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ABSTRACT 

The sensitivity of a low-cost polymeric optical fibre humidity sensor based on transmittance 

changes due to evanescent wave absorption is reported using test measurements in an 

environmental chamber and of the skin. The layer-by-layer method was used to coat 30mm of 

the central unclad section of a multimode polymeric optical fibre with 7 layers of a hydrophilic 

film consisting of bilayers of poly(allylamine hydrochloride) and SiO2 mesoporous 

nanoparticles.  Sensor characterisation shows a decrease in light transmission as relative 

humidity increases as a result of refractive index changes of the coating deposited onto the 

optical fibre which correlates with a commercial capacitive humidity sensor. The sensitivity 

obtained for the sensor coated with an optimum 7 layers was approximately -3.87x10-3 and -

9.61x10-3 in transmittance percentage per RH percentage for the range of ~10% to ~75% RH 

and 90% to 97% RH, respectively. In addition, a response time of 1.5s can be seen for breath 

monitoring with the polymeric optical fibre humidity sensor. The proof of concept 

measurements made on the skin indicate that this sensor has the potential to be used to monitor 

humidity of the skin microenvironment within a wound dressing which can be used to provide 

better prognosis of healing. 
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1. Introduction 

Humidity measurements are important for several aspects of daily life, such as air conditioning, 

meteorological forecast and in industrial settings. Furthermore, there are medical conditions 

that would benefit from humidity monitoring, such as monitoring of air delivered to 

mechanically ventilated patients in critical care [1] and monitoring the microenvironment of 

chronic wounds [2]. Chronic wounds are a major global healthcare problem placing a 

considerable economic burden on the resources of healthcare providers. For example, in the 

UK alone, a recent analysis of the health economic burden of wounds [3] highlighted that ~2.2 

million wounds were managed by the publicly funded National Health Service (NHS) in 

2012/2013 requiring 18.6 million practice nurse, 10.9 million community nurse, 7.7 million 

GP and 3.4 million hospital outpatient visits. The annual NHS cost of managing these wounds 

is £4.5-5.1 billion (~4% of the entire NHS budget). A wound dressing that remotely monitors 

parameters associated with healing such as humidity presented on the wound 

microenvironment, wound exudate pH and proliferative cell levels within the wound could 

have a significant impact on these costs. This monitoring would enable clinical interventions 

to take place promptly but only when required, thus improving wound care and reducing the 

number of clinical appointments. 

 

Studies by Winter [2] have demonstrated the advantages of keeping a moist environment at the 

wound surface rather than allowing the wound to dry out. It has been shown that the healing 

rate is at least twice faster when the wound is covered by a dressing in order to maintain optimal 

hydration [4]. Moisture on wounds accelerates the epithelialization phase of wound healing by 

preventing scab formation over the wound bed. This increases migration of proliferative cells, 

such as fibroblast and endothelial cells that produces angiogenesis and promotes growth factors 

and keratinocytes, which results in faster dermal repair and reduced scarring of the wound [5] 

[6] [7]. Additionally, it has been shown that moist wounds decrease bacterial infection by the 

formation of a hostile antibacterial environment [8]. However an equilibrium in humidity 

should be reached in order to avoid skin breakdown and delayed healing [9] [10].  

 

In order to preserve a moist environment on the wound surface, humidity can be measured.  

The level of humidity is quantified by the term relative humidity (RH), which is defined as the 

ratio of water vapour present in the environment to the maximum amount of water that the 



environment can hold, expressed as a percentage. Several devices exist to measure humidity 

[11]; many of them are either expensive or not suitable to be embedded within wound 

dressings. Previous research has incorporated electrochemical sensors into wound dressings 

[12] [13] [14] but optical fibre sensors (OFS) have not yet been investigated in such a setting. 

These potentially offer a more convenient and reliable alternative method of monitoring 

humidity [15] [16] as they have low-cost fabrication, small size and diameter (micrometres), 

fast response and high sensitivity [17].  

