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Abstract  

 

Residence time distribution (RTD) within vessels is a critical aspect for the design and 

operation of continuous flow technologies, such as hydrothermal synthesis of nanomaterials 

(Cabanas, Darr et al. 2000). RTD affects product characteristics, such as particle size 

distribution. Tracer techniques allow measurement of RTD, but often cannot be used on an 

individual vessel in multiple vessel systems due to unsuitable exit flow conditions. However, 

RTD can be measured indirectly by removal of this vessel from the system and deconvoluting 

the resulting detected tracer profile from the original trace of the entire system. 

 

This paper presents three models for deconvolution of RTD: BAY an application of the Lucy-

Richardson iterative algorithm (Richardson 1972, Lucy 1974) using Bayes’ Theorem, LSQ an 

adaptation of a least squares error approach (Blackburn 1970) and FFT a Fast Fourier 

Transform. These techniques do not require any assumption about the form of the RTD.  

  

The three models are all accurate in theoretical tests with no simulated measurement error. For 

scenarios with simulated measurement error in the convoluted distribution, the FFT and BAY 

models are both very accurate. The LSQ model is the least suitable and the output is very noisy; 

smoothing functions can produce smooth curves, but the resulting RTD is less accurate than 

the other models.  

 

In experimental tests the BAY and FFT models produce near identical results which are very 

accurate. Both models run quickly, but in real time control the runtime for BAY would have to 

be considered further. BAY does not require any filtering or smoothing here, and so potentially 

there are applications where it might be more useful than FFT. 
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1 Introduction 

 

 

Levenspiel (Levenspiel 1999) describes deviations from ideal flow (plug or mixed) for process 

equipment such as reactors, heat exchangers, packed columns caused by channelling, recycling 

of flow, stagnant regions which can adversely affect performance, costs or product quality. 

Deconvolution of residence time distribution (RTD) from tracer signals flowing into and out 

of such equipment can be very useful in design optimisation and control. 

 

Langston (Langston 2002) describes practical cases where the properties of a system are a 

complex mixture of several components.  It is often useful to extract component compositions 

from system property measurements; such as in signal processing, coal blend analysis and 

measurement of particle size distribution. Vessels in series will also give rise to convoluted 

RTD’s. Accurate deconvolution of individual vessel features is a challenging process. 

 

An important application concerns residence time distribution measurements of reactors in 

continuous flow processes. In these systems the reactor is defined as the primary system 

volume in which the desired chemical transformation takes place. Often there will be more than 

one chemical reaction occurring at the required conditions, such as competing reactions or 

decomposition of the product. The various reaction pathways are dependent on the reaction 

parameters, which include residence time in the reactor; based on an understanding of the 

various pathway kinetics, optimal processing conditions usually requires a specific residence 

time with minimal distribution. Jumbam (Jumbam, Skilton et al. 2012) have demonstrated the 

ability to optimise the methylation of alcohols in continuous flow supercritical carbon dioxide; 

the yield and selectivity are shown to depend on residence time among other reaction 

parameters. Another practical example is the continuous hydrothermal synthesis of 

nanomaterials in supercritical fluids; Adschiri (Adschiri, Hakuta et al. 2001) first proposed a 

mechanism for the generation of metal oxides using this technique. With countless 

applications, the properties of nanomaterials are greatly influenced by particle size, which is 

often in turn dictated by residence time in the system reactor. For many nanomaterial species 

where nucleation is virtually instantaneous, particle growth can be directly related to time spent 

in the reactor, as studied by various groups including Norby (Norby, Jensen et al. 2013); thus 

the residence time distribution in the reactor will directly translate to particle size distribution 

in the product solution. The use of different reactor geometries by Blood (Blood, Denyer et al. 

