propagated in time leading to an increase of the final uncertainty for the EOL/RUL

estimation [20]. This drawback can be exacerbated when reaching the failure threshold is a rare event under

the model representing the system evolution, since the referred sample trajectories result in long paths of

predicted states. Higher-density sampling-based methods may be employed achieving higher resolution for

the EOL/RUL predictions, however it is at the expense of a higher computational effort. On the other hand,

choosing a conservative failure threshold might constitute a pragmatic alternative although it results in dis-

carding potential useful life. To alleviate this critical issue, some particular solutions have appeared in the

literature to gain prediction accuracy while keeping computational cost at acceptable levels [21–23]. However,

specialized computational frameworks to achieve the required EOL/RUL prediction accuracy still remains

very limited for prognostics involving rare-event simulation.

In this work, a general prognostics algorithm is proposed based on the Subset Simulation method [24]. Sub-

set Simulation is an efficient simulation framework which transforms the simulation of a rare-event into the

simulation of a sequence of events of higher probabilities. This general aspect makes Subset Simulation

applicable to a broad range of areas of science and engineering where the simulation of an unlikely event

is required [25, 26]. The pivotal idea behind Subset Simulation in application to prognostics is to split the

multi-step-ahead predicted states of the system into multiple branches of selected samples (“seeds”) at se-

lected stages of the process. These seeds provide the starting points for reproducing offsprings of predicted

states, thus leading to a nested sequence of subsets which are adaptively obtained until the failure region is

reached. For the higher subset, all the samples are closely distributed in the vicinity of the final threshold

achieving higher resolution for the PDF of EOL/RUL. The resulting computational framework is named
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PFP-SubSim and a first version was presented in a conference paper in [27]. The focus here is on enhance-

ments to the methodological aspects behind PFP-SubSim as a general prognostics algorithm. In addition,

insightful examples and extended results are provided.

The paper is organized as follows. Section 2 overviews the mathematical basis and computational aspects

of prognostics. In Section 3, the Subset Simulation method is described and specialized for application to

prognostics, after which the PFP-SubSim algorithm is presented. The efficiency of PFP-SubSim is illustrated

in Section 4 using both a numerical example and also a case study. A discussion about the performance

of PFP-SubSim algorithm in relation to the standard PF-based prognostics algorithm is also provided in

Section 4. Section 5 provides concluding remarks.

2. Foundations of prognostics

Let {xn}n>0 be a Markov process described by the state vector xn taking values in a space denoted

by X ⊂ Rnx , and θ ∈ Θ ⊂ Rnθ a set of uncertain model parameters. Let us define an augmented state

zn ≡ (xn, θ) ∈ Z = X × Θ ⊂ Rnz=nx+nθ representing the overall stochastic process including model

parameters θ. Let us now assume that the transition rule for the Markov process can be described as

follows:
dzn
dn

= Υ(zn, u, v) (1)

where Υ : Rnu × Rnz → Rnz is a possibly nonlinear function of the system state zn along with a set

u ∈ Rnu of input parameters to the system (loadings, environmental conditions, operating conditions,

etc.). The term v ∈ Rnz refers to the model error which represents the difference between the actual

system state zn and the state predicted by the hypothesized model Υ(zn, u, v). Except for very simple cases,

the analytical continuous-time formulation of the stochastic process described above, is rarely practical to

describe real-world problems. Instead, the state evolution is commonly investigated under a discrete-time

approach by approximating the derivative in Equation 1 as a constant within any time interval, so that

zn = z(n · ∆t + τ)∀τ ∈ [0,∆t), where ∆t is sufficiently small. Hence, Equation 1 can be discretized to a

difference equation:

zn = Υn(zn−1, un, vn) (2)

where the states zn = z(n ·∆t) are assumed to follow a hidden Markov process with transition probability

density given by p(zn|zn−1), n ∈ N. Noisy observations, denoted here by yn ∈ Rny , are added to the system

and assumed to be conditionally independent given the states zn. They are expressed as a function of the

latent damage states zn through a measurement function ψ : Rnz × Rnu → Rny as follows:

yn = ψn(zn, un, wn) (3)
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where wn = w(n · ∆t) denotes the measurement error. It is also assumed that the error terms vn and wn

from Equations 2 and 3 are random variables instead of deterministic fixed-valued variables, and that they

are distributed following specified probability models. Based on these probability models, the PDFs for the

state transition equation and observation equation are prescribed (see [11, 28] for further insight).

In prognostics, the interest is mainly to efficiently obtain predictions about future states of the sys-

tem whereby EOL/RUL estimations are subsequently derived, provided that a failure region has been

defined [18]. The predictions about future states are carried-out using no additional evidence but a sequence

of measurements up to time n, denoted by y0:n , (y0, y1, . . . , yn−1, yn). Two main steps are required for

prognostics:

(i) State estimate: An estimate of the sequence of z-states z0:n , (z0, z1, . . . , zn−1, zn) is first required,

which is denoted by the PDF p(z0:n|y0:n). Here, the conditioning on y0:n is to indicate that predictions

are based upon information using most available measurements up to time n. This updated PDF is

given by Bayes’ theorem as follows [1, 2]:

p(z0:n|y0:n) =
p(yn|zn)p(z0:n|y0:n−1)∫

Z p(yn|zn)p(z0:n|y0:n−1)dz0:n
∝ p(yn|zn)p(zn|zn−1) p(z0:n−1|y0:n−1)︸ ︷︷ ︸

last update

(4)

where

p(zn|zn−1) = p(xn|xn−1, θn)p(θn|θn−1) (5)

In Equation 4, the identities p(yn|z0:n, y0:n−1) = p(yn|zn) and p(zn|z0:n−1, y0:n−1) = p(zn|zn−1) are

assumed based on the definition of the measurement equation (recall Equation 3) and the Markovian

property of the state transition equation, respectively. It is also assumed that the initial state z0 is

known in advance, hence p(z0|y0) ≡ p(z0) (note that y0 is not a measurement), being p(z0) the prior

PDF of the system state. Moreover, as observed from Equation 5, model parameters θn are assumed

to evolve by some unknown random process that is independent of the system state xn. It is, in fact,

a key problem that typically arises when sequentially updating the state vector z0:n = (x0:n, θ) as an

augmented state due to the non-dynamics nature of θ. A common solution is to add a small random

perturbation to θ (e.g., zero-mean Gaussian) under the last posterior PDF at time n−1 before evolving

to the next predicted state at time n [29], i.e.:

θn ∼ p(θ|θn−1) = N (θn−1,Wn) (6)

where Wn ∈ Rnθ×nθ is a specified covariance matrix. Observe that by this method, the model parame-

ters are virtually time-evolving although they are essentially not dependent on time. This time-varying

imposes a loss of information in θ over time as additional uncertainties are artificially added to the

parameters, which ultimately influence the precision of the filtering. There exist several methods in

the literature to overcome this drawback, with the most popular being those that impose some kind of

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

shrinkage over Wn as long as new data are collected. The most important development in this direction

is provided by Liu and West [30], whilst new methods in the context of prognostics have been recently

proposed by [23, 31].