 

Previous research has shown different approaches of humidity sensors based on silica core fibre 

[1] [18] [19]. However, it is known that a silica core fibre may not be suitable for use in a harsh 

environment due to its fragility after removing the cladding. In contrast, polymeric optical 

fibres (POF) have higher elasticity and strength to resist rough handling that makes them well 

suited to be embedded within wound dressings [20]. In the work presented in this paper, the 

fabrication and characterisation of a polymeric optical fibre humidity sensor (POFHS) is 

described. The unclad central region of the POF was coated by a hydrophilic mesoporous film 

based on poly(allylamine hydrochloride) (PAH) and SiO2 mesoporous nanoparticles 

(PAH/SiO2) using a layer-by-layer (LbL) deposition method [21]. The principle of operation 

of the POFHS is based on the measurements of the light intensity changes due to the interaction 

between the evanescent wave (EW) and the hydrophilic film, which changes its refractive index 

with humidity. 

 

The ultimate objective of this work is to develop an optical fibre sensor that can be embedded 

into a textile, such as wound dressings in order to provide humidity measurements of the wound 

microenvironment without removing the dressing and hence disturbing the wound healing 

process. Our work aims to provide a better prognosis of wound healing that can result in a 

reduction of hospitalization time, prevention of advanced treatments such as surgery, reduced 

referrals and hence reduced health care costs [22]. The ability to predict the efficiency of wound 

healing will help ensure patients receive the appropriate attention at the earliest possible stage. 

In this work, as an initial step, the fibre was embedded into a textile and humidity generated 

from the intact skin was measured to prove the concept. An example is also provided within a 

wound dressing. 

 



2. Material and Methods 

This section describes the sensor fabrication and monitoring process and two experiments that 

were carried out to demonstrate the sensitivity of the POFHS as a function of humidity: the 

first in an environment where humidity was controlled by flowing nitrogen through a gas 

chamber and another using humidity generated from the palm of a hand.  

 

2.1 Sensor fabrication 

ESKA SK-10 multimode POF (1.49 refractive index, 0.5 NA, Mitsubishi Rayon Co., Ltd.) with 

the core diameter of 240µm polymethyl-methacrylate resin (PMMA) and 5µm fluorinated 

polymer cladding was used. In order to facilitate interaction between the mesoporous thin film 

and EW the cladding was removed to expose the core in a region around the mid-section of the 

fibre. The optical fibre was placed within a holder made of Teflon containing a channel of 

dimensions 50mm length, 5mm width and 7mm height and exposed to acetone ((CH3)2CO) in 

order to remove the cladding. The diameter of the optical fibre after cladding removal was 

measured using a microscope (BX50F4, Olympus optical Co. Ltd.).  

 

Since the POF cladding is only 5µm thick, it can be easily removed. Nonetheless, it was 

observed that by removing also a small part of the core, a more uniform surface is achieved in 

order to obtain better film deposition and hence higher sensitivity due to enhanced interaction 

between EW and the humidity sensitive film. Scanning electron microscopy (SEM) (Philips 

(FEI) XL30 FEG ESEM) images from the unclad section of the fibre were taken in order to 

observe uniformity of the unclad surface of the fibre. For SEM measurements the unclad 

section of the fibre was coated with platinum (Pt) using sputtering coating method. 

 

Once the cladding and a part of the core are removed the humidity sensitive film is deposited 

using the LbL method. SiO2 mesoporous nanoparticles (SNOWTEX 20L, 40-50nm diameter, 

Nissan Chemical, Japan) were deposited with poly(allylamine hydrochloride) (PAH) to form a 

PAH/SiO2 hydrophilic material  which creates a higher humidity sensitivity compared with 

microporous and macroporous materials [23]. 