2004) for continuous hydrothermal nanomaterial synthesis have been investigated previously 

and it is well known that mixing dynamics has a significant impact on particle nucleation and 

growth. In addition to reactor design issues, other control variables for this continuous 

hydrothermal process were discussed by Lester (Lester, Aksomaityte et al. 2012), including 

temperature, flow rate, flow ratio, pipe diameter and pressure.  A recent project scales this 

process from bench to pilot through to industrial scale, at over 100 tons per year capacity, with 

the FP7 Sustainable Hydrothermal Manufacturing of Nanomaterials (SHYMAN) project 

(Particles 2015, Shyman 2015). Better control of products from this process, and the inevitable 

changes in product quality (as a result of scaling the process) will become a focus for the 

industry and therefore understanding residence time distributions and mixing dynamics is 

essential. 

 

Spectral analysis methods are widely used for extracting components of signals (Blackburn 

1970).  One method uses a least squares technique, which sets up equations defining the sum 

of the error (predicted – actual signal) squares as a function of the predicted composition.  This 

is differentiated with respect to the composition, set equal to zero and so the “best” composition 
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found.  Simmons (Simmons, Langston et al. 1999) used a similar technique to predict particle 

size distribution from chords that was partially successful.  

 

Least squares methods were used in the following RTD analysis. Kuu (Kuu 1992) used a 

numerical deconvolution method with Powell's non-linear least-squares algorithm to search for 

values of dispersion coefficients of solute molecules in a drug delivery system.  Bruce (Bruce, 

Sai et al. 2004) experimentally measured the RTD in a turbulent bed contactor  in series with 

an ideal Mixed Flow Tank.  The RTD of the ideal mixed flow tank was deconvoluted from the 

RTD of the entire system to obtain the RTD of turbulent bed contactor alone as a function of 

Peclet number and mean residence time of an axial dispersion model; optimal values were 

found using a Matlab-based least squares function. Boskovic (Boskovic and Loebbecke 2008) 

modelled RTD in micromixers; deconvolution involved minimization of sum of error square 

by the unconstrained quasi-Newton method; two flow models were developed, one based on 

axial dispersion, the other based on statistical distributions allowing a certain skewness; the 

latter gave a better fit to the range of their experiments. Adeosun (Adeosun and Lawal 2009) 

describes numerical and experimental mixing studies in a flow micromixer and used the 

convolution–deconvolution technique, in which time–domain curve fitting via non-linear 

optimization was used to estimate parameters in the RTD model.  

 

The Fast Fourier Transform FFT has been used in RTD analysis.  Viitanen (Viitanen 1997) 

applied a FFT to deconvolute RTDs of process equipment with examples from aquifers in 

bedrock and industrial equipment with recirculation; this method allows filtering in the 

frequency domain of data with poor statistics. Gooseff (Gooseff, Benson et al. 2011) estimated 

RTDs in stream surface transient storage zones via signal deconvolution with Fourier and 

Laplace transforms. 

 

A method to estimate RTD in complex systems is to use a Bayesian approach with a Markov 

Chain Monte Carlo model to infer presumed RTD form parameters. Krone-Davis (Krone-

Davis, Watson et al. 2013) analysed pesticide reduction in constructed wetlands using a tanks-

in-series model.  Massoudieh (Massoudieh, Leray et al. 2014) characterised groundwater flow 

systems using transient environmental tracer data.   

 

Langston (Langston, Burbidge et al. 2001) used Bayes’ theorem iteratively to predict diameter 

distributions of spherical particles or droplets from measurements of chords. It was then further 

developed (Langston and Jones 2001) to analyse non-spherical shapes in 2D; (Langston 2002) 

developed the model for general cases of component mixture deconvolution and theoretically 

compared it to a least squares method. The latter was shown to be generally more applicable 

and robust, but the Bayes’ model was, in some cases, less susceptible to simulated noise. 

Subsequent to publication of these papers the authors found a similar method in the Lucy-

Richardson algorithm (Richardson 1972, Lucy 1974) developed for image analysis.  

 

The literature review can be summarised as follows. Measurement, modelling, prediction and 

control of RTD is generally useful in reactor design and operation. Bayesian Markov Chain 

Monte Carlo methods are useful in complex systems to infer RTD from measurements. 