(ii) Failure prediction: Having estimated the latest available state updated at n, the next steps for prognos-

tics are: a) to predict the distribution of future states of the system `-steps forward in time in absence of

new observations, i.e., p(zn+`|y0:n), where ` > 1, b) to scrutinize whether the predicted state zn+` has

reached the failure region. The `-step ahead prediction is accomplished by Total Probability theorem

as [32]:

p(zn+`|y0:n) =

∫

Z
p(zn+`|zn:n+`−1, y0:n)p(zn:n+`−1|y0:n)dzn:n+`−1 (7)

=

∫

Z

[
n+∏̀

t=n+1

p(zt|zt−1)

]
p(zn|y0:n)dzn:n+`−1

where p(zn|y0:n) is the PDF which provides us with the up-to-date information about the system

at time n. In the last equation, the identity p(zn+`|zn:n+`−1) = p(zn+`|zn+`−1) holds, since {zn}n∈N
defines a Markov model of order one and also by the assumption that the observations are conditionally

independent given the states.

Next, to perform failure prediction, a definition of a failure region is first required. To this end, it is

denoted by U ⊂ Z the non-empty subset of “authorized” states of our system, and the complementary

subset Ū = Z \ U , the subset of states where the system behavior becomes unacceptable, or simply,

where system failure occurs. The interest is on making predictions of the earliest time when the system

failure occurs, i.e., the time n+ ` so that the state zn+` predicted according to Equation 1 lies inside

Ū , whereby the EOL/RUL can be obtained as Figure 1 illustrates. See [1, 2, 10] for further details.

Inputs/Models
un/(vn, wn)

State transition
equation (Eq. 2)

Predicted states
p(zn+`|y0:n)

Monitoring data
y0:n = (y0, . . . , yn)

Measurement
equation (Eq. 3)

Updated states
p(z0:n|y0:n)

zn+` ∈ Ū EOLn = n + `
RULn = EOLn − n

Prognostics
p(EOLn|y0:n)

p(RULn|y0:n)

forward propagation block

` > 1

` = `+ 1

Figure 1: Conceptual scheme of a filtering-based prognostics framework with indication of RUL/EOL calculation.
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2.1. Sequential Monte Carlo for state estimation

The recursive scheme for prognostics explained above is only a theoretical solution since, in general, the

integrals involved in the Total Probability theorem and Bayes’ theorem cannot be calculated analytically,

except for some of especial linear cases using Gaussian uncertainties [17]. An alternative for the general case

of non-linear and/or non-Gaussian state-space models is to use particle methods [33], a set of sequential

Monte Carlo methods which provide samples (particles) approximately distributed according to a specific

target PDF, with a feasible computational burden. Particle filters (PF) [29] are one of the most common

techniques among particle methods for filtering [16] and prognostics [34]. With PF, the approximation of

the state distribution p(z0:n|y0:n) is described through a set of N discrete particle paths, namely
{
z

(i)
0:n =

(x
(i)
0:n, θ

(i)
0:n)
}N
i=1

, which are readily sampled from a convenient importance distribution q(z0:n|y0:n) as follows:

p(z0:n|y0:n) ≈
N∑

i=1

ω̂(i)
n δ(z0:n − z(i)

0:n) (8)

where δ is the Dirac delta and ω̂
(i)
n is the unnormalized importance weight for the ith particle, which can be

obtained as:

ω̂(i)
n =

p(z
(i)
0:n|y0:n)

q(z
(i)
0:n|y0:n)

(9)

Methods for choosing the importance density are well known in the literature, hence they are not re-

peated here [30, 35]. However in most of the applications, the importance density is conveniently chosen

as q(z0:n|y0:n) = q(z0:n|y0:n−1), so that it admits a sample procedure since it can be factorized in a form

similar to that of the target posterior PDF, i.e., q(z0:n|y0:n) = q(z0:n−1|y0:n−1)q(zn|zn−1). By substituting

Equation 4 into Equation 9 and also by using the last cited condition for the importance PDF, then the

unnormalized importance weight for the ith particle at time n can then be rewritten as:

ω̂(i)
n ∝

p(x
(i)
0:n−1, θ

(i)
0:n−1|y0:n−1)

q(x
(i)
0:n−1, θ

(i)
0:n−1|y0:n−1)︸ ︷︷ ︸
ω̂

(i)
n−1

p(x
(i)
n |x(i)

n−1, θ
(i)
n−1)p(yn|x(i)

n , θ
(i)
n )

q(x
(i)
n |x(i)

n−1, θ
(i)
n )

(10)

where the joint state zn has been decomposed into its two components (xn, θ) for better comprehension of

the weight calculation method. Guidelines on how to best select q(xn|xn−1, θn−1) can be found in [16], and

an often followed method is to use the conditional distribution p(xn|xn−1, θn−1) from the transition equation

since it is straightforward to evaluate [17]. By means of this, the expression for the ith unnormalized particle

weight yields:

ω̂(i)
n = ω̂

(i)
n−1p(yn|z(i)

n ) = ω̂
(i)
n−1p(yn|x(i)

n , θ(i)
n ) (11)

Observe from last equation that the weight values are known only up to a scaling factor, which can be

readily bypassed by normalization, i.e. ω
(i)
n = ω̂(i)

n /
∑N
i=1 ω̂

(i)
n , where ω

(i)
n denotes the normalized value of

the ith particle at time n. A pseudocode implementation for the PF is given as Algorithm 1. Note that a
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systematic resampling step has been included in Algorithm 1 to limit the well-known degeneracy problem of

the PF during resampling [36]. In PF, particles are either dropped or reproduced during resampling which

may result in a loss of diversity of particle paths [16]. A control step on this degeneracy by using the effective

sample size (ESS) [37] may be incorporated before the resampling.