 



The PAH/SiO2 layers were deposited in three steps as illustrated in Figure 1 [24]. First, the 

unclad surface of the POF is placed within the Teflon holder. The core surface is activated by 

depositing 1wt% ethanolic KOH in order to functionalise it with OH- groups. After 20 min, 

KOH is removed using an aspiration pump and the fibre is rinsed and dried with deionized 

water and Nitrogen gas (N2), respectively. 

 

Second, the fibre is bathed with 0.17wt% of positively charged PAH (Sigma-Aldrich Co, UK, 

polycation, pH = 11) for 15 min. After the polycation deposition, the fibre is washed and dried 

again. The third stage is to immerse the fibre in a solution containing negatively charged SiO2 

nanoparticles for 15 min. Then the fibre is once again washed and dried in order to remove any 

excess nanoparticles and obtain a uniform monolayer. In order to deposit more layers, the 

second and the third steps are repeated. 

 

Figure 1. Layer-by-Layer deposition process. 

 

The cladding removal and LbL deposition processes were monitored using the set-up illustrated 

in Figure 2. It consists of a tungsten halogen lamp (Ocean Optics HL-2000, wavelength range 

λ = 360nm – 2400nm) connected to one end of a POF via an SMA connector. At the other end 

of the fibre, intensity light changes produced by the interaction of the humidity sensor with the 

surrounding environment were monitored by a spectrometer (Ocean Optics USB 2000+, 

detection range λ = 200nm – 1100nm). The spectrometer is connected to a computer via a USB 

port in order to control the spectrometer and record the data. 



 

Figure 2. Set-up for monitoring POFHS fabrication process. 

 

2.2 In-vitro humidity measurement using flowmeter setup 

The in-vitro experimental set-up for generating humidity of different levels is illustrated in 

Figure 3. Nitrogen gas is supplied to two flowmeters, F1 and F2 (range 0.1 – 1 L/min, Cole-

Parmer Instrument Co. Ltd.). F1 supplies nitrogen gas directly to one input of a plastic three-

way stopcock valve whilst F2 is connected to a heated flask filled with water. Once evaporation 

of water begins, vapour is transported from the flask to the other input of the stopcock valve in 

order to mix flows from F1 (direct N2 low humidity) and F2 (water vapour, high humidity). The 

combination of F1 and F2 provides different levels of RH. The inflow from the stopcock valve 

output was connected to the lid of a Petri dish via a pipe. Plastic paraffin film was used to seal 

the pipe with the lid and the rest of the Petri dish in order to avoid leakage. 

 

To generate different levels of humidity the initial conditions of the flowmeters were set such 

that F1 (direct nitrogen) and F2 (water vapour) were fully closed (0.0 L/min) for 2 min, i.e. the 

baseline humidity inside the chamber was recorded. Measurements were then repeated with F1 

fully open (1.0 L/min) whilst F2 was kept fully closed (0.0 L/min) until the signal stabilised 

(approximately 3.5min). Then, F1 was reduced by 20% and F2 was increased to 20% of full 

scale (F1 = 0.8 L/min, F2 = 0.2 L/min) until there was no change in the signal (~3.5min). The 

flowmeter values were then changed in intervals of 20% until F1 was fully closed and F2 was 

fully open. 

 

The Petri dish acts as a measurement chamber containing the POFHS connected to the tungsten 

halogen light source at one end and to the spectrometer at the other end to obtain continuous 

measurement of the transmission spectrum as the RH was varied. In order to provide a reference 



standard, a commercial humidity sensor (iButton Hygrochron Temperature/Humidity Logger, 

DS1923, 0 to 100%RH, Maxim Integrated Ltd.) was also located inside the chamber. 

 

Figure 3. In-vitro humidity experiment with flowmeters and POFHS located inside a petri 

dish which acts as a humidity chamber. 

