
Supplementary Material B 

Related Work on Automated IHC Scoring 

Automated image analysis is observed as a solution [1,2] to overcome the inter- and intra- 

observer variations found in conventional assessment of tissue slides. Hence, the automated 

scoring of routine H&E and IHC stained slides has received huge interest in recent years. In 

literature, several classical machine learning approaches [3–5] have been presented but recently 

deep learning based approaches have been profoundly employed for H&E and IHC histology 

image analysis [6,7].  

In literature, a wide range of handcrafted features was proposed for IHC scoring algorithms 

[4,5].  For instance, Choudhury et al. [8] proposed an averaged threshold measure (ATM) for 

scoring of digitized images of IHC stained tissue microarrays. A set of arbitrary chosen 

thresholds was selected, whereby an optimal threshold using the ATM is used for calculating 

the percentage of stained area. The proposed ATM statistic presented as a generalization of the 

HSCORE [9] statistic for scoring IHC slides. Reyes-Aldasoro et al. [10] presented an 

alternative approach for automated segmentation of microvessels in IHC tumor slides. For 

segmentation, distinguishing hues of stained vascular endothelial nuclei and tissue regions 

were explored to extract the seeds for a ‘region-growing’ model. Their post-processing of 

segmented microvessels from CD31 immunostaining contained three steps, closing 

morphological objects from tumour margins, combining isolated objects, and splitting objects 

into individual vessels with having multiple lumina. Although the thresholding approaches 

perform well on a specific dataset, they are likely to fare not as well on an unseen dataset as 

distinctive hues can be significantly varying. A potential reason of such variation lies in 

staining process, as the histology slides normally stained at different occasions with 

inconsistent concentrations often exhibit large variations in colour and appearance. Such 



differences in slide preparation make the colour and morphological appearance of tissue 

components more unpredictable.  

Kuse et al. [11] used local isotropic phase symmetry measure as a significant feature for beta 

cell detection and lymphocytes. By calculating the peak of median phase energy after stain 

normalization but due to heterogeneous appearance and often-clumped structure makes nuclei 

segmentation a non-trivial task. Khan et al. [5] used stain quantization for the scoring of 

Estrogen Receptor (ER) and Progesterone Receptor (PR) by determining the amount of 

chromatin material and protein content from IHC stained WSIs. Ali et al. [12] used 

astronomical algorithms for the scoring of ER on IHC stained images of breast cancer. 

However, in this contest the classical machine learning approaches have been outperformed by 

deep learning approaches. Most of the published algorithms are based on different approaches 

with different dataset whereas this contest provides a platform where participants can develop 

and validate the performance of their algorithms on same dataset.  

 

  



Description of Automated Methods  

The concise description of automated methods employed by top-ranked teams are described 

below. 

Team Indus 

In this approach, a deep convolutional neural network (CNN) was employed for predicting the 

Her2 score whereas for estimating the percentage of complete membrane staining, a set of 

handcrafted morphological features were extracted from H&E and IHC stained slides.  

Pre-processing: The patches with average edge strength lies higher then certain threshold were 

selected for training CNN. 

Her2 Score Prediction: The presented CNN architecture contains five convolutional layers, 

one concatenation layer with following two fully connected and one classification layer. After 

each convolution and fully connected layer, a ReLu activation was performed whereas for 

classification layer a softmax activation was placed. After convolution layers a concatenation 

layer was positioned. The concatenation layer combines the activation maps from the 

convolution layers and the average control tissue intensity for the corresponding WSI from 

which the patches were originated. The weights for training CNN were initialized using H&E 

normal initializations [13] and updated using mini batch gradient descent (learning rate = 

0.00015, weight decay = 10-6, Nesterov momentum = 0.95, batch size = 32). The CNN was 

trained over 41K patches generated each of size 224x224 from 52 training WSIs for 65 epochs. 

 

During testing, the trained network assigned a score to each patch of a WSI and to aggregate 

the patch scores into a single Her2 score following criteria was proposed. Let n0, n1, n2 and n3 

be the number of patches scored as 0, 1+, 2+ and 3+ respectively and N be the total number of 

patches generated from a WSI.  



If n3/N > 0.08: 

        predict 3+ 

else if n2/N > 0.4: 

        predict 2+ 

else if n1/N > 0.14: 

        predict 1+ 

else: 

        predict 0 

 

Percentage of Complete Membrane Staining (PCMS): To estimate the PCMS, first tumor 

regions were identified by extracting the morphological features from tumor and normal 

regions of H&E images.  