2.2. Particle filtering-based prognostics

Using the PF approach presented above, the EOL predicted at time n is obtained for the ith particle

trajectory as the time index of the first-passage point into Ū , or in other words, the earliest time index

n+ `, ` > 1 so that the event z
(i)
n+` ∈ Ū occurs. It can be computed as:

EOL(i)
n = inf

{
n+ ` ∈ N : ` > 1 ∧ I(Ū)(z

(i)
n+`) = 1

}
(12)

where I(Ū) : Z → {0, 1} is an indicator function that maps a given point in Z to the Boolean domain {0, 1}
as follows:

I(Ū)(z) =





1, if z ∈ Ū

0, if z ∈ U
(13)

Algorithm 1 PF with on-line parameter updating

Inputs: N, {number of particles per time step}, N
′
, {threshold of effective sample size (ESS)},

{
z

(i)
0 =

(
x

(i)
0 , θ

(i)
0

)
, ω

(i)
0

}N

i=1
{initial particles from prior PDF p(z0)}

Outputs:
{
z

(i)
n =

(
x

(i)
n , θ

(i)
n

)
, ω

(i)
n

}N

i=1
, {updated particles at time n}

Begin (n > 1): {time n evolves as new data arrive}
1: for i = 1, . . . , N do

2: Sample θ
(i)
n ∼ p(θn|θ(i)

n−1) {e.g., use the Liu & West method [30]}
3: Sample x

(i)
n ∼ p(xn|x(i)

n−1, θ
(i)
n )

4: z
(i)
n ← (x

(i)
n , θ

(i)
n ) and z

(i)
0:n ← (x

(i)
0:n, θ

(i)
0:n)

5: ω̂
(i)
n ← ω

(i)
n−1p(yn|z(i)

n )

6: end for

7: for i = 1, . . . , N do

8: ω
(i)
n ← ω̂

(i)
n∑N

i=1 ω̂
(i)
n

{normalize weights}
9: end for

10: if EES < N
′
then

11:
{
z

(i)
n , ω

(i)
n

}N

i=1
← resample

{
z

(i)
n , ω

(i)
n

}N

i=1

12: end if
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RUL
(i)
n = `

EOL
(i)
n = n + `

z
(i)
n

z
(i)
n+1

ŪU

z
(i)
n

z
(i)
n+1

Ū

U

First-passage
point

z
(i)

n+`

Figure 2: Conceptual illustration of the ith particle trajectory to EOL. Solid disks represent samples in Z.

The RUL predicted from time n for the ith particle trajectory can be straightforwardly obtained from EOL(i)
n

as RUL(i)
n = EOL(i)

n − n. An approximation to the PDF of EOL at time n can be obtained as:

p(EOLn|y0:n) ≈
N∑

i=1

ω(i)
n δ(EOLn − EOL(i)

n ) (14)

Analogously, the PDF of RULn is approximated as:

p(RULn|y0:n) ≈
N∑

i=1

ω(i)
n δ(RULn −RUL(i)

n ) (15)

Figure 2 provides a schematic illustration to exemplify the trajectory of the ith particle of a general z-state

along with the indication of EOL(i)
n and RUL(i)

n . An algorithmic description of the particle filtering-based

prognostics procedure is provided as Algorithm 2.

3. Prognostics using Subset Simulation

3.1. Basis of Subset Simulation

Subset Simulation method is an efficient simulation framework originally proposed for computing small

failure probabilities for general reliability problems [24]. It is motivated by the observation that the simu-

lation of a rare event can be transformed into the simulations of successive intermediate events with larger

probabilities. The small probability of the rare event can then be expressed as a product of larger conditional

probabilities that can be obtained with much less computational effort. In Subset Simulation, the conditional

probabilities are efficiently estimated by means of conditional samples that correspond to specified levels of

9
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Algorithm 2 Standard PF-prognostic algorithm

Inputs:
{
z

(i)
n =

(
x

(i)
n , θ

(i)
n

)
, ω

(i)
n

}N

i=1
{updated particles at time n. Use Algorithm 1}, Ū ⊂ Z {failure domain},

Outputs: EOLn, RULn

Begin (t > n):

1: for i = 1, . . . , N do

2: t← n

3: z
(i)
t ← z

(i)
n

4: Evaluate EOL
(i)
n (z

(i)
t ), {use Eq. 12 & 13}

5: while I(Ū)(z
(i)
t ) = 0 do

6: Sample θ
(i)
t+1 ∼ p(θt+1|θ(i)

t )

7: Sample x
(i)
t+1 ∼ p(xt+1|x(i)

t , θ
(i)
t )

8: t← t+ 1

9: zt =
(
x

(i)
t , θ

(i)
t

)
← zt+1 =

(
x

(i)
t+1, θ

(i)
t+1

)

10: end while

11: EOL
(i)
n ← t, RUL

(i)
n = EOL

(i)
n − n

12: end for

a performance function g : Z → R in a progressive manner. Let us assume that, with no loss of generality,

Ū can be expressed through evaluation of exceedance of the performance function g above some specified

threshold level b, as follows:

Ū , {z ∈ Z : g(z) > b} (16)

Let us also assume that the failure region Ū is defined as the intersection of m nested regions in Z, i.e.,

Ū1 ⊃ Ū2 . . . ⊃ Ūm−1 ⊃ Ūm = Ū , so that Ū =
⋂m
j=1 Ūj . Each subset Ūj is typically termed as intermediate

failure domain and can be defined as1 Ūj , {z ∈ Z : g(z) > bj}, with bj+1 > bj . Note that when Ūj holds,

then {Ūj−1, . . . , Ū1} also hold, and hence P (Ūj |Ūj−1, . . . , Ū1) = P (Ūj |Ūj−1), so it follows that2:

P (Ū) = P
( m⋂

j=1

Ūj
)

= P (Ū1)

m∏

j=2

P (Ūj |Ūj−1) (17)

where P (Ūj |Ūj−1) ≡ P (z ∈ Ūj |z ∈ Ūj−1), the conditional probability for the (j − 1)th intermediate failure

domain, which is denoted by Pj hereinafter for simplicity. Equation 17 indicates that the probability P (Ū)

may be relatively small, however it can be approximated by Subset Simulation as the product of larger

conditional probabilities, thus avoiding simulation of rare events.