Deconvolution of RTD is challenging and useful. Some deconvolution methods assume a form 

of RTD and some do not; it is assumed here that the latter is potentially more accurate. Least 

squares and FFT are established methods. To the authors’ knowledge an iteration on Bayes’ 

theorem such as the Lucy-Richardson algorithm has not been used for RTD deconvolution and 

there is little comparison of the accuracy and speed of these different approaches. 
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In this paper, Section 2 describes the development of three models to deconvolute vessel RTDs: 

an iterative model based on the Lucy-Richardson algorithm,  a least squares model based on 

Blackburn (Blackburn 1970), and a Fast Fourier Transform as in (Viitanen 1997); in these 

models no assumption is necessary about the form of the RTD. Section 3 applies the models in 

Matlab to a theoretical case to directly test theoretical accuracy; this is initially tested without 

including any replicated error, then with replicating measurement error; Section 3 goes on to 

describe an experimental study to test these models. Section 4 presents the conclusions. 
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2 Models of RTD Deconvolution  

 

2.1 Vessel RTD Convolution  

 

Levenspiel (Levenspiel 1999) describes how the residence time distribution of a fluid passing 

through a vessel can be normalised and represented by E the exit age distribution for a closed 

vessel boundary condition (fluid only enters and leaves vessel once). A one-shot tracer signal 

entering (Cin) and leaving a vessel (Cout) can be represented by the convolution integral 
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If we have three independent flow units a, b, c, closed and connected in series then 
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Levenspiel (Levenspiel 1999) describes that independence implies that a fluid loses its memory 

between vessels and if an element flows faster in one vessel it is no more likely to flow faster 

in the next vessel, which is not always the case with laminar flow. 

 

Section 2 now describes how deconvolution of RTD can be undertaken using either: 

 Bayes’ Theorem – model referred to later as BAY 

 Least Squares - LSQ 

 Fast Fourier Transform - FFT 

 Polynomial Division. 

 

 

 

2.2 RTD Deconvolution using Lucy-Richardson algorithm model BAY 

 

A far more challenging exercise is deconvolution; ie if Cout, Cin, Ea, Eb, are known then 

calculate Ec. This can be more generally represented by a two-vessel system: say Eb is 

unknown,  Ea and   ET  are known,   
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Lee (Lee 2012) describes Bayes’ theorem as follows.  If A1,…,Am are a set of mutually 

exclusive, exhaustive events in a possibility space Sp, and B is any other event in Sp such that 

P(B)>0, then  
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This is applied here using the iterative procedure used in image analysis (Richardson 1972, 

Lucy 1974) and modified for estimating diameter distributions form chord measurements 

(Langston, Burbidge et al. 2001). 

 

Dividing E into N equal time bins j: 

 

1 Assume a uniform distribution in Ebj = 1.0/N, for all j (or input an initial estimate) 

 

2 For each  j use Bayes’ theorem to calculate probability Pji equivalent to EbjTi, which 

can be considered as probability that a fluid element which exits total system at time 

bin i resided in vessel b for j time bins 
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3 For each j recalculate (note denominator equals unity) 
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4 If Eb has changed significantly repeat from step 2 using the new values of Eb; however, 

in this paper the model is run for a specified number of iterations, nitr. 

 

 

It is noted here that E is being used in a discretized form representing bin probabilities rather 

than a continuous probability density (hence the +1 in step 2 above); this is also applicable to 

the RTD plots shown later. As indicated above, for Bayes’ theorem to be applicable the flow 

units must be independent. The time interval (bin size) must also be small relative to the overall 

time. 

 

 

2.3 RTD Deconvolution using Least Squares model LSQ 

 

Blackburn (Blackburn 1970) describes the problem in spectral analysis as follows: 
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Si is the amplitude of the data spectrum at the ith channel or sample point 

Rij is the amplitude of the jth reference spectrum at the ith channel 

Xj is the set of coefficients to be extracted 

ei is the noise or error spectrum 

n is the number of channels 

m is the number of standards. 

 

Summing over the n channels obtains  the sum of the error squares.  A least-square error 

approach based on calculating (d/dXk) for k = 1,.., m, gives a set of m linear equations of the 

form: 
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These can be solved to give optimal Xj values. This requires a matrix Rij , but we have a vector 

for each vessel RTD. Hence the model is applied here to a two vessel deconvolution by 

formulating Rij from the vector Ea: 

 

Rij = Eak,   where k=i – j +1  and  k >0 and k < N+1 , else Rij =0 

 

where i is the subscript of ET (=S above) and j is the subscript of Eb (=X above).  