 

2.3 In-vitro humidity measurement using environmental chamber 

A series of three test were performed using an environmental chamber (Bench Top, C-TH40-

20/1, CVMS °Climatic Ltd., UK) to control RH and temperature conditions. The characteristics 

of the environmental chamber are: 40L internal capacity with dimensions of 300mm x 400mm 

x 300mm, depth, height and width, respectively. Temperature range of -20°C to 150°C and 

humidity range of 30% to 98% ±2.5% RH. The environmental chamber flows cold and hot air 

to change temperature and a compressor, a condenser and an evaporator are used for changing 

RH within the chamber. The control of temperature and RH is made by a programmable logic 

controller (PLC, TEMI 1500). 

 

In the experimental setup, as shown in Figure 4, the POFHS is inserted in the centre of the 

environmental chamber through portholes (50mm diameter) on each side of the chamber. The 

tungsten halogen light source and the spectrometer are connected to each end of the POFHS to 

obtain measurements and compare the data obtained with the environmental chamber sensor.  

 



The first test consisted in varying RH from 90% to 97% and vice versa with fixed temperature 

at 30°C. In the second test, temperature was changed along the time from ~25°C to 35°C and 

vice versa with RH constant at 90%. The third test consisted on setting RH and temperature 

constant for a long period at 85% and 30°C, respectively, to observe the response, repeatability 

and stability of the POFHS.   

 

 

 

 

 

 

  

 

 

2.4 In-vivo humidity measurement  

For the in-vivo humidity test on skin, a similar optical set-up as the above in-vitro test was 

deployed (Figure 5). The POFHS was inserted inside the measurement chamber along with the 

reference standard device. On this occasion the sealed lid of the chamber and the flowmeters 

were replaced by the palm of a human hand.  The in-vivo test involved covering the chamber 

with the palm of the subject’s hand until the output signal from the spectrometer stabilised and 

then removing the hand until the output signal stabilised. This process was repeated 3 times so 

as to ascertain repeatability of measurements. The experiment was carried out at room 

temperature (23°C) with measurements on 5 different volunteers (male, healthy, age 25 – 35) 

recorded. Before the test, all volunteers cleaned their hands with a commercial antibacterial 

and alcohol-free hand foam sanitiser (Ecohydra) in order to stabilise the skin to the same 

condition for each participant. Ethical approval was provided by the Ethics Committee, Faculty 

of Engineering, University of Nottingham. 

 

Environmental chamber 

POFHS 
 Light source Spectrometer PC 

T (°C) 
RH (%) 

Figure 4. Experimental setup for humidity and temperature test with POFHS within 

environmental chamber. 



Change in humidity levels in the in-vitro experiments was limited by the flowmeters and in the 

case of in-vivo measurements by the release of water vapour from the skin. An additional 

experiment was therefore conducted to investigate the response time of the POFHS and the 

commercial humidity sensors by applying short rapid breaths to the measurement chamber. 

 

Figure 5. Set up for in-vivo humidity test on human skin using the POFHS. 

 

3. Results 

3.1 Sensor fabrication monitoring 

The optimum core diameter for film deposition was 190 ±5µm which can be reached after 27 

minutes immersion in acetone since at this diameter a complete removal of cladding and a more 

uniform surface can be achieved, compared with 210µm core diameter as shown in the SEM 

images taken from the unclad section of the fibre (Figure 6). Further etching time produced a 

fragile fibre and hence will not be practical for applications in wound dressings. At a core 

diameter of 190µm different sensing region lengths (5, 10, 20 and 30mm) were also 

investigated. 

 

Figure 6. SEM image of a 210µm core diameter POF (left) and a 190µm core diameter POF 

(right). Scale bar = 100µm in both images. 

