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Modelling and parametric study of the re-anchorage of ruptured tendons 1 

in bonded post-tensioned concrete 2 
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Abstract 4 

The contribution of ruptured tendons to the residual strength of bonded post-tensioned 5 

concrete structures is currently assessed based on pre-tensioned concrete bond models. 6 

However, this approach is inaccurate due to the inherent differences between pre-tensioned 7 

and post-tensioned concrete. In this paper, a non-linear 3D finite element model is developed 8 

for the re-anchoring of a ruptured tendon in post-tensioned concrete. The model is validated 9 

using full-field displacement measurement from 33 post-tensioned concrete prisms and 10 

previous experimental data on beams from the literature. The influence of different 11 

parameters was investigated, including tendon properties (i.e. diameter, roughness), duct 12 

properties (i.e. diameter, thickness, material), initial prestress, concrete strength, grout 13 

strength, grout voids, stirrups, and strands, on the tendon re-anchorage.  The most influential 14 

parameters are found to be tendon and duct properties. 15 
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1. Introduction 19 

Bonded post-tensioned concrete had been considered as a durable form of construction 20 

because of the multi-layered protection for the prestressing steel. However, many post-21 

tensioned concrete bridges have been reported to have suffered ruptured tendons due to 22 

corrosion, which led to total structural collapse in some extreme cases (Concrete Society, 23 

2002, Highways Agency et al., 1999, NCHRP, 1998). Previous investigations showed that a 24 

ruptured tendon is able to re-anchor into the surrounding grout, which is mainly designed as a 25 

corrosion protection, and, as a result, contributes to the residual structural capacity of the 26 

structure (Highways Agency, 1995, Buchner and Lindsell, 1987b). While much effort has 27 

been devoted to developing corrosion detection techniques, little attention has been given to 28 

assessing the structural capacity of bonded post-tensioned concrete structures with ruptured 29 

tendons. 30 

Approaches to the structural assessment of damaged post-tensioned bridges often utilise pre-31 

tensioned models or empirical bond slip relations to approximate the re-anchorage length 32 

(Highways Agency et al., 1999, Cavell and Waldron, 2001, Coronelli et al., 2009). In some 33 

cases, the re- anchorage of tendons is completely ignored (Jeyasehar and Sumangala, 2006, 34 

Zeng et al., 2010, Watanabe et al., 2011). However, this is not appropriate. Wrong estimation 35 

of the re-anchoring phenomenon for a ruptured tendon can result in inaccurate predictions of 36 

the residual structural capacity. Accurate prediction enhances the process of decision making 37 

and helps in decreasing the maintenance cost. Equally important, it minimises disruption and 38 

avoids unnecessary replacement or strengthening work. Therefore, this paper aims to develop 39 

a 3D non-linear finite element (FE) model to simulate the re-anchorage phenomenon of the 40 

ruptured tendon in bonded post-tensioned concrete. The model will then be used in a 41 

parametric study to investigate the influence of different parameters. This will help improve 42 
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the understanding of the behaviour of bonded post-tensioned concrete structures with 43 

ruptured tendons and facilitate the prediction of their residual structural capacity. 44 

This paper presents the background of bond in post-tensioned concrete in Section 2. Section 3 45 

presents a 3D non-linear FE model for the re-anchorage of a ruptured tendon.  Section 4 46 

shows the experimental procedure used in the validation of model, which is used to validate 47 

the numerical model in Section 5.  Section 6 presents a parametric study, which was 48 

performed using the developed FE model. Conclusions are summarised in Section 7.  49 

2. Bond in grouted post-tensioned concrete  50 

Bond between steel and grout is attributed to adhesion between steel and grout, friction 51 

between steel and grout, and the mechanical resistance. The adhesion always has an 52 

insignificant influence on the load-deformation response of the structure, because the 53 

adhesion fails after a very small relative slip (Marti et al., 2008, Cairns et al., 2007). The 54 

mechanical resistance only contributes to bond when deformed steel bars are used.  However, 55 

when smooth strands are used, a strand slips through the grout following the pre-shaped 56 

groves without shearing off the concrete (fib, 2000, Abdelatif et al., 2015). Therefore, the 57 

friction between steel and grout is largely responsible for the transfer of stress into the 58 

surrounding material. In the following paragraphs, the literature on bond in grouted post-59 

tensioned concrete is chronologically presented.  60 

In 1960s, experiments on 19 beams were conducted to investigate the effect of grout 61 

properties on the re-anchorage length, indicated as “transmission length”, and the structural 62 

behaviour of bonded post-tensioned concrete beams (Geddes and Soroka, 1963, Geddes and 63 

Soroka, 1964).  The investigations showed that the “transmission length” is independent of 64 

time, but depends on the compressive strength of the grout. 65 
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In controlled demolition tests in the eighties, important results about structures suffering from 66 

rupture of tendons were revealed (Buchner and Lindsell, 1987b, Buchner and Lindsell, 1988). 67 

These results were: 1) the ruptured tendon is able to re-anchor into surrounding material over 68 

a certain length known as the re-anchorage length; 2) the re-anchorage depends on the grout 69 

condition, friction between individual wires or strand within a tendon, and the level of 70 

confinement provided by shear links. 71 

The Model code 1990 (MC90) introduced a model for bond in post-tensioned concrete. It is 72 

based on bond between concrete and the outer surface of tendon sheathing (CEB-FIP MC90, 73 