1It is assumed that zn describes a monotonically increasing process. In the contrary case, Ūj ≡ {z ∈ Z : g(z) < bj}, where

bj+1 < bj .
2In what follows, we use P (·) to denote probability whereas a PDF is expressed as p(·).
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3.2. Using Subset Simulation for prognostics

In this section, Subset Simulation method is exploited as an efficient sampler for prognostics involving

rare-event simulation. As previously mentioned in Section 2, a prognostics algorithm aims at obtaining sim-

ulations of the model within the failure region whereby EOL/RUL estimations are subsequently derived. Let

p(zn:n+`|y0:n, Ū) ∝ p(zn:n+`|y0:n)IŪ (zn:n+`) denotes the PDF of `-step ahead predicted states distributed

within the region Ū , so that p(zn:n+`|y0:n) represents the probability model for predicted z-states for the

interval (n : n+ `] , ` > 1, which can be obtained by Total Probability theorem using the state transition

equation p(zt|zt−1) (see [2, 11] for further insights about predicting future states from the transition equa-

tion). The probability of expected performance of the predicted z-states within Ū can be obtained as a

probability integral, i.e., P (Ū) =
∫
Ū p(zn:n+`|y0:n)dzn:n+`, which can be approximated using Subset Simula-

tion as a product of conditional probabilities as stated by Equation 17. The term P1 from Equation 17 can

be readily estimated by the standard Monte Carlo method (MC) as follows:

P (Ū1) ≈ P̄1 =
1

M

M∑

k=1

IŪ1
(
z

1,(k)
n:n+`

)
(18)

where
{
z

1,(k)
n:n+`

}M
k=1

are M samples simulated according to the PDF p(zn:n+`|y0:n). The superscript “1” here

indicates that such samples lie within the region Ū1. The remaining factors can be efficiently estimated when

j > 2 by conditional sampling from p(zn:n+`|y0:n, Ūj−1) ∝ p(zn:n+`|y0:n)IŪj−1
(zn:n+`), giving:

P (Ūj |Ūj−1) ≈ P̄j =
1

M

M∑

k=1

IŪj
(
z
j−1,(k)
n:n+`

)
(19)

where z
j−1,(k)
n:n+` ∼ p(zn:n+`|y0:n, Ūj−1), and IŪj (z

j−1,(k)
n:n+` ) is an indicator function for the region Ūj , j =

1, . . . ,m, that assigns a value of 1 when g(z
j−1,(k)
n:n+` ) > bj , and 0 otherwise. Note that, by virtue of the

Markov property of the state-space model, p(zn:n+`|y0:n) can be approximated by conditional sampling us-

ing recursively the one-step transition equation p(zn|zn−1) [2], i.e.: first sample z
(k)
n+1 using the recurrence

given by the one-step transition equation conditional on the state zn, i.e., z
(k)
n+1 ∼ p(·|zn); then sample the

succeeding state conditional on the previous sample, i.e., z
(k)
n+2 ∼ p(·|z(k)

n+1); finally, repeat the same process

until the time index n+ ` has been reached. Observe that in Subset Simulation for prognostics, there is no

need to invoke Markov chain Monte Carlo methods [38] for conditional sampling as was originally proposed

in [24], since conditional samples are straightforwardly obtained by simulating the state transition equation,

as has just been explained above.

Note also that it is possible to obtain samples that are generated at the (j − 1)th level which lie in the

subsequent level Ūj . They are samples conditional on Ūj and provide “seeds” for simulating more samples

according to p(zn:n+`|y0:n, Ūj) [39]. Moreover, in Subset Simulation the choice of intermediate levels can

be addressed by adaptively specifying the threshold value bj , j = 1, . . . ,m, as the [MP0]
th

largest value

11
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Figure 3: Schematic representation of conditional samples produced using PFP-SubSim algorithm.

among the values g(z
j−1,(k)
n:n+` ), so that the sample estimate of P (Ūj |Ūj−1) in Equation 19 is equal to a fixed

value P0 ∈ (0, 1). Therefore, Ūj is adaptively chosen based on the samples
{
z
j−1,(k)
n:n+`

}M
k=1

generated from

p(zn:n+`|y0:n, Ūj−1), in such a way that there are exactly MP0 of these samples in Ūj , which serve as seeds

for generating more samples according to p(zn:n+`|y0:n, Ūj) [39, 40]. In fact, the remaining (1/P0−1) samples

are generated from p(zn:n+`|y0:n, Ūj) by simulating the state space model starting at each seed, giving a total

of M samples in Ūj . This procedure is repeated for higher conditional levels until the final region Ūm = Ū
has been reached. The PDF of EOL/RUL can be straightforwardly obtained by applying Equations 12 to 15

using as samples those distributed within the final region Ūm. A schematic representation of the main steps

of the proposed Subset Simulation approach has been provided in Figure 3. These steps can be summarized

as follows (the sequence is indicated by the arrows in Figure 3): (i) generation of `-step ahead predictive

samples from p(zn|y0:n); (ii) adaptive fixing of the intermediate threshold value bj ; (iii) definition of the

intermediate region Ūj so that P (Ūj |Ūj−1) = P0; (iv) generation of new samples distributed according to

p(·|y0:n, Ūj), j = 1, . . . ,m, (v) calculation of EOL/RUL using the M samples from the final subset.

3.3. The PFP-SubSim algorithm

A pseudocode implementation of PFP-SubSim algorithm is provided as Algorithm 3, which is intended

to be sufficient for most cases of application. With no loss of generality, the pseudocode is implemented such

12
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that a fixed amount of M samples are drawn per simulation level Ūj , so that NT = mM , the total amount

of model evaluations required by the algorithm to reach the final threshold. It is important to remark that

this choice is just to allow the computational cost to be controlled.