 

The output from this model is generally very noisy here. Integral smoothing functions available 

in Matlab were investigated. General smoothing algorithms such as the default moving average 

or Savitzky-Golay filters, are not well suited, regardless of the polynomial degree specified, as 

the noise on the response data appears to be equal across all time bins (including where the 

probability of Eb is actually zero). Smoothing which operate on localised ranges of time bins 

appear more useful. The most accurate was found to be a local regression method using 

weighted linear least squares and a 2nd degree polynomial model (‘loess’ in Matlab); this 

method is implemented using the Matlab smooth function with the ‘loess’ method, with optimal 

values for the span parameter varying between 0.2 and 0.5 and the function is applied twice in 

a loop;   additionally, any negative values for the LSQ result are set to zero, although this makes 

little difference to the overall accuracy. 

 

 

 

2.4 RTD Deconvolution using Fast Fourier Transform model FFT 

 

As noted in section 1 Viitanen (Viitanen 1997) applies FFT to deconvolute RTDs of process 

equipment. In the frequency domain w the convolution becomes a straightforward 

multiplication and the deconvolution a division. 
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Eb(t) can then be obtained by the inverse FFT after appropriate filtering in the frequency 

domain to account for measurement error. This method is applied here using Matlab functions. 

The filtering at high and low frequencies (see code on-line) is essential here. Also truncating 

any values below zero improved the performance of the model here. 

 

 

2.5 RTD Deconvolution using Polynomial Division 

 

RTD deconvolution is similar in principle to a more general vector deconvolution. The function 

in Matlab deconv does this by polynomial division. This has been tested here for RTD 

deconvolution; it is accurate for theoretical cases but is highly inaccurate in practice with 

measurement errors; in this study the method even failed to produce meaningful results with 

practical or simulated measurement error. This reason is clear on considering the principle of 

the method where errors in the coefficients of the higher terms are propagated in sequential 

division. Hence it is concluded that it is not worth considering this method further here. 

 

 

 

2.6 Measures of Accuracy 

 

To assess the models the deconvoluted RTD is compared with the known RTD using three 

methods: 

 

 Mean Square Error MSE 

 Coefficient of Determination R2 

 Overlapping Coefficient OVL (Clemons and Bradley 2000)   
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Where Ei is the estimated probability for each bin, Ebi is the known target probability for each 

corresponding bin, and N is the total number of bins. 
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3 Application of RTD Deconvolution 

 

3.1 Theoretical Examples 

 

3.1.1 Theoretical case with no Simulated Measurement Error 

 

Levenspiel (Levenspiel 1999) describes types of flow models: the dispersion model and tanks-

in-series model which are similar and widely applicable, and the pure convection model for 

laminar flow in short pipes. For simplicity initial theoretical tests were undertaken on 

deconvolution of two normal distributions with no simulated measurement error. All the 

models, BAY, LSQ and FFT are accurate in these tests.  

 

In order to investigate the potential accuracy of the models when tackling the deconvolution of 

non-normal convoluted data, as found in our reactor systems, two theoretical “shouldered” 

distributions were generated through the additive combination of normal distributions with 

differing parameters. These simulated examples more closely represent practical distributions 

generated for tubular reactor residence times, where tailing of the peaks is a common feature. 

 

In generating the shouldered distributions, the underlying normal distributions were subjected 

to a vertical scaling factor in order to control their influence on the combined distribution; the 

resultant shouldered distributions were then converted to probability distributions through 

division by their total integral. Distribution A was generated by the additive combination of 

two normal distributions, and distribution B from three normal distributions using the 

parameters indicated in Table 1. 

 

Table 1: Parameters used to produce realistic distributions A and B; then converted into 

bin probabilities Ea and Eb. 