1990). In reality, however, the bond actually develops between pre-stressing steel and grout 74 

rather than between pre-stressing steel and concrete. This model for bond in post-tensioned 75 

concrete was removed in the latest version of the model code MC2010, (fib, 2010). 76 

The UK Highways Agency, in DMRB BA51/95, has proposed a conservative empirical 77 

relationship to estimate the re-anchorage length of a ruptured bonded post-tensing tendon 78 

(Highways Agency, 1995). It modified the BS5400 transfer length model (BS 5400, 1990) for 79 

pre-tensioned concrete to account for multi-strand tendons. The model assumes linear 80 

distribution of tendon stresses over the re-anchorage length.  81 

In 2001, FE and experimental investigations were conducted to study the dynamic bond 82 

characteristics of smooth pre-stressing bars that are embedded in grout (Belhadj and Bahai, 83 

2001). The study demonstrated the importance of friction in controlling the slip of pre-84 

stressing steel in grout. In another study in 2008, the influence of emulsfiable oil, which is 85 

used as a temporary corrosion protection, in bond behaviour in bonded post-tensioned 86 

concrete was investigated. The results showed a reduction on bond shear stress for treated 87 

strands compared to untreated ones (Marti et al., 2008, Luthi et al., 2008). 88 



5 
 

An empirical relation was proposed in 2011 to calculate the re-anchorage length, which is 89 

referred to as “the size of the stress-decreasing region”, based on experiments on nine beams 90 

subjected to tendon cutting (Watanabe et al., 2011). The proposed relation assumed constant 91 

bond stress over the re-anchorage length, which gives a linear stress distribution. This 92 

assumption contradicts with the findings of other experimental observations (Geddes and 93 

Soroka, 1964, Coronelli et al., 2009). 94 

Most of the reviewed literature that addresses the bond of post-tensioned tendons aims to 95 

study the impact of certain parameters on the bond mechanism rather than developing a 96 

model for the re-anchorage of the tendon. Therefore, in 2012, the authors developed an 97 

analytical model based on the linear thick-wall cylinder theory and the Coulomb friction law 98 

to estimate the stress distribution in the tendon after the rupture and hence the re-anchorage 99 

length (Abdelatif et al., 2012), Eq. (1).  100 
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 (1) 

Here fs is tendon stress at distance x from the rupture point, α is a factor to account for voids in 101 

the grout, μs and Es are the Poisson’s ratio and the Young’s modulus of steel. A and B are 102 

coefficients depending on geometry and material properties of steel, concrete, grout and duct 103 

that can be calculated as shown in (Abdelatif et al., 2012). Eq. (1) estimates the re-anchorage 104 

length when the stress in the pre-stressing steel (fs) is substituted by the effective pre-stress (fse). 105 

The model has been verified using an axisymmetric FE model and validated experimentally 106 

(Abdelatif et al., 2013). The results of axisymmetric and analytical model show that the stress 107 

on the grout might exceed the tensile strength. Therefore, non-linear material behaviour 108 

should be considered. 109 
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3. 3D non-linear FE modelling of the re-anchorage of ruptured tendons 110 

In this paper, an FE package ABAQUS (Dassault Systemes Simulia, 2010) is used to model 111 

post-tensioned concrete members with a single wire. The modelling of the post-tensioned 112 

concrete components (i.e. concrete, grout, steel and duct), simulation of post-tensioning, 113 

tendon rupture, and the solution algorithms are discussed in this section. All post-tensioned 114 

concrete components are modelled using 8-node isoparametric elements with reduced 115 

integration points to minimise the cost of computation. The reduced integration method 116 

improves the computational efficiency without losing the accuracy of the results (Koh and 117 

Kikuchi, 1987). 118 

3.1 Modelling concrete, grout, tendon and duct elements 119 

3.1.1 Concrete 120 

The magnitude of the radial stresses (compression) in concrete is always less than the 121 

magnitude of the circumferential stresses (tension) as shown in Eq. (2), based on thick-wall 122 

cylinder theory (Timoshenko et al., 1974).  123 

r
r r

r



 


 


 (2) 

This suggests that the compressive radial stress ( r ) will be less than the magnitude of 124 

concrete tensile strength (  ). Therefore, the behaviour of concrete in compression was 125 

modelled as linear-elastic.  126 

In tension, the behaviour of concrete is modelled as linear-elastic up to its tensile strength (ft) 127 

which is taken here as a tenth of the concrete compressive strength. The post-cracking was 128 

modelled using the Concrete damage plasticity (CDP) model in ABAQUS (Dassault 129 

Systemes Simulia, 2010) with Hillerborg’s fracture energy cracking concept (Hillerborg et 130 
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al., 1976) and assuming linear tension softening. More details about the CDP parameters used 131 

are discussed elsewhere (Abdelatif et al., 2015).  132 

3.1.2 Grout  133 

The grout material was modelled in a similar way as the concrete elements. According to 134 

EN447, a water cement ratio w/c of 0.4 is recommended for grout in prestressing tendons. 135 

For this w/c, the values of fracture energy, Gf, were found to be in the range of 22-26 N/mm 136 

(Padevět and Zobal, 2011). In this study the averaged value of 24 N/mm was used. 137 

3.1.3 Prestresing steel, duct, and anchor plates 138 

Post-tensioning tendons are usually stressed to a level below the yield stress. Therefore, 139 

tendon, steel duct, and anchor plates are modelled using linear elastic material model 140 

adopting the idealised stress-strain constitutive model in both tension and compression (CEB-141 

FIP MC90, 1990). In this study, the Young’s modulus for steel material was assumed to be 142 