 



In order to compare the interaction of the evanescent wave with different lengths of sensitive 

region, the peak intensity of the spectra at wavelength 611nm was measured. Figure 7 

illustrates the transmittance at  = 611nm as a function of the sensitive region length for four 

fibres with 190µm core diameter. It was observed that with an increased length of cladding 

removed, less light intensity was transmitted to the spectrometer. This was expected since more 

light is able to escape from the unclad section of the fibre, which also increases the EW region 

that interacts with the hydrophilic film and the surrounding environment. Nonetheless, longer 

exposed regions produced a fragile fibre and therefore was not practical for applications in 

wound dressings. The standard deviation is less than 1%, therefore error bars are not plotted 

on the graph. 

 

Figure 7. Comparison of transmittance at 611nm wavelength versus length of the unclad 

section of the POF after cladding removal. Core diameter = 190µm. 

 

The optimum length in terms of mechanical robustness and sensitivity of the sensitive region 

for the POF was 30mm and 190µm core diameter. Figure 8 illustrates the increment in 

transmittance versus wavelength as more layers are added to the fibre for the whole spectra 

(Figure 8a) and at 611nm wavelength (Figure 8b). After depositing the 7th layer, it can be seen 

that only a small change in intensity occurs. This can be explained with reference to the 

relationship between EW penetration depth and film thickness. Optimum film thickness needs 

to be lower than or equal to the EW penetration depth as sensitivity decreases due to the lack 

of interaction between EW and the surrounding environment [16]. 

 



In this case, the POFHS has a refractive index of 1.49 and 1.22 for the core and the hydrophilic 

film [25], respectively. For measurements at the wavelength peak of 611nm and angle of 

incidence 57°, the penetration depth of the EW is approximately 360nm. Since a PAH/SiO2 

layer is approximately 45nm thick, after 7 layers are deposited the film thickness is close to the 

EW penetration depth. 

 

Figure 8. (a) POFHS light spectra along film deposition which illustrates that as more layers 

are deposited, light intensity increases. (b) Transmittance at 611nm wavelength versus 

number of layers deposited. After the 7th layer the sensitivity starts to decrease due to the 

relationship between film thickness and EW penetration depth. 

 

3.2 In-vitro humidity measurement based on flowmeter setup 

The intensity at the 611nm wavelength peak is illustrated in Figure 9 for a fibre with 190µm 

core diameter and 7 PAH/SiO2 layers deposited on a 30mm sensitive region (red trace) 

compared to the capacitive humidity sensor (blue trace).  As can be seen, the POFHS can 

clearly detect humidity changes and also has a faster response time compared with the 

capacitive humidity sensor as the RH was changed. The sensor settling time is defined as the 

time at which the light intensity stabilises within 2% of the maximum value recorded for 

humidity level. The average settling time for the POFHS was 23s whereas for the commercial 

sensor the average settling time was 45s. It should be noted that this is not representative of the 

response time of the POFHS as the change in the humidity in the chamber is gradual.  



 

Figure 9. In-vitro humidity measurement with flowmeters F1 and F2 gradually adjusted in 

steps of 20% to vary humidity in the chamber. All results were monitored at 611nm 

wavelength for the POFHS with 7 PAH/SiO2 layers deposited. 

 

Figure 10 shows the calibration curves for in-vitro humidity measurements with POFHS coated 

with 5 and 7 PAH/SiO2 layers. Measurements were taken at 611nm wavelength for both sensors 

(190µm core diameter and 30mm sensitive region length). It can be observed that the POFHS 

sensitivity increases as the number of layers increases.  After 7 PAH/SiO2 layers are deposited, 

the POFHS demonstrated a sensitivity of -3.87x10-3 in transmittance percentage per RH 

percentage for the range of ~10% to ~75% RH. The thickness of 7 PAH/SiO2 layers is the 

closest to the EW penetration depth and provides optimal performance, since higher interaction 

of EW and the hydrophilic film can be achieved. 

 

 



 

Figure 10. In-vitro calibration curves of a POFHS coated with 5 and 7 PAH/SiO2 layers. 

Measurements were taken at 611nm wavelength, 190µm core diameter and 30mm sensitive 

region length for both sensors. 