Algorithm 3 Pseudocode implementation for PFP-SubSim

Inputs: P0 ∈ (0, 1) {gives percentile selection, chosen so NP0, 1/P0 ∈ Z+; P0 = 0.2 is recommended}, M {number

of samples per simulation level}, b ∈ R {threshold value},
{
z

(i)
n =

(
x

(i)
n , θ

(i)
n

)
, ω

(i)
n

}N

i=1
{e.g. use Algorithm 1}

Outputs: EOLn, RULn

Begin:

1: Sample
(
z

(1)
n , . . . , z

(N)
n

)
, according to weights

{
ω

(i)
n

}N
i=1

2: Set k = 0, j = 0

3: for i : 1, . . . , N do

4: t← n

5: z
(i)
t ← z

(i)
n

6: repeat

7: Sample z
(i)
t+1 ∼ p(zt+1|z(i)

t )

8: t← t+ 1

9: k ← k + 1

10: z
(i)
t ← z

(i)
t+1

11: zj,(k) ← z
(i)
t

12: Evaluate g
(k)
j = g

(
zj,(k)

)

13: until t = n+ `, ` = M/N

14: end for

15: Sort
{
zj,(k)

}M
k=1

so that g
(1)
j 6 g

(2)
j 6 . . . 6 g

(M)
j {g(1)

j > g
(2)
j > . . . > g

(M)
j for decreasing processes}

16: bj ← 1
2

(
g

(MP0)
j + g

(MP0+1)
j

)

17: while bj < b {Set bj > b for decreasing processes} do

18: j ← j + 1

19: for k = 1, . . . ,MP0 do

20: Select as a seed
(
zj,(k),(1)

)
=
(
zj−1,(k)

)
∼ p
(
z|Ūj

)

21: Sample from Eq. (5) to generate 1/P0 states of a Markov chain lying in Ūj :
(
zj,(k),(1), . . . , zj,(k),(1/P0)

)

22: end for

23: Renumber
{
zj,(k),(i)

}MP0,1/P0

k=1,i=1
as
(
zj,(1), . . . , zj,(M)

)

24: Sort
{
zj,(k)

}M
k=1

so that g
(1)
j 6 g

(2)
j 6 . . . 6 g

(M)
j {g(1)

j > g
(2)
j > . . . > g

(M)
j for decreasing processes}

25: bj ← 1
2

(
g

(MP0)
j + g

(MP0+1)
j

)

26: end while

27: m← j

28: Evaluate
{
EOL

(k)
n

}M
k=1

,
{
RUL

(k)
n = EOL

(k)
n − n

}M
k=1

, {use Eq. 12 & 13}
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In the proposed algorithm, the choice of a suitable P0 value has a significant impact, since a small value

(P0 → 0) makes the distance between consecutive intermediate levels bj − bj−1 to become too large, which

leads to a rare-event simulation problem [39, 41]. If, on the contrary, the intermediate threshold values

were chosen too close (P0 → 1), the algorithm would require a large total number of simulation levels m

(and hence high computational effort) to reach the target region Ū . A rational choice for P0 should strike a

balance between both extreme cases. In the original presentation of Subset Simulation in [24], P0 = 0.1 was

recommended, and in [39], the range 0.1 6 P0 6 0.3 was found to be near optimal after a rigorous sensitivity

study of Subset Simulation. More recently, in [40] the value P0 = 0.2 was found to be optimal for Subset

Simulation in application to Approximate Bayesian Computation problems. Following the recommendation

by [39, 40], the conditional probability P0 is conveniently chosen here so that MP0 and 1/P0 are positive

integers, thus P0 is set to 0.2.

In Algorithm 3, the time subscripts are dropped from step 12 for simplicity, since the time indexing is

prescribed in each sample. Observe that the proposed methodology, and in particular the steps 20 and 21

in Algorithm 3, have anticipated that the multi-step ahead predicted trajectories simulated according to

the model (Equation 2) can be split into seeds whereby subsequent states are generated, without artificially

influencing the recurrence given by the stochastic process. This is justified by the Markovian assumption,

so that the probability of obtaining zn+` depends only on its preceding state zn+`−1 and not on the history

of past states. The last implies that the simulation of a sequence of states `−step ahead is essentially an

uncoupled procedure given the information from the previous step.

4. Illustrative examples

4.1. Toy example

Consider an exponential degradation process described by the following discrete state-transition equation:

xn = e−2ζnxn−1 + vn (20)

where xn ∈ R are discrete system states for n ∈ N, ζ ∈ R is the decay parameter, a scaling constant that

controls the degradation velocity, and vn ∈ R is the model error term which is assumed to be modeled as a

zero-mean Gaussian distribution, i.e. vn ∼ N (0, σv). Let us now assume that the degradation process can be

measured over time and that, at a certain time n, the measured degradation can be expressed as a function

of the latent damage state xn, as follows:

yn = xn + wn (21)

where wn ∈ R is the measurement error, which is also assumed to be modeled as a zero mean Gaussian

PDF with standard deviation given by σw. In this example, the standard deviations of the error terms
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Figure 4: PFP-SubSim output for the exponential degradation model in Eq. 20 by using ζ = 0.015. Predicted samples are

represented in the state-space for n+ `, n = 10, ` > 1 using circles.

are selected as model parameters, i.e. θ = (σv, σw) ∈ R2. The uniform PDF U(0.0001, 0.2) is used as

component-wise prior information about the model parameters θ1 = σv and θ2 = σw. Degradation states are

initialized at x0 = 0.9, expressed in arbitrary units. Synthetic data for yn is used by generating them from

Equations 20 and 21 considering θtrue = (0.01, 0.02). The PFP-SubSim results predicted at time n = 10

are presented in Figure 4 for three different simulation levels (m = 3) by using P0 = 0.2. A total amount

of N = 1000 particles trajectories are employed by Algorithm 1 (in this example, the resampling step is

run every time new data are collected). A zero-mean Gaussian has been used for the artificial evolution of

model parameters, i.e. p(θn|θn−1) ∼ N (0,Wn), where Wn = 5 · 10−4I2, being I2 the identity matrix of order

2. Finally, the failure region is defined by fixing a threshold value for the states of 0.3, expressed in arbitrary

units, i.e. Ū = {xn ∈ R : xn < 0.3}.
In panel 4a, predicted samples are represented in the state-space for n+`, n = 10, ` > 1 using circles. In panels

4b and 4c, samples are increasingly distributed in subsets according to p(zn:n+`|y0:n, Ūj), j = 1, 2. They

are superimposed using increasing gray tones until the final region is reached (dark purple circles). Panel

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ζ (decay parameter) 0.015 0.01 0.0075 0.005

Algorithm 2 42 76 95 150

PFP-SubSim 43 44 47 55

Efficiency factor 0.98 1.73 2.02 2.72

Table 1: Results of the comparative exercise between PFP-SubSim and Algorithm 2 for the exponential decay model of Eq. 20.