200 GPa. 143 

As noted in section 2, friction is the principal means of transferring stress from the tendon 144 

into the surrounding material for both smooth strands and wires.  Therefore only the frictional 145 

component was considered in modelling bond in this work.  The pressure in the frictional 146 

component is generated by the radial expansion of the tendon after rupture as a result of the 147 

Poisson effect, Abdelatif et al., 2015.  In this work, only tendons made from a single wire are 148 

considered to avoid the meshing problems that would occur for a helical strand.  For a given 149 

change in pre-stress the Poisson effect will give the same change in diameter for both strand 150 

and wire.  However, for the strand there is an additional effect that resulting from the 151 

mechanical interlocking of the wires making up the strand.  Therefore, modelling the tendon 152 

as a wire will provide a lower bound on the bond and hence a conservative estimate of the re-153 

anchorage length. 154 
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3.2 Simulation of post-tensioning process 155 

To simulate the interface between steel-grout, grout-duct, and duct-concrete surface-to-156 

surface contact elements were used. The tangential behaviour between steel and grout was 157 

modelled using Coulomb friction law with zero cohesion and 0.4 coefficient of friction 158 

(Abdelatif et al., 2012, Abdelatif et al., 2015, fib, 2000). Note that the type of corrosion 159 

usually found in post tensioned structures is the pitting corrosion, which is localised and 160 

occurs in grout voids due to the presence of chlorides and moisture. Therefore, in this study, 161 

the coefficient of friction between steel and concrete close to the tendon fracture was 162 

assumed to be unchanged by corrosion. Other contact interfaces (i.e. grout-duct, duct-163 

concrete and end anchors-concrete) were considered to be fully bonded. 164 

The slip between two paired nodes at contacted interfaces is considered to take place when 165 

the tangential friction exceed the static friction and the relative tangential displacement 166 

exceeds the specified tolerance. In ABAQUS by default, the tolerance set to 0.5% of the 167 

average length of all contact elements in the model (Dassault Systemes Simulia, 2010).  168 

The normal and tangential contact behaviours were solved using an augmented Lagrange 169 

multiplier algorithm and Penalty method, respectively. 170 

The model consists of three main solution steps: prestressing, grouting, and rupture.  171 

1) The prestressing was modelled by applying an initial stress equivalent to the 172 

magnitude of prestress on steel elements. The model was then solved in this first step 173 

to allow transfer of prestress from steel to concrete through the end anchorage. In this 174 

step, the grout elements, contact between post-tensioning steel and grout, and contact 175 

between grout and duct are deactivated (no stress on grout in this step).  176 

2) The grouting process was then simulated in the second solution step by activating the 177 

grout elements and grout’s contact elements with steel and the duct. Note that the 178 
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grout element remain un-stressed throughout this step. This is because the contact 179 

elements can be stablished between any two paired of nodes if they are within the 180 

predefined tolerance without displacing the nodes. 181 

3) In the third step the tendon rupture was simulated. The rupture of post-tensioning steel 182 

was modelled by deactivation steel elements at the location of the rupture, and then 183 

the model is solved for equilibrium. This simplification is supported by the fact that 184 

the corrosion causing rupture is localised and occurs in the form of pitting. With more 185 

localisation and high rate of corrosion, the pitting mechanism may produce points of 186 

stress concentration. Eventually this may lead to a sudden brittle failure after a 187 

negligible loss of material. 188 

The model was solved utilising a full Newton-Raphson solver under the static condition, with 189 

un-symmetric matrix storage to handle the contact solution. A small time step size, and 190 

therefore, a large number of increments were used to promote the convergence of the 191 

complex non-linear material behaviour and the solution of the contact problem.  192 

3.3 Mesh sensitivity 193 

The mesh sensitivity study was conducted for a bonded post-tensioned concrete prism (Fig. 194 

1) in order to find an optimum spatial discretization. The study shows that, 32 segments 195 

around the tendons and 10 mm element size in the longitudinal direction satisfied the mesh 196 

sensitivity investigations, Fig. 2. The influence on the model result for elements smaller than 197 

this was found to be insignificant (Fig. 3). 198 

4. Experimental work 199 

A number of laboratory investigations have previously been carried out to study the bond 200 

behaviour between grout and the post-tensioning tendons, as well as the quality performance 201 

of the grout (Marti et al., 2008, Minh et al., 2007, Minh et al., 2008). However, only limited 202 
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experiments were conducted to understand the re-anchoring phenomenon of ruptured 203 

tendons.  204 

In this section, a brief review of previous tests about measuring techniques, rupture 205 

simulation, and the size of test specimen will be given. 206 

In previous studies on monitoring strain changes after tendon rupture/release on post-207 

tensioned concrete, two types of strain gauges were used: the demountable 208 

mechanical (DEMEC) and the electrical gauges. The DEMEC strain gauges were used to 209 

investigate the effect of grout properties on transmission length on nineteen bonded post-210 

tensioned concrete beams (Geddes and Soroka, 1964). The electrical strain gauges were 211 

usually attached on the concrete surface to (Schupack and Johnston, 1974, Buchner and 212 

Lindsell, 1987a, Buchner and Lindsell, 1988) or attached to the pre-stressing steel (Coronelli 213 

et al., 2009, Watanabe et al., 2011). However, the tendon slippage after the rupture might 214 

break the attached electrical strain gauges (Coronelli et al., 2009).  215 

Because the simulation of the corrosion process is time demanding (Jeyasehar and 216 