 

3.3 In-vitro humidity measurement based on environmental chamber 

Figure 11a shows the results for the first test performed with the environmental chamber setup 

where RH was changed from 90% to 97% and vice versa every 30 minutes. The temperature 

was set constant at 30°C (Figure 11b). It can be noted that the POFHS response (red trace) is 

following perfectly the humidity change measured using the environmental chamber sensor 

(blue trace). Repeatability can be observed in the measurements recorded at 611nm wavelength 

for the POFHS with 7 PAH/SiO2 layers, Figure 11a. The linearity observed shows a sensitivity 

of -9.61x10-3 in transmittance percentage per RH percentage in the range of 90% to 97% RH, 

Figure 12. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second test consists of cycling the temperature from ~25°C to 35°C while trying to 

maintain RH at 90% using the environmental chamber. Since temperature and RH are related, 

it can be seen that RH fluctuates (Figure 13a) as temperature was changed from ~25°C to 35°C 

(Figure 13b) and backwards. Nevertheless, the POFHS behaviour is proportional to that 

recorded by the environmental chamber sensor (Figure 13a) which indicates that the sensor is 

a)                                                                                            b) 

Figure 11. First test with POFHS with 7 PAH/SiO2 layers within environmental chamber 

setup. (a) POFHS (red trace) and environmental chamber sensor (blue trace) response to 

humidity in the range of 90% to 97% RH. (b) Temperature recorded during the test, set at 

30°C. 

Figure 12. Calibration curve of POFHS coated with 7 PAH/SiO2 layers. Measurements were 

taken at 611nm wavelength, 190µm core diameter and 30mm sensitive region length. RH 

range from 90% to 97%. 



sensitive to the RH rather than to the temperature. It should be also noted that RH sensor in 

environmental chamber saturates at 100% (blue trace, Figure 13a) and cuts the top off the 

readings, while the POFHS continuously measures the change in RH. The behaviour of the 

environmental chamber RH sensor is most likely due to the error of the accuracy of the RH 

sensor which is quoted as ±2.5% and measurement range of up to 98%. 

 

 

 

 

 

 

 

 

 

 

 

In the third test, the POFHS response was measured for a long period with constant RH and 

temperature at 85% and 30°C, respectively. As can be seen in Figure 14a, the POFHS response 

is stable compared with the environmental chamber sensor. Using the calibration curve (Figure 

12), the POFHS signal can be expressed in terms of RH, Figure 14b. It can be noticed that the 

POFHS response is reliable for long term measurements, therefore it can be used for 

continuously monitoring wound healing. 

 

In addition, in order to understand behaviour of the plastic optical fibre, an optical fibre with 

cladding removed (190µm core diameter) without coating was inserted within the setup during 

the long period test. As can be seen in Figure 14a, the response of the unmodified fibre (black 

trace) is not stable at fixed values of RH compared with the POFHS signal. This phenomenon 

most plausibly is owing to the swelling of the plastic optical fibre. On the other hand, POFHS 

a)                                                                                           b) 

Figure 13. Second test with POFHS with 7 PAH/SiO2 layers within environmental chamber 

setup. (a) POFHS (red trace) and environmental chamber sensor (blue trace) response to RH 

fluctuation for temperature changes. (b) Temperature change from ~25°C to 35°C and vice 

versa. 



(i.e. modified with the sensitive film 7 PAH/SiO2 layers) has stable response, most likely 

owing to the protection role that 7 PAH/SiO2 layers play and adsorb water molecules 

preventing them from absorption inside the plastic optical fibre. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 In-vivo humidity measurements  

The purpose of the in-vivo humidity test was to monitor the RH present on the skin 

microenvironment at the palm of the hand to mimic the wound environment. As described in 

section 3.2, the study consisted of placing the palm on the measurement chamber as shown in 

Figure 5 and monitoring transmittance in order to observe the RH changes within the chamber. 