4d shows the histogram representation of the PDF p(EOLn|y0:n) predicted at time n = 10. The triangle

represents the time when the threshold value b = 0.3 is reached according to the synthetic data. Observe that

by using PFP-SubSim algorithm, the `-step ahead predicted samples are distributed in subsets which are

increasingly closer to the final threshold. The final subset (represented using dark purple circles in Figure 4c)

encloses a considerable amount of samples distributed around the vicinity of the threshold, hence increasing

the resolution of the PDF of EOL without the need of employing big amounts of model evaluations that

unnecessarily increases the computational cost.

A comparative study has been carried-out to reveal the computational efficiency that can be gained using

PFP-SubSim against Algorithm 2 for obtaining the PDF of EOL. For this exercise, the amount of model

evaluations needed to produce one sample simulated according to the PDF p(EOLn|y0:n) is monitored at

n = 10. In other words, the focus is on the ratio defined by the amount of samples that describe p(EOLn|y0:n)

over the total amount of model evaluations employed by each of the algorithms used for comparison. The

results, shown in the second and third rows of Table 1, are obtained by considering different values for the

decay parameter ζ in Equation 20. The values shown were obtained considering the mean of 200 independent

runs of the algorithms, a large enough number of runs to ensure the convergence of the values represented in

Table 1. The efficiency factor (forth row) is obtained by division operation of the values from the third row

by those from the second row, and is indicative of the computation time that can be saved by PFP-SubSim

algorithm as compared to Algorithm 2. Observe that the results are fairly similar when ζ is high because

reaching the final threshold is not in this case a rare event under the model given by Equation 20. However,

lower values of the decay parameter ζ implies that reaching the threshold is less probable or even a rare event

under the model, which is precisely the situation when PFP-SubSim exploits its higher efficiency. Indeed,

note from Table 1 that about 2/3 of the model evaluations can be saved by using PFP-SubSim algorithm as

compared to Algorithm 2 for the lowest value of ζ, i.e. ζ = 5×10−3 (fifth column), which implies an efficiency

factor of 2,72. These results about PFP-SubSim efficiency will be further corroborated in the context of the

next example of application.
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4.2. Case study: Prediction of fatigue damage using monitoring data

In this section, the performance of the algorithm is investigated through a case study about damage

prognostics in carbon fibre reinforced polymer (CFRP) laminates using structural health monitoring (SHM)

data. In previous works by the authors [2, 11], a model-based prognostics methodology was presented

which demonstrated efficiency for long-term predictions of fatigue damage in cross-ply laminates using SHM

data. To avoid duplication of literature for this technique but conferring a sufficient conceptual framework,

the relevant details from the referred methodology are presented here in a concise manner.

The starting point of this methodology involves the calculation of G, the energy released per unit crack

area due to the formation of a new crack between two existing cracks as [42, 43]:

G =
σ2
xh

2ρt90

(
1

E∗x(2ρ)
− 1

E∗x(ρ)

)
(22)

where σx is the maximum applied axial tension, and h and t90 are the laminate and 90◦-sublaminate

half-thickness, respectively. The matrix micro-cracks density is denoted by ρ = 1
2l̄

, where l̄ is the half crack-

spacing normalized by the 90◦ sub-laminate thickness. The term E∗x(ρ), as a function of ρ, is the effective

Young’s modulus due to the current damage state which can be modeled through micro-damage mechanics

models [44]. In this case study, the shear-lag [45, 46] micro-damage model is adopted to be simpler and

robust [47], such that:

E∗x =
Ex,0

1 + a 1
2l̄
R(l̄)

(23)

where Ex,0 is the undamaged longitudinal Young’s modulus of the overall laminate, and a is a function of the

mechanical and geometrical properties of the laminate, which can be obtained using the classical laminate

plate theory [48] (see also [49] for further details about the calculation of a). The term R(l̄), known as the

average stress perturbation function, is defined by [47]:

R(l̄) =
2

ξ
tanh(ξl̄) (24)

where

ξ2 = Gyz

(
1

Ey
+

t90

tφE
(φ)
x

)
(25)

In the last equation, Gyz, Ey, and E
(φ)
x are laminate mechanical parameters which are described next. The

details about the geometry parameters involved in Equations 22 to 25, together with information about the

pattern of micro-cracks, are given in Figure 5.

Next, the modified Paris’ law [50] is used to model the evolution of matrix micro-cracks density as a function

of fatigue cycle n ∈ N, as follows:

ρn = ρn−1 +A (∆G(ρn−1))
α

(26)

where A and α are fitting parameters. The term ∆G is the increment of energy release (recall Equation 22)

evaluated for the maximum and minimum stress in the cyclic load series, i.e. ∆G = G|σmax −G|σmin .
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Figure 5: Illustration for microscopic damage pattern in

[
φnφ

2

/90n90/φnφ
2

]
laminate along with basic geometrical parameters.

4.2.1. Stochastic embedding

The progression of damage is modeled at every cycle n by focusing on the matrix-cracks density ρn and

the normalized effective stiffness Dn = E∗x/Ex,0, defining a joint state transition equation of two components

as follows:

x1n = ρn = f1n(ρn−1, θ)︸ ︷︷ ︸
Eq. (26)

+v1n (27a)

x2n = Dn = f2n(ρn, θ)︸ ︷︷ ︸
Eq. (23)

+v2n (27b)

where xn = (x1n , x2n) ∈ R2 is the actual system response at time n. Subscripts 1 and 2 correspond to the

damage subsystems, namely, matrix-crack density and normalized effective stiffness, respectively. The vector

vn = (v1n , v2n) ∈ R2 corresponds to the model error vector of the overall system, which, by the Principle

of Maximum Information Entropy (PMIE) [51–53], is chosen as a Gaussian, i.e. vn ∼ N
(
0,
[
σv1n , σv2n

]
I2
)
,

where
[
σv1n , σv2n

]
are the standard deviations of vn and I2 is the identity matrix of order 2, so they can be

readily sampled.