Sumangala, 2006), the corrosion rupture was simulated by releasing the prestress force at the 217 

location of rupture. This can be done either by using nuts to simulate the rupture at the end 218 

(Geddes and Soroka, 1964) or by cutting the tendon through a prefabricated hole using a 219 

flame torch (Schupack and Johnston, 1974) or saw (Coronelli et al., 2009, Watanabe et al., 220 

2011). 221 

Different sizes of specimens were used in previous experimental investigations. Experiments 222 

were conducted on real bridge girders (Buchner and Lindsell, 1987a, Buchner and Lindsell, 223 

1988), laboratory beams with large cross section (Schupack and Johnston, 1974) and long 224 

spans (~10 m) (Tanaka Y. et al., 2001), and on 3-5 metre beams (Coronelli et al., 2009, 225 

Geddes and Soroka, 1964, Watanabe et al., 2011). 226 
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The drawbacks of the previous experiments on the behaviour of the ruptured tendon can be 227 

summarized in three points: 228 

 The use of electrical resistance strain gauges or DEMEC gauges restricts the number of 229 

the measuring points based on the specimen length. This will influence the prediction 230 

of strain profile along the tendon 231 

 Simulating tendon rupture by saw cutting might disturb and damage the grout.  232 

 Conducting experiments on large beams or in a real bridge beams restricts the number 233 

of parameters to be varied for practical and cost issues. 234 

These drawbacks can be resolved by measuring the full-field displacement (instead of strain 235 

gauges) after the rupture on small prisms (instead of beams).  236 

In this study, the 3D Electronic Speckle Pattern Interferometry (ESPI) system was utilised to 237 

measure the full field displacement on 500 mm long post-tensioned concrete prisms. ESPI 238 

has proven to be a valuable alternative to conventional displacement measuring techniques 239 

(Jones and Wykes, 1989). It provides considerably more information, such as full-field 240 

measurement, compared to the conventional method. The rupture of the tendon was simulated 241 

by undoing nuts of a special type of anchor (instead of using saw cutting or accelerated 242 

corrosion), which was designed for the purpose of the tests (Fig. 1). Undoing nuts also gives 243 

a sufficient number of steps/images to be capture by the ESPI system throughout the test. 244 

4.1 Test setup 245 

33 Concrete prisms of 500x100x100 mm with an embedded duct along the centre were cast 246 

and then post-tensioned using a single pre-stressing wire (Fig. 1). The wire was tensioned 247 

using a manual hydraulic prestressing jack. The prestressing load was controlled by means of 248 

a load cell and adjusted with a bespoke extended anchor system before grouting. The prisms 249 

were grouted vertically from the anchor side using a manual pointing gun.  250 
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As illustrated in Fig. 4, the post-tensioned concrete prism was then bolted down to a vibration 251 

isolation table and two rounded bars were inserted below the prism to minimize expected 252 

downward movement during the test (because of the sensitivity of the ESPI system to rigid 253 

body motion). Two different support setups were used in this test to investigate the influence 254 

of the support position on the tendon re-anchorage. In the first one, the prism was bolted 255 

down from the releasing end (live end), and in the second, the prism was fixed at the other 256 

end (dead end). This support boundary condition (bolting-down) was represented in the FE 257 

model by fixing the nodes at the bottom of the end-plate.     258 

The rupture of the tendon at the end of the prism (i.e. anchor) was simulated by gradually 259 

releasing the nuts between the extended anchorage plates (Fig. 1) in many steps. A load cell 260 

was used to monitor the level of prestress during releasing steps and to record the tendon 261 

force before and after the test to eliminate the prestress losses.  The full-field displacement at 262 

the concrete surface after prestress release was measured using ESPI, Fig. 4.  263 

One of the intrinsic limitations to be avoided in ESPI measurements is the rigid body motion 264 

(RBM). The presence of rigid body motion (i.e. movement of the sample) locates the speckle 265 

pattern fringes away from the surface of the tested object (Jones and Wykes, 1989). 266 

Therefore, fringes can become unrelated to the surface displacement. This is a major 267 

disadvantage of the ESPI system, which limits its application. The correction of such errors 268 

might be difficult or impossible to account for and it is important to minimise this error by a 269 

suitable design of the testing setup. In this study, two LVDTs were used to monitor the 270 

prisms’ rigid body motion. One third of the prisms used in this study were excluded because 271 

of the presence of the rigid body motion. 272 
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5. Model validation 273 

The validation was conducted by comparing the results from the FE model with full field 274 

displacement at the concrete surface of post-tensioned concrete prisms. Many parameters 275 

were varied to examine the 3D FE model, these include: tendon diameter, duct material, 276 

prestressing force, concrete strength, grout strength, reinforcement and support setup (Table 277 

1). To increase the range of validation, previous experimental results on beams were also 278 

used to validate the FE model. The FE model stress profile was also compared to that from 279 

the analytical model proposed by the authors, Equation (1). 280 

5.1 Model validation against ESPI data 281 

The full-field displacement that was obtained from the ESPI test was compared with the 3D 282 

non-linear FE model displacement contour map in the longitudinal direction (Fig. 5 and Fig. 283 

6). The comparison shows a reliable simulation of 3D non-linear model for re-anchoring 284 

behaviour.  285 

From the contour maps, the displacement profile at the level of the tendon can be extracted 286 

for each prism (Fig. 7 and Fig. 8).  In order to accommodate the numerical model (Abdelatif 287 

et al., 2012) in the comparison, all results are normalised to the maximum displacement. 288 