 Mean (μ) Standard Deviation (σ) Vertical scaling Bins 

Distribution A    100 

Normal 1 20.0 2.5 1.00  
Normal 2 27.5 3.0 0.75  

Distribution B    100 

Normal 1 30.0 5.0 0.50  
Normal 2 42.5 5.0 0.35  
Normal 3 55.0 5.0 0.20  

 

 

The probability distributions for A and B (Ea and Eb) are plotted along with that of the 

convolution of A and B (Et) in Figure 1 with a time bin size of 1s. Figure 2 illustrates successive 

iterations of the BAY model in deconvoluting Ea from ET in order to generate an estimate of 

Eb; the true value of Eb and the estimate from the model are graphically indistinguishable after 

100 iterations. Table 2 shows a summary of the statistical measures of fit for the models 

described in section 2.  Clearly all three models are accurate here, with FFT the most accurate. 
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Figure 1: Input probability distributions Ea and Eb produced from theoretical non-

normal distributions, and their convoluted product ET 

 

 

 

 
 

Figure 2: Plot of the Bayes iterative approximations of Eb, represented as En; curves for 

Eb and for the BAY nitr =100 estimate are graphically colinear in this theoretical no error 

case  
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Table 2: Model accuracy in calculation of RTD of B for theoretical case with no replicated 

measurement error 

 MSE  R2 OVL 

BAY nitr =10 8.4e-7 0.9949 0.9748 

BAY nitr =100 3.8e-9 1 0.9984 

BAY nitr =1000 4.1e-11 1 0.9998 

LSQ 7.3e-7 0.9956 0.9709 

FFT 9.2e-13 1 1 

 

 

 

3.1.2 Case of non-Normal Distribution with Simulated Measurement Error 

 

In practical scenarios, experimental inaccuracy and bias may produce error in any measured 

residence time. In order to evaluate the effect on the deconvolution method, simulated error 

has been applied to the convoluted distribution generated using the parameters detailed in 

section 3.1.1. The probability distribution Ea can then be deconvoluted from the erroneous 

distribution ET-err in order to observe the effect on the estimation of Eb. 

 

Several types of error are observed in practice: a bias, i.e. shifting the distribution by a fixed 

time; noise in the distribution, resultant of detector issues (when measuring residence time by 

tracer detection); scaling of the distribution, i.e. compression or expansion of the distribution 

resulting in a similar shape, but occurring over a different range of time (pump flow rate 

inaccuracies/inconsistencies). 

 

Unpublished work within the Lester group involving the injection and detection of tracers has 

shown the last of these error types (scaling) to be most frequently observed.  Figure 3 illustrates 

an example of a simulated “scaling error” applied to ET, with 10% compression scaling applied 

about the bin at which the probability of ET is at maximum, in order to generate ET-err. The 

comparisons of the true B and estimated B for the models is shown in Figure 4 and the statistical 

measures of accuracy are shown in Table 3. 
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Figure 3: Input probability distributions, with time bin of 1s, Ea and Eb used to produce 

ET. ET has then been subjected to compression scaling by 10 % about the bin of its 

maximum probability to generate ET-err. This is reasonably similar to frequently observed 

experimental error. 

 

 

 

 

Table 3: Model accuracy in calculation of RTD of B (Eb) for theoretical case with 

simulated 10% compression of AB (ET-err) to replicate measurement error 

 MSE x10-6 R2 OVL 

BAY nitr =10 5.79 0.9648 0.9267 

BAY nitr =100 5.36 0.9673 0.9314 

BAY nitr =1000 5.34 0.9674 0.9315 

LSQ 16.3 0.9007 0.8736 

FFT 5.04 0.9692 0.9346 

 

 

 

 

 

 

 

SEE OVERPAGE FOR FIGURE  

 

Figure 4: Plots comparing BAY nitr =100, LSQ and FFT methods for approximating B  

from theoretical deconvolution of A from total AB using replicated measurement error 

of AB 
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The FFT and BAY models are both very accurate, with FFT marginally the best. 10 iterations 

for the BAY model seems sufficient for practical purposes. The LSQ model is the least suitable; 

Matlab produces a warning message on solution of the matrix equation Matrix is close to 

singular or badly scaled, and the output is very noisy; smoothing functions can produce smooth 

curves, but