Let us now consider that the vector yn =
(
y1n , y2n

)
=
(
ρ̂n, D̂n

)
represents the measurements of the

system output xn and also that a measurement function is added to the state-space model to account for

the measurement error wn ∈ R2:

y1n = ρ̂n = x1n + w1n (28a)

y2n = D̂n = x2n + w2n (28b)

where ρ̂n, D̂n denote the measured matrix-cracks density and normalized effective stiffness, respectively. As

stated before, the PMIE is used to choose wn to be distributed as zero mean Gaussian PDF, i.e. wn ∼
N
(
0,
[
σw1n

, σw2n

]
I2
)
, where

[
σw1n

, σw2n

]
are the standard deviations of wn and I2 the identity matrix of

order 2. In Equations 27 and 28, the model parameters θ are selected among the complete set of mechanical
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and geometrical parameters describing Equations 22 to 26 (see Table 2) through a Global Sensitivity Analysis

based on variances [49, 54], resulting θ =
(
α,Ex, Ey, t, σv1n , σv2n

)
as the vector of model parameters. The

rest of parameters can be fixed at some point within their range of variation, (e.g. the mean value) without

significantly influencing the output uncertainty.

4.2.2. Results

For the prediction of the PDF of EOL/RUL, SHM measurements of micro-cracks density and stiffness

reduction from a fatigue test are considered for a 15.24× 25.4 [cm] laminate coupon with dogbone geometry

and [02/904]s stacking sequence. The mechanical properties along with their probabilistic information are

listed in Table 2. In this example, a = 0.1325 (recall Equation 23), according to [49]. The test was conducted

under load-controlled tension-tension fatigue loadings with a frequency of f = 5 [Hz], and maximum applied

loads of 31.13 [KN], which represents an equivalent maximum stress of 80% of their ultimate stress. The

ratio between the minimum and maximum applied stress per cycle was set to 0.14. Further details about

this test can be found in [55] and also in the Composites dataset, NASA Ames Prognostics Data Repository

[56] (damage data used in this example correspond to laminate L1S19). In [57], the details about the SHM

methodology are provided. A summary of the dataset used for this study is extracted from [56] and provided

here in Table 3.

At each prognostic step, which corresponds to each of the fatigue cycles when SHM data are available

as shown in the first row of Table 3, Algorithm 1 is run by using N = 5000 particles and systematic

importance resampling. Initial values for the damage states are x0 = (ρ0, D0), where ρ0 = 0.1 [ cracks/mm]

and D0 = 1 (dimensionless). The standard deviation of the measurement error parameters are set to σw1,n
=

0.05 [ cracks/mm] and σw2,n
= 0.01, taking them as known. Chosen prior PDFs for model parameters θ =

(θ1, θ2, . . . θ6) are specified in Table 2. The diagonal elements of the covariance matrix Wn (recall Equation 6)

are appropriately selected through initial test runs and set to 0.5% of the 5th-95th band of the prior PDFs

for the jth component of θ.

Updated damage states at time n are propagated forward in time by using PFP-SubSim algorithm. For

illustration purposes, results of micro-cracks density and stiffness loss are shown in Figure 6 for prediction

time n = 3 · 104. Three simulation levels (m = 3) are employed in Figure 6 by using P0 = 0.5 and

M = 2.4 · 104 samples per simulation level. The total amount of samples is thus NT = (2.4 + 1.2 + 1.2) · 104,

because MP0 = 1.2 · 104 samples from each conditional level are used as seeds to start the next simulation

level. In Figure 6, the triangles represent the time (in cycles) when matrix micro-cracks density will reach

the final threshold b = 418 [#cracks ·m−1], together with its associated threshold for stiffness 0.88, which

are known from [56], and also shown in Table 3. These thresholds define a failure region given by Ū =

{(ρn, Dn) ∈ R2 : 0 < ρn < 418, 0 < Dn < 0.88}.
In this example, P0 = 0.5 is adopted to easily visualize how predicted samples are distributed among
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different subsets, since the recommended near-optimal value of P0 = 0.2 for Subset Simulation produced

m = 1 conditional levels for the majority of times of prediction. The estimation of RUL by PFP-SubSim

algorithm is plotted against time in Figure 7. The results shown in Figure 7 are satisfactory in the sense

Type Parameter Nominal value Units Prior PDF

Mechanical Ex 127.55 · 109 Pa LN (ln(127.55 · 109), 0.1)

Ey 8.41 · 109 Pa LN (ln(8.41 · 109), 0.1)

Gxy 6.20 · 109 Pa Not applicable

Gyz 2.82 · 109 Pa Not applicable

νxy 0.31 – Not applicable

Geometrical t 1.5 · 10−4 m LN (ln(1.5 · 10−4), 0.1)

Fitting α 1.80 – LN (ln(1.80), 0.2)

A 1 · 10−4 – Not applicable

Errors σv1 – # cracks
m·cycle

U(0.5, 1.5)

σv2 – – U(0.001, 0.003)

Table 2: Prior information and nominal values of main parameters used in calculations.

Fatigue cycles 101 102 103 104 2 · 104 3 · 104 4 · 104 5 · 104 6 · 104 7 · 104 8 · 104 9 · 104

ρ [# cracks/m] 98 111 117 208 270 305 355 396 402 402 407 418

D 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885

Table 3: Experimental sequence of damage for cross-ply [02/904]s CFRP laminate. The data are presented for micro-cracks

density (ρ) and normalized effective stiffness (D).
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Figure 6: PFP-SubSim output for predicting (a) matrix micro-cracks density and (b) normalized effective stiffness at n =

3 · 104. Each subset is represented by samples (circles) in the Z space, where the latest intermediate predictive samples are

marked in dark purple circles.
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Figure 7: Results for RUL predictions together with their quantified uncertainty by the interquartile bars.

that the proposed algorithm has the ability to obtain the RUL with high precision, except in the first stage

of the fatigue process, which corresponds to the interval of cycles required for the data to train the model

parameters θ. To help evaluating the prediction accuracy and precision, two shaded cones of accuracy are used

at 10% and 20% of the true RUL, denoted here as RUL∗, following the methodology given by [58]. Observe

also from Figure 7 that accuracy seems to depart from true RUL at the final stage, in the sense that the

estimated mean values for the RUL (labeled by the gray circles) leave progressively the accuracy area as

fatigue cycles evolve from n = 5 · 104. Such behavior has been previously reported in [2, 11] and was found

to be related with the asymptotic behavior of the damage progression in composites.