Based on the impact of the rigid body motion on the test results, the results for negligible 289 

rigid body motion (c≤3μm) are given in Fig. 7 while those with small rigid motion (3μm 290 

≤RBM≤10μm), are presented in Fig. 8. All the results for specimens with excessive rigid 291 

body motion group ((RBM≥10μm) were excluded for the reasons discussed in Section 4.1. 292 

From observations, it was found that the prisms which were fixed from the far end (i.e. dead 293 

end) exhibit less rigid body motion compared with those which were fixed from the releasing 294 

end (i.e. live end).  295 
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Both of the analytical and 3D non-linear FE re-anchorage models show satisfactory 296 

prediction of the real behaviour (Fig. 5 to Fig. 8). In a few cases, the agreement at the end the 297 

prism is poor; this can be due to the fact that the intensity of the laser at the end is quite low. 298 

This reason limits the use of ESPI system with large specimens (Jones and Wykes, 1989).  299 

5.2 Model validation using data from previous tests on beams 300 

In addition to the experimental work done as a part of this study, data from previous 301 

experiments on post-tensioned concrete beams were used to validate the proposed model 302 

(Geddes and Soroka, 1964). The beams had dimensions of 5 inch (127 mm) width by 6 inch 303 

(152.5 mm) height and were post-tensioned using a single 7/8 inch (22.225 mm) post-304 

tensioning bar which was enclosed by 45mm/49mm steel duct filled with grout. The re-305 

anchorage length was estimated at 95% of the average maximum strain (95% AMS) method 306 

(Russell and Burns, 1993, Abdelatif et al., 2012). 307 

Fig. 9 shows normalised strain profile of the experimental data, 3D non-linear FE model, linear 308 

theoretical model, and Highways Agency model (Highways Agency, 1995). All strain data 309 

were normalised to average maximum strain. Good agreement between the proposed models 310 

(FE and analytical) with the experimental data are observed. The re-anchorage length is over 311 

predicted as 29% and 5% of the experimental value using the analytical and 3D FE model, 312 

respectively. The 29% is because of non-linear material behaviour is ignored while the 5% is 313 

regarded as acceptable. It is worth mentioning that the FE model runs in about three hours 314 

compared the milliseconds for the analytical model. In contrast, the Highways Agency model 315 

(DMRB BA51/95) overestimated the re-anchorage length by 125% from the experimental 316 

value assuming a linear stress profile which is clearly contradicted with the experimental results. 317 

The DMRB The DMRB BA51/95 overestimation of the re-anchorage length (and thereby 318 

underestimation of the residual capacity) could lead in practice to increased maintenance cost, 319 

traffic disruption and unnecessary replacement or strengthening work (Abdelatif et al., 2016).  320 
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5.3 Stress distribution across the concrete section 321 

The von Mises contour plot on the cross section at the end of post-tensioned concrete beam 322 

after tendon rupture is shown in Fig. 10. It was found that, the stress contours in concrete tend 323 

to take a circular shape around the tendon. This finding supports the assumption of the thick-324 

wall cylinder theory, which was used in development of the analytical model in Equation (1) 325 

(Abdelatif et al., 2012) and are in line with previous findings (Abdelatif et al., 2015).  326 

6. Parametric study on factors affecting the tendon re-anchorage 327 

Using the 3D non-linear FE model, the influence of different parameters on the re-anchorage 328 

of the ruptured tendon can be assessed. In this parametric study, the influence of the diameter 329 

and surface roughness of post-tensioning steel, diameter, thickness and material of sheathing 330 

(i.e. duct), initial prestress, concrete strength, grout strength, voids in the grout, and shear 331 

links, on the re-anchorage of a ruptured tendon are investigated. Unless stated otherwise, the 332 

beam that was used in this study has the properties shown in Table 2. The cross section of the 333 

beam was chosen from previous literature, (Coronelli et al., 2009), while the length was 334 

chosen to just occupy the re-anchorage length (to minimize the computational cost). 335 

Re-anchorage length normalised to the diameter of the post-tensioning steel (lr/d) and the 336 

effective prestress is normalised to the initial prestress (fse/fsi) were considered as reference 337 

values in this study.  338 

Studying the large number of parameters in this study was not possible without the aid of 339 

high performance computing cluster using eight CPUs with 16 GB RAM at the HPC unit in 340 

the University of Nottingham.  This greatly reduced the computational cost. 341 
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6.1 Diameter of post-tensioning steel 342 

Fig. 11 shows the influence of the tendon size on the re-anchoring behaviour in the case of a 343 

constant ratio of 2.3 for duct to diameter of post-tensioning steel. The length required for 344 

tendons to re-anchor is directly proportional to the diameter (Fig. 11b). It is found that the 345 

tendons with a smaller diameter tend to re-anchor in a short length and hold more force in 346 

comparison to those with a larger diameter (Fig. 11b and Fig. 11c). Fig. 11a shows that, the 347 

slope of the stress profile, which is related to the bond stress, is also affected by the size of 348 

the tendon. Small tendons tend to produce higher bond stress than large tendons, Fig. 11a.  349 