The hand was removed from the top of the chamber after the signal stabilised. 

 

Figure 15 shows the results for the in-vivo humidity measurements on skin for one of the 

participants at 611nm wavelength since similar results were obtained with all the volunteers. 

Using the calibration curve (Figure 10), the signal obtained from the POFHS can be observed 

in terms of RH in order to measure the response time compared with the commercial sensor. 

a)                                                                                                 b) 

Figure 14. Third test with environmental chamber setup. (a) Response from POFHS (red 

trace), environmental chamber sensor (blue trace) and optical fibre without film and core 

exposed (black trace) to continuous RH measurement. Temperature and RH constant at 

30°C and 90%, respectively for approximately 8hrs. (b) POFHS readings (red trace) in terms 

of RH compared with environmental chamber sensor (blue trace). 



The variation of RH recorded for each participant was from 50 ±5% to 90 ±5%. When 

removing the hand from the chamber, a rapid drop in RH occurs due to the difference between 

the RH inside the measurement chamber and the environment. This sudden RH change is 

observed in both the POFHS and the commercial humidity sensor signals. The hand was placed 

again on the chamber after the signal stabilised again. This operation was repeated 3 times in 

order to investigate repeatability of the measurements for each volunteer. The settling time, 

which is the time for the signal to reach 90% of saturated value was 100 ±3s and 135 ±3s, for 

the POFHS and the commercial sensor, respectively. As expected, the same behaviour as for 

the in-vitro humidity measurements was observed, i.e. an increase in RH represents a decrease 

in light intensity. Again, these response times are limited by the rate of increase of humidity in 

the chamber and not the response time of the sensors. 

 

Figure 15. In-vivo humidity measurements on the palm of the hand recorded with the 

POFHS (red trace) and the commercial humidity sensor (blue trace). 

 

In order to further investigate the POFHS response time, a more rapid change in humidity is 

provided using a sharp breath on the sensor. Figure 16 displays relative humidity measured at 

611nm wavelength for the POFHS (red trace) along with the commercial humidity sensor 

response (blue trace) in RH. The response time is calculated as the time from 10% to 90% of 

the final recorded value. The POFHS response time recorded was 1.5s, whereas the value 

observed with the commercial sensor was 3.1s. 



 

Figure 16. Response time of POFHS and commercial humidity sensor in response to a single 

breath on both sensors simultaneously. 

 

4. Discussion 

The development of a POFHS is reported. Different lengths and core diameter for the sensitive 

part of the fibre were investigated. The optimum core diameter and length of the sensitive 

region were 190µm and 30mm, respectively, in order to obtain higher sensitivity due to deeper 

penetration depth of EW and interaction with the hydrophilic film coated on the unclad central 

section of a POF. Smaller core diameters and longer sensitive regions produce a fragile sensor 

which tends to easily break. 

 

The physical behaviour of the POFHS against RH changes is related to the film refractive 

index. When the sensor is exposed to dry environments, the core refractive index is higher than 

the PAH/SiO2 coating refractive index. As a result, the fibre works as a wave-guide and hence 

transmittance of light increases. On the other hand, when the sensor is exposed to humid 

surroundings, the refractive index of the sensitive PAH/SiO2 section increases until it is higher 

than that of the core, hence the light scatters through the film and the transmittance is reduced. 

 

Additionally, the humidity in-vitro measurements were carried out at different RH and 

temperature conditions. The POFHS response was proportional to the RH and temperature 



changes. For the humidity test on the palm of the hand, temperature and ambient light did not 

affect measurements since both parameters were not significantly changing when placing the 

hand on the set up. 

 

In order to achieve a portable set up for practical applications, such as the performance of the 

POFHS within a dressing, a photodetector can replace the spectrometer function of collecting 

the data from the sensor. The light source that can be also exchanged for an LED in order to 

reduce the set up size. This is useful for tele monitoring purposes and to obtain a low-cost 

portable device.  