4.2.3. Discussion

In this section, comparative exercises have been carried out to investigate the computational improvement

and accuracy that can be achieved using PFP-SubSim algorithm with respect to a traditional prognostics

algorithm, like Algorithm 2. It should be noted that the results shown here are extensible to other applications

different than composite materials, since they are focused on efficiency aspects about the simulation engines

of the competing algorithms.

The first exercise of interest regards the evaluation of the probability of prospective failure during a

prescribed interval of future instants (n, n+ `] ⊂ N, as follows:

P (Ū) =

∫

Ū
p(zn:n+`|y0:n)dzn:n+` ≈

1

NT

NT∑

k=1

IŪ (z
(k)
n:n+`) (29)
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Figure 8: (a) Plots for P (Ū) estimation using PFP-SubSim algorithm in comparison to Algorithm 2 used as benchmark. (b)

CPU time employed by each algorithm, represented in logarithmic scale and expressed in seconds.

where
{
z

(k)
n:n+`

}NT
k=1

are NT predictive samples simulated according to the PDF p(zn:n+`|y0:n). Note that

the approximation given by Equation 29 is equivalent to the standard Monte Carlo method for evaluating

probability integrals as a mathematical expectation. Note also that this method has a well-known drawback

in cases of small values for P (Ū), by the fact that a huge number of simulations are required to achieve

acceptable estimation accuracy, which may increase the computational cost significantly. By PFP-SubSim,

P (Ū) can be straightforwardly evaluated via the the conditional probabilities involved in Subset Simulation

(recall Equation 17):

P (Ū) = P (Ū1)

m∏

j=2

P (Ūj |Ūj−1) ≈ Pm0 (30)

Figure 8a shows estimations of the probability of prospective failure P (Ū) obtained at different prediction

instants n using comparatively the simulation engines of PFP-SubSim algorithm and Algorithm 2. To avoid

an excessive computational cost for this exercise, the simulations are restricted to lie within the interval

(n, 105] ⊂ N, since such interval is enough to highlight the differences between both algorithms. The CPU

times required by each algorithm are plotted against the prediction instants in Figure 8b, which have been

obtained using a 3.5 GHz double-core system. The results shown for Algorithm 2 were obtained using a

large enough amount of samples for the estimation of P (Ū) to be sufficiently accurate, hence used here as

benchmark values. Observe that the estimations of P (Ū) produced by PFP-SubSim algorithm agree well

with the benchmark values given by Algorithm 2, even when PFP-SubSim requires significantly less CPU

time. Note also that the predicted probability values are high in comparison to P0 = 0.2, hence a significant

improvement in efficiency is expected for PFP-SubSim algorithm if the comparison is performed for failure

events of lower probability values. To this end, an additional comparative exercise has been carried out by

using the unit coefficient of variation (c.o.v.) 4 as a quality indicator of the P (Ū) estimate. The c.o.v. is used
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since it gives a measure of efficiency that is inherent to the algorithm because it is invariant to the number of

simulated samples3 [25]. This is of special interest for our exercise since the total amount of samples required

by PFP-SubSim algorithm varies depending on the failure probability value to be estimated. The results are

reported in Figure 9 for both algorithms in terms of the unit c.o.v. versus different threshold levels, which

correspond to decreasingly lower values for P (Ū) estimates (labeled by the text box). In this exercise, the

P (Ū) estimations are evaluated at cycle n = 8 ·104. To quantitatively assess the statistical properties for the

prognostics estimates, the numerical values of each plot from Figure 9 are obtained by considering the mean

of 200 independent runs of both algorithms. Observe that when PPF-SubSim algorithm is employed, the

unit c.o.v. values increase slowly towards the region of thresholds that entail lower probability values (higher

threshold values for matrix micro-cracks density), whilst for Algorithm 2 the unit c.o.v. grows steeply in that

region. However, the performance of both algorithms is fairly similar for higher probability values, (say of

the order of P0 = 0.2), which confirms that PFP-SubSim gets its highest efficiency when predictions based

on simulating rare events are required. Further discussion can be provided by comparatively examining

PFP-SubSim with other sampling-based prognostics methods for uncertainty propagation [34, 59], or by

exploring methodologies to enhance Subset Simulation efficiency [60]. However they are considered out of

the scope of this work.

3Any stochastic algorithm for estimating PŪ has a c.o.v. of the form c.o.v. = 4/
√

NT
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Figure 9: Results for the unit c.o.v. of P (Ū) obtained using PFP-SubSim algorithm as compared to that obtained using

Algorithm 2. The corresponding failure probability is labeled by a text box.
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5. Conclusions

This paper presented a novel prognostics algorithm, the PFP-SubSim algorithm, that combines the prog-

nostics principles with the Subset Simulation method. The algorithm gets its efficiency by adaptively drawing

samples over a nested sequence of intermediate failure regions (subsets), until a predefined final region is

reached. These regions were defined in an adaptive manner, which avoids preliminary calibrations. An exam-

ple of application along with a case study were provided to illustrate the computational efficiency that can

be gained with PFP-SubSim. The results indicated that our algorithm is highly efficient for the prognostics

of processes involving rare-event simulations, whilst its behavior is fairly similar to a standard prognostics

algorithm when probabilities are not so small. For that reason, PFP-SubSim can be considered as a general

purpose prognostics algorithm, which is specially suited for rare-event prediction. Further research is needed

to investigate the extension of the proposed algorithmic framework for the case of multidimensional state

spaces (say nz > 10). In particular, an improvement of much interest would be the application of adaptive

methods to optimally scale the artificial evolution of the model parameters in multidimensional state spaces.
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