6.2 Surface roughness 350 

In this parametric study, the coefficient of friction was varied from 0.3 to 0.7 to investigate 351 

the influence of the surface roughness on the re-anchorage phenomenon. It was found that 352 

tendon re-anchorage depends significantly on the surface condition of the prestressing steel at 353 

the time of rupture (Fig. 12). Fig. 12 shows that rough tendons need a shorter length to re-354 

anchor compare to the smooth tendons. A similar conclusion was drawn in pre-tensioned 355 

concrete elements (Abdelatif et al., 2015). 356 

6.3 Initial prestress  357 

The investigation is conducted on a 3000 mm beam using 7 mm wire and 20 mm steel 358 

ducting with 1.9 mm thickness. In general, no significant influence of initial prestress on the 359 

re-anchorage phenomenon was observed (Fig. 13). The influences on the stress profile (Fig. 360 

13a) and the effective prestress (Fig. 13c) are negligible. The difference of 1000 MPa in the 361 

initial prestress, results only in less than 5d difference in the re-anchorage length (Fig. 13b). 362 

As the higher initial prestress always generates higher hoop stresses in concrete and grout 363 

(due to the higher exerted radial pressure at the interface), this suggests that the non-linear 364 

behaviour of the concrete and grout has insignificant influence on the tendon re-anchorage.  365 



17 
 

6.4 Concrete strength 366 

In most design codes, the concrete compressive strength is recommended to be more than 35 367 

MPa for prestressed concrete structures. However, in this study, concrete with 20-50 MPa 368 

compressive strength is used to observe the overall influence of concrete strength on the re-369 

anchoring. Generally, concrete with strength within the practical range does not show a 370 

significant influence on the tendon re-anchorage behaviour (Fig. 14). The difference of the 371 

re-anchorage length through the tested range of concrete strength is less than 2d while the 372 

difference in the effective prestress is about 2%. This finding supports the assumptions made 373 

in Section 6.3 that, the non-linear behaviour of concrete has an in significant influence on the 374 

re-anchorage of the ruptured tendon. 375 

6.5 Grout strength 376 

In this investigation, neither the stress distribution nor the effective prestress show significant 377 

changes due to the change of the grout compressive strength (Fig. 15). However, the re-378 

anchorage length shows less than 10d difference through the tested range (10-40 MPa), Fig. 379 

15b. In other words, each 5 MPa increase in the grout strength results in only 1.5d decrease in 380 

the re-anchorage length in this simulation. This finding is in agreement with previous 381 

experimental results (Geddes and Soroka, 1964, Watanabe et al., 2011) and observations 382 

during demolition of bridge girders (Buchner and Lindsell, 1987b). This could be due to the 383 

confinement introduced by the duct to the grout. 384 

6.6 Presence of the grout voids within the re-anchorage length 385 

Presence of voids on the grout is known to affect the re-anchorage behaviour of ruptured 386 

tendons in addition to creating a corrosive environment (Cavell and Waldron, 2001). In this 387 

investigation, three sizes of voids are considered: 25%, 50% and 100% void across the grout 388 

section (Fig. 16). Voids of 200 mm length (15.75d) were introduced in the grout to 389 

investigate the impact of grout voids on the re-anchorage mechanism. These voids were 390 



18 
 

located to start at 100 mm far from the end of the prism. The results show that, the presence 391 

of grout voids within the re-anchorage zone makes a significant change in the prestress 392 

profile and results in much longer re-anchorage length, Fig. 17a and Fig. 17b. If the beam is 393 

long enough for the tendon to re-anchor, no significant drop will occur in the effective 394 

prestress, Fig. 17c. The re-anchorage length of the voided tendons was approximated in a 395 

previous study by adding the void’s length to the non-voided re-anchorage length (Cavell and 396 

Waldron, 2001). However this study shows, the re-anchorage length is increased by 67%, 397 

114%, and 142% of the void’s length for 25%, 50%, and 100% of void in the grout cross 398 

section, respectively.  399 

6.7 Duct diameter (Grout thickness) 400 

An increase in the diameter of the duct increases the grout thickness. Thicker grout allows the 401 

tendon to deform in the longitudinal direction more than the thinner grout. Therefore, tendons 402 

with a large duct diameter (thicker grout layer) were found to have a longer re-anchorage 403 

zone, a higher prestress and less bond stress in comparison with tendons with smaller duct 404 

diameter (thinner grout layer), Fig. 18.  405 

6.8 Duct thickness 406 

The practical range of duct thickness is 0.25 mm for steel ducts, 2.5-3.0 mm for 407 

polypropylene (PP) ducts, and 4.0-6.0 mm for high density polyethylene (HDPE) ducts 408 

(Hewson, 2003). A steel duct with outer diameter of 30 mm was used to examine the impact 409 

of ducting thickness on the re-anchorage behaviour. It is found that, increasing the duct 410 

thickness increases the level of confinement around the post-tensioning steel which results in 411 

a shorter re-anchorage length (Fig. 19). No significant influence is observed on the effective 412 

prestress (Fig. 19c). 413 
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6.9 Duct material  414 

The ducts used in post-tensioned concrete are usually manufactured from steel, 415 

polypropylene (PP), and high density polyethylene (HDPE). These materials, in addition to 416 

polyvinyl chloride (PVC), which is used in this study, were considered to investigate the 417 

influence of ducting material on the re-anchoring phenomenon. The investigation considered 418 

a 6000 mm beam that was post-tensioned to 750 MPa and injected with grout of 40 MPa 419 

compressive strength. The Young’s moduli were taken as 200 GPa, 3.0 GPa, 1.75 GPa, and 420 