After performing stain normalisation [14], the hematoxylin channel was extracted to segment 

the nuclei using Otsu thresholding. Further, nuclei contours were fit around each individual 

structure and filtered on basis of area and eccentricity. This resulted in tumor identification 

regions by detecting the tumour nuclei based on their roundness and size. In order to estimate 

the extent of membrane staining, the morphological features were extracted from an IHC 

image. In addition, a contagious chicken-wire pattern was observed for complete membrane 

stained regions whereas other tissue components result in a fragmented/broken-up skeleton. 

Further, by filling holes in the chicken-wire skeleton and by measuring similarity with the 

original binary image the extent of membrane staining was estimated. 

The PCMS is estimated by calculating the ratio between extent of membrane staining and 

tumor identification regions as given below.  

𝑃𝐶𝑀𝑆 =  
 extent of membrane staining 

tumor identification regions
 𝑥 100      



MUCS 

In this submission, the well-known neural networks Alexnet [15]and GoogLeNet [16] were 

adapted by adjusting the layer specific parameters, such as kernel size, stride, and padding. 

There were three submissions from the MUCS team with two submissions using Alexnet 

(MUCS-1 and MUCS-2) and one using GoogLeNet (MUCS-3). 

Training: The training dataset was obtained by hand-picking the regions of interest from 52 

training IHC images that were considered to contain the most representative samples from each 

class. The regions were selected from the low resolution (0.625×) and mapped to the highest 

resolution (40×) whereupon each region was divided into 128 x 128 pixel patches. 

The MUCS-1 trained network had four output classes with corresponding Her2 scores from 0 

to 3+. MUCS-2 and MUCS-3 had an additional output class for the background. The 

background class contained the regions with texture having only a weak appearance of nuclei 

(without blueish or brownish colour).  The training dataset for MUCS-2 was extended by data 

augmentation (rotation and mirroring) and by adding the hand-picked regions from test images 

(without knowing the classification of the slide it originated from). The total patches for 

MUCS-1, MUCS-2 and MUCS-3 were 29000, 319000 and 33500, respectively. The training 

images were divided between actual training data (75%) and validation data (25%). For all 

three submissions, the base learning rate was set to 0.001, and the learning rate was dropped 

every one-third of the maximum iterations by a factor of 10 (γ=0.1). The mean pixel value was 

subtracted from the training dataset. 

Classification: For testing, the common regions from H&E and IHC were selected at a low 

resolution and those regions were mapped to maximum resolution to generate the patches for 

testing. Further, adaptive thresholding was applied to each patch, with an offset of 10, to 

produce a binary image. If the proportion of ones in the binary image was smaller than a factor 



of 0.9, then patch was classified with the trained neural network model, otherwise the patch 

was marked as background and therefore did not require classification. The Her2 score for a 

WSI was determined using the classified patches as follows: 

 Score 3+, if patches with class 3 was greater than or equal to 10% of total patches 

 Score 2+, if patches with class 2 was greater than or equal to 10%, or patches with class 

3 was between 1% and 10%, of total patches 

 Score 1+, if patches with class 1 was greater than or equal to 10% of total patches 

 Score 0, otherwise 

The confidence value for each WSI was calculated by averaging the confidence values of each 

patch. PCMS was calculated by summing the number of Score 3+ and 2+ patches and dividing 

the sum by total number of patches (excluding the background) as 

𝑃𝐶𝑀𝑆 = 100(𝑛2 + 𝑛3)(∑ 𝑛𝑠
3
𝑠=0 )−1   (2) 

where n is the number of patches given score s, s ∈ {0,1,2,3} 

MTB NLP  

A CNN was trained to predict the Her2 score for 128 x 128 patches of the WSI. Furthermore, 

as a post-processing step, a Random Forest model was trained to aggregate an estimated Her2 

score and percentages of cell membrane for the WSI. 

Pre-Processing: In the first, tissue regions were manually annotated at 40× by drawing regions 

from IHC stained slide images. A class label was assigned to each annotated region that 

corresponds to WSI GT score. In total, there were 272 annotated regions with an average size 

of 800 x 800. 

Patch Classification: The architectures similar to Alexnet [15] and VGG-16 [17] were trained 

to predict the Her2 scores but the results were only submitted for the architecture similar to 



Alexnet. The annotated regions were separated at case level by using 207 regions for training 

and the remaining 65 for validation. Each patch was randomly flipped and rotated to increase 

the training dataset and a dropout layer [18] was positioned to prevent the overfitting. The 

model was trained with a total of 8,575,000 patches and with cross entropy loss. 

For testing, each WSI split in to non-overlapping patches of 128 x 128 and fed in to the trained 

network for predictions. Further, connected component analysis based approach was carried 

out to merge 128 x 128 patches into clusters. For each of the class labels, aggregate metrics 

were computed for the WSI that captured the percent of the slide pixels.  

Aggregate Her2 Score and Percentage: To predict the Her2 score and PCMS process the 

aggregated metrics were computed during the patch classification. These metrics were used as 

predictors for a Random Forest classifier that produces that final class probabilities for each of 

the WSI. The same process was repeated using a Random Forest regressor to estimates for the 

percentage of cells that contained staining. 

The 5-fold cross validation was done on all of the 52 training images. In each fold, all of the 

test images were scored and the predicted scores and percentage estimates were averaged over 

all folds to produce the final estimates.  

VISILAB 

In this method, the state-of-the-art GoogLeNet [16] was implanted to predict the Her2 score 

and the percentage of complete cell membrane. 

Data Preparation: A handcrafted dataset was built. For this purpose, a set of representative 

patches of the four Her2 scoring classes were extracted from the ground truth WSIs. 

Additionally, an extra class was employed to collect background samples. These extracted 

patches from training WSIs were 68 x 68 pixels size each. A total of 5750 patches were selected 



with an average of 1150 patches per class. The dataset was further split in to training (75%) 

and validation (25%) dataset. 

Training: Among several state-of-art CNNs, GoogLeNet was finally selected for submission 

according to the results on validation dataset. The prepared dataset was used for training, by 

selecting 0.01 as base learning rate, with a decreasing policy over 50 epochs, using the 

Stochastic Gradient Descent. 

Classification: The algorithm takes a WSI and applies a grid technique to obtain the 

corresponding patches, with a similar size than the ones from the training dataset. These are 

later classified with the trained model, whose output is a class prediction and a percentage of 

confidence over that decision. 

Her2 Scoring: Once every single patch is classified, a single class score is provided for the 

WSI. The decision rule takes into account the percentage of patches that belongs to each class 

(omitting the background, which was treated as a separate class) using the following criteria: 

starting from class 3+ to class 1+, the first one to achieve at least 10% of patches is chosen as 

final decision. Regarding the percentage of cells with full membrane staining, an expert rule 

was developed. The knowledge basis came from the alternative techniques that were also 

developed, such as the calculation of the staining density for the nuclei. As a result, a 

relationship between the classes percentage distribution and the percentage of membrane cell 

staining was discovered. 

UCCSSE 

This method is based on characteristics curves, a novel feature descriptor for predicting the 

Her2 score.  In pre-processing phase, five regions of interest (ROI) were extracted from each 

WSI, each of size 1800 x 1200 at 20×. The only condition for selecting the ROIs was to select 

those regions that should not contain more than 30 % pixels as background. 



The segmentation step consists of identifying the tissue portion including the IHC stained 

membrane. The selected ROIs were first segmented in HSB and CIELab colour spaces. In 

addition, some colour filters and neighbourhood masks were used to segment the connective 

tissues and fat lobules that should be separated before calculating the PCMS.  

The essential part for the classification algorithm was the extraction of a characteristics curve 

for selected ROIs. The percentage-saturation characteristics curve was generated by varying 

the saturation limits from [0.1, 1] to [0.5, 1] in 20 steps by keeping the hue fixed. To plot the 

characteristics curve the percentage of stained region was calculated for each step by taking 

the ratio between segmented pixels to the number of pixels in an ROI. The characteristics 

curves have high discriminative appearance as shown in Fig 1. The curve always represents a 

smooth polynomial curve that can be accurately modelled using a cubic polynomial (best fit).  

 

It was also observed during experimental analysis that when the Her2 score is 1+, the starting 

region of the curve always starts above the 10% mark depicting the presence of weak and 

incomplete membrane staining of regions. For 3+ score, the curves were lying above the 30% 

mark that shows the existence of an intense and uniform membrane staining areas.  

RumRocks 

In this approach, the two-dimensional (2D) CNN [15,19] models were trained for pre-

processing and classification. First, as pre-processing step each WSI processed using 

deconvolution neural network (DCNN) and following by a CNN1 to select the desired patches. 

Furthermore, the selected patches were processed through a CNN2 to predict the Her2 score 

and the PCMS. 

Patch Selection: A low resolution representation of a WSI (0.3125×) was selected and passed 

through a DCNN to segment the tissue components. Next, the detected regions were divided 



into patches with only condition that selected patches should contain 50% or more region from 

area of interest. The subsampled patch coordinates were translated to 10× resolution for further 

processing. The CNN1 trained to accept or reject a subsampled patch based on its 

morphological appearance. The overview of neural network architectures are as given below 

𝐷𝐶𝑁𝑁1 = {𝐷1, 𝐷1, … … , 𝐷6 − 𝑈1, 𝑈2, … … , 𝑈5 − 𝐶2𝐷3\1 −  𝑆𝑔  } 

𝐶𝑁𝑁1 = {𝐷1, 𝐷1, … … , 𝐷7 − 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 −  𝐹𝐶 −  𝑆𝑔  }  (3) 

The notation of the architecture is as follows, 𝐷1 represents the down-sampling convolutional 

whereas 𝑈1 represents the up-sampling convolutional layer with 3 as kernel size and 1 as stride. 

After convolutional operations batch normalization, ReLu and max pooling operations were 

applied. 𝐹𝐶 represents fully connected layers and 𝑆𝑔 represents sigmoid function. 

Classification: For predicting the Her2 score and PCMS, a CNN2 with combination of residual 

layers [20] was employed. The batch dimensions were exploited in order to feed in multiple 

patches from the same WSI simultaneously. Instead of combining the prediction of individual 

patches through averaging or aggregating metrics, a tensor was reshaped to a vector once the 

spatial size has been significantly reduced and forward it through a 1D convolution layer. The 

overview of architecture CNN2 is given below  

𝐶𝑁𝑁2 = {𝐶2𝐷3\1 −  𝑟𝑒𝑠𝐵1, … … , 𝑟𝑒𝑠𝐵7 − 𝑓𝑙𝑎𝑡𝑡𝑒𝑛 − 𝐶1𝐷1\1, − 𝐹𝐶1 − 𝐹𝐶2 − 𝑆𝑔  }  (4) 

The CNN models were trained using the mean squared error loss function and the Adam 

stochastic gradient decent optimization method with initial learning rate of 10-3. The learning 

rate was reduced every 15,000 iterations by a factor of 1.5 and trained each network for between 

200,000 – 300,000 iterations. The average was calculated for each networks prediction to form 

an ensemble based score. 

FSUJena 



The algorithm for automated Her2 scoring was based on Alexnet [15] CNN. In this method, an 

activation matrix was extracted after convolution layers to compute the bilinear filters for 

predicting the Her2 score and PCMS. 

At the first, ROIs were manually probed and patches of size 227 x 227 were randomly extracted 

at 20×. The pre-trained version of Alexnet was used from ImageNet dataset for further training 

on contest dataset. For each patch in the training dataset, an activation matrix was extracted 

after convolutional layers. The activations can be represented as a tensor 𝑥 ∈  ℝ𝑤 × ℎ × 𝑑  

comprised of d-dimensional vectors in a 𝑤 × ℎ spatial grid. The bilinear features [21,22] were 

further computed as the Gramian 𝐺 matrix by summing up dyadic products along the spatial 

dimensions:  𝐺 =   ∑ 𝑥𝑖,𝑗𝑖,𝑗  , 𝑥𝑖,𝑗
𝑇 . The matrix 𝐺 contains the second-order statistics of the CNN 

features and have been found to be extremely useful for fine-grained recognition tasks. Then 

the square root and 𝐿2normalization of 𝐺 were employed to increase the numerical stability of 

further processing steps [22].  To differentiate among four scoring classes a multi-class logistic 

regression was used. It was also observed that using a pre-trained network on ImageNet dataset 

is also beneficial to avoid the overfitting issues. In preliminary results the bilinear features 

approach outperformed the conventional CNN activations. 

For testing a WSI and to predict the Her2 score, an average was calculated for all the random 

crops patches. To predict the PCMS the mean tumour cell percentage seen in the training set 

of for a particular class as an estimate.    

Huang’s Method (Huangch) 

In this approach, a range of handcrafted features extracted from the IHC stained slides after 

performing the stain deconvolution. The handcrafted features were then fed in to a model of 

multi-class AdaBoosted decision trees. 



Sampling: At the first, control tissue was extracted to developed a pseudo color space for stain 

deconvolution [23] to obtain the two staining vectors. Further, mean filtering was performed 

to record the local maximal points. The patches were selected from each WSI on the basis of 

local maximal points as they were representing the strongest Her2 stained over-expression 

signals 

Feature Extraction and Classification: A combined but numerically independent features 

vector space constructed by including Gabor Filtering, Features of Fractal Dimension by 

Differential Box-Counting [23], multi-wavelet methods, histogram statics methods, gray-level 

(over all colour channels) co-occurrence based methods [24,25] etc.  

For predicting the Her2 score and the PCMS, a model of multi-class AdaBoosted decision-

trees was employed to map the features vector of each patch to a predicted value. This model 

is known as Stagewise Additive Modeling using a Multi-class Exponential [26] loss function 

(SAMME).  The model composed by a series of decision-trees by assigning a weight to each 

decision-tree.  Whereas while training, a pool of decision-trees generated and after each 

iteration the best decision-tree was selected with its corresponding weight. After certain 

iterations, a group of decision-trees was selected for testing phase.   
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Fig 1: Characteristics curves and the corresponding Her2 score. The x-axis denotes 

range of the saturation value whereas y-axis denotes the calculated percentage from 

saturation limits. The predicted Her2 scores are also shown for each curve. 