 

Furthermore, as a first step for wound monitoring development, the POFHS has been embedded 

on a dressing (sterile, N-A knitted viscose primary dressing, Systagenix Wound Management 

Ltd., UK) with dimensions 9.5cm length and 9.5cm width and it was covered by a clinical 

gauze used as secondary dressing (non-woven swab clinic gauze, Clinisupplies Ltd., UK) with 

dimensions 5cm length and 5cm width in order to observe its feasibility for humidity 

measurements, as shown in Figure 17a. In order to observe the POFHS response embedded on 

the dressing, the in-vivo humidity experiment was performed for a single volunteer. 

 

Figure 17b shows the response of the POFHS to the RH generated by the palm of the hand. As 

it can be seen on the graph, the behaviour of the POFHS is similar to the previous in-vivo test 

in section 3.4. Nonetheless, since the POFHS is embedded on the dressing and it is covered by 

a clinical gauze, a longer settling time is observed. It should be noted that the response is highly 

dependent on the properties of the textile and further work investigating responses of different 

wound dressings will form part of future work. 

 

The settling time and the recovery time obtained were ~ 7.7 min and ~ 9.7 min, respectively. 

The RH change observed was between 30% ±2% and 95% ±2%. This are encouraging results 

in order to develop a dressing that can remotely monitor humidity in the skin microenvironment 

and that can be helpful to provide better prognosis of wound healing. 

 



 

 

 

 

 

 

 

 

Figure 17. (a) POFHS embedded in a dressing and covered by a clinical gauze as a 

secondary dressing for humidity measurements. The unclad visible part of the sensor is 

30mm length. (b) In-vivo humidity measurements on the palm of the hand recorded with the 

POFHS embedded on a dressing and covered with a clinical gauze as secondary dressing. 

 

Moreover, in future generations of the device, the sensor might be incorporated into a smart 

wound dressing that can control the temperature and humidity of the wound microenvironment. 

For example, the device could take a similar form to a vacuum assisted closure (VAC) system, 

in which a feedback loop is created to control humidity levels [26]. 

 

5. Conclusion 

In this work, it has been demonstrated that a POF coated with PAH/SiO2 layers on the exposed 

core can be used as a humidity sensor. A higher RH sensitivity can be obtained by optimising 

the film thickness depositing 7 PAH/SiO2 layers which is close to but lower than the EW 

penetration depth. The sensitivity demonstrated for 7 layers deposited was -3.87x10-3 and -

9.61x10-3 in transmittance percentage per RH percentage for the range of ~10% to ~75% RH 

and 90% to 97% RH, respectively.   

 

The deposition of SiO2 nanoparticles as a sensitive element has provided pilot data to illustrate 

its efficiency in the detection of humidity. The RH measurements in the in-vivo tests suggest 

a)                                                                                             b) 



that the POFHS developed can be used as a humidity sensor of the human skin. The POFHS 

response time is in the order of 1.5s compared to the commercial humidity sensor of 3.1s, for 

breath monitoring (rapid RH changes). In addition, for measurements on skin, the POFHS 

average settling time observed was 1.6 min, faster than settling time recorded by the 

commercial sensor (approximately 2.6 min). Further, the POFHS feasibility to be integrated 

within a dressing was tested by embedding the POFHS into a textile. The results obtained 

suggests that a POFHS within a dressing can be developed in order to monitor moisture in 

wounds. 

 

The development of POFHS is a novel technology that provides a faster response, compared 

with a commercial humidity sensor. The POFHS advantages are flexibility, ease of 

incorporation into dressings and immunity to electromagnetic fields. This new and reliable 

unobtrusive approach for humidity sensing is potentially extremely helpful for providing 

improved monitoring of wound status. If successful it will be of increased benefit for patients 

and offers the potential to allow a better understanding about the process of wound healing 

itself. 
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