0.8 GPa for steel, PVC, PP, and HDPE respectively. The parametric study shows that, the 421 

tendons with a duct of low Young’s modulus show poor re-anchorage (i.e. long re-anchorage 422 

length, small effective prestress and low bond stress) as shown in Fig. 20. The tendons with 423 

steel ducting show good re-anchorage behaviour compared to those with PP and HDPE ducts 424 

and less longitudinal deformation. 425 

6.10 Shear reinforcement  426 

Fig. 21 shows the influence of shear reinforcement (stirrup) on the re-anchorage of the 427 

ruptured tendon. In this simulation, no significant influence of stirrups spacing on the re-428 

anchorage of the ruptured tendon was observed. This contradicts the observation during the 429 

controlled demolition of grouted post-tensioned concrete structures (Buchner and Lindsell, 430 

1987b). This contradiction can be attributed to: 431 

i) Experimental point of view: The observation of Buchner and Lindsell (1987b) were based 432 

on comparisons between beams of two different bridges with different properties, different 433 

number of strands in tendon and different level of prestress. 434 

ii) Modelling point of view: Modelling the behaviour of confined concrete correctly needs to 435 

consider the influence of confinement on the following factors in the CDP model: a) yield 436 

criterion; b) hardening and softening rule c) flow rule. None of the existing CDP type 437 

models includes all the three factors (Yu et al., 2010). However, the model shows good 438 
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agreement compared to experimental results in this study of post-tensioned concrete 439 

prisms with shear reinforcement as shown in Fig. 8e. 440 

7. Conclusions  441 

The paper has presented 3D non-linear finite element model for re-anchorage of a ruptured 442 

tendon in bonded post-tensioned concrete structures. The model was compared to previous 443 

analytical models and validated using experimental data on prisms, utilising the 3D 444 

Electronic Speckle Pattern Interferometry system (ESPI). The proposed model was also 445 

validated against previous experiments on beams and compared with the Highways Agency 446 

DMRB BA51/95 re-anchorage model. The developed model was found to be able to predict 447 

the re-anchorage length compared to the Highways Agency model DMRB BA51/95 which 448 

greatly overestimates the re-anchorage length. The findings related to the tendon re-449 

anchorage (modelling and experiments) are: 450 

 The experiments confirmed the re-anchorage of the ruptured tendon 451 

 The 3D finite element is able to capture the re-anchorage phenomenon 452 

 The developed models and experiments support the hypothesis that the re-anchorage 453 

phenomenon is influenced by the confining materials 454 

The 3D FE non-linear re-anchorage model was then used in a parametric study to investigate 455 

the influence of prestressing steel diameter and surface roughness, duct diameter and 456 

thickness, duct material, initial stress, concrete strength, grout strength, presence of voids in 457 

the grout, longitudinal reinforcement, shear links, and number of strands in the tendon on the 458 

re-anchoring behaviour of the ruptured tendon. The results of this parametric study is 459 

summarised as follows: 460 
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 The parameters that have a significant influence on the re-anchorage are tendon 461 

properties (i.e. diameter, roughness) and duct properties (i.e. diameter, thickness, and 462 

material) 463 

 Tendons with larger diameter have a long re-anchorage length whereas those with 464 

thicker duct and those with smaller diameter have a shorter re-anchorage length  465 

 Tendons with rough surfaces re-anchor better than those with smooth surfaces 466 

 Tendons with steel ducts re-anchor much better compared to those with polypropylene 467 

(PP), and high density polyethylene (HDPE) ducts 468 

The presence of voids in the grout around the ruptured tendons results in longer re-469 

anchorage length depending on the size of the voids  470 
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Table 1: Test matrix showing variation of model parameters 579 
R

em
ar

k
s 

P
la

in
 

co
n

cr
et

e 

R
ei

n
fo

rc
ed

 

co
n

cr
et

e*
*
 

P
la

in
 

co
n

cr
et

e 

E
n

d
 C

o
n

d
. 

S
et

u
p

-1
 

S
et

u
p

-2
 

S
te

el
 

f y
  

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

1
5

6
2
 

E
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

2
0

7
 

G
ro

u
t 

f c
  

6
8

.9
 

6
0

.8
 

4
7
 

3
9
 

3
1

.7
 

5
1

.7
 

5
3

.7
 

5
8

.1
 

7
1

.6
 

5
3

.7
 

1
5

.2
 

f t
  

2
.1

 

1
1

.1
 

7
.5

 

2
.5

 

9
.5

 

- 

1
2

.7
 

1
4

.8
 

1
2

.4
 

3
.2

 

3
.8

 

E
  

2
6

.8
 

2
4

.9
 

2
3

.7
 

1
8

.7
 

1
9

.2
 

- 

8
.5

3
 

2
1
 

2
5

.1
 

2
4

.5
 

1
3

.2
 

C
o

n
cr

et
e 

f c
  

5
7

.1
 

5
6

.9
 

5
0

.6
 

5
0

.6
 

4
6

.1
 

4
6

.6
 

4
9

.0
 

5
1

.2
 

5
2

.5
 

5
3

.7
 

4
6

.8
 

f t
  

3
.6

 

3
.9

 

3
.8

 

3
.9

 

3
.6

 

3
.6

 

4
.0

 

4
.1

 

4
.5

 

3
.6

 

2
.7

 

E
 

3
1

.0
 

3
7

.9
 

4
3

.2
 

4
3

.2
 

4
3

.4
 

4
3

.9
 

4
4

.0
 

4
2

.3
 

4
4

.0
 

4
4

.3
 

4
4

.6
 

D
u

ct
 O

D
/T

 

(m
m

)*
 

2
0

/1
.9

 

2
0

/1
.9

 

2
0

/1
.9

 

2
0

/1
.9

 

2
0

/1
.9

 

2
0

/1
.9

 

1
9

.0
5

/1
.5

9
 

2
0

/1
.9

 

2
0

/1
.9

 

2
0

/1
.9

 

2
0

/1
.9

 

D
u

ct
 

M
at

er
ia

l 

P
V

C
 

P
V

C
 

P
V

C
 

P
V

C
 

P
V

C
 

P
V

C
 

S
te

el
 

P
V

C
 

P
V

C
 

P
V

C
 

P
V

C
 

B
ar

 D
ia

. 

(m
m

) 
7

 

7
 

7
 

7
 

7
 

7
 

7
 

7
 

7
 

5
 

7
 

S
tr

es
s 

(M
P

a)
 

1
0

2
0
 

1
0

3
0
 

1
0

2
1
 

6
0

7
.5

 

7
5

5
.7

 

8
1

5
.7

 

7
8

3
 

8
8

0
 

8
0

7
.3

 

9
1

7
.3

 

1
0

3
2
 

- 

8
6

6
.5

 

9
8

0
.7

 

9
2

2
.3

 

8
7

2
 

1
0

9
0
 

8
3

2
.4

 

9
0

0
.4

 

8
3

7
.3

 

8
0

9
.6

 

9
2

2
 

1
0

9
8
 

9
5

3
 

8
6

1
.5

 

9
7

9
.7

 

9
5

3
.4

 

1
1

1
3
 

1
0

6
2
 

1
0

9
6
 

8
0

1
 

9
8

3
 

8
6

6
 

P
ri

sm
 

ID
 

P
1

 

P
2

 

P
3

 

P
4

 

P
5

 

P
6

 

C
1

 

C
2

 

C
3

 

G
1

 

G
2

 

G
3

 

C
G

1
 

C
G

2
 

C
G

3
 

C
C

1
 

C
C

2
 

C
C

3
 

D
m

1
 

D
m

2
 

D
m

3
 

C
1

0
 

C
2

0
 

C
3

0
 

S
T

1
 

S
T

2
 

S
T

3
 

V
1

 

V
2

 

V
3

 

G
r1

 

G
r2

 

G
r3

 

T
es

t 

N
o

. 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

1
1
 

*OD/T: Outer diameter/wall thickness 

** Four 6 mm steel bars were used as main reinforcement with 6 mm stirrups every 50 mm 
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Table 2: Properties of the beam used in the parametric study 580 

Beam Prestressing steel Grout Concrete Steel Duct 

width 

(mm) 

height 

(mm) 

Length 

(mm) 

Initial 

prestress 

(MPa) 

Diameter 

(mm) 

Es 

(GPa) 

fcg 

(MPa) 

fc     

(MPa) 

Outer 

dia. 

(mm) 

Thickness 

(mm) 

150 200 1500 1250 12.7 2.07 20 50 25 2.5 

  581 
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Figures captions  582 

Fig. 1: Geometry of the test specimens (dimensions are in mm) 583 

Fig. 2: Typical mesh arrangement for the prism models 584 

Fig. 3: results of mesh sensitivity study 585 

Fig. 4 Test setup: post-tensioned concrete prism with the anchorage system and ESPI camera on 586 

vibration isolated table 587 

Fig. 5: Prism G2 full field displacement: a) ESPI data; b) FE results (µm) 588 

Fig. 6: Prism C10 full field displacement: a) ESPI data; b) FE results (µm) 589 

Fig. 7: Deformation at concrete surface after release: a) Prism DM2; b) Prisms C10, C20 and C30; c) 590 

Prism V3 591 

Fig. 8: Deformation at concrete surface after release: a) Prism P5; b) Prisms C2 and C2; c) Prism G2; d) 592 

Prism CG1 and CG2; e) Prism ST1; f) Prism V2 593 

Fig. 9: Strain changes at concrete surface after the rupture at the level of the tendon 594 

Fig. 10: von Mises contours on a concrete cross section within the re-anchorage zone (MPa)   595 

Fig. 11: Influence of tendon’s diameter on: (a) Stress distribution; (b) Re-anchorage length; (c) Effective 596 

prestress 597 

Fig. 12: Influence of the tendon’s surface roughness on: (a) Stress distribution; (b) Re-anchorage length; 598 

(c) Effective prestress 599 

Fig. 13: Influence of the initial stress on: (a) Stress distribution; (b) Re-anchorage length; (c) Effective 600 

prestress 601 

Fig. 14: Influence of the concrete compression strength on: (a) Stress distribution; (b) Re-anchorage 602 

length; (c) Effective prestress  603 
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Fig. 15: Influence of the grout compression strength on: (a) Stress distribution; (b) Re-anchorage length; 604 

(c) Effective prestress  605 

Fig. 16: Size of the voids introduced in the grout 606 

Fig. 17: Influence of grout voids on: (a) Stress distribution; (b) Re-anchorage length; (c) Effective 607 

prestress  608 

Fig. 18: Influence of the duct diameter and grout thickness on: (a) Stress distribution; (b) Re-anchorage 609 

length; (c) Effective prestress 610 

Fig. 19: Influence of the duct thickness on: (a) Stress distribution; (b) Re-anchorage length; (c) Effective 611 

prestress 612 

Fig. 20: Influence of the duct material (a) Stress distribution; (b) Re-anchorage length; (c) Effective 613 

prestress 614 

Fig. 21: Influence of shear links on: (a) Stress distribution; (b) Re-anchorage length; (c) Effective 615 

prestress 616 

 617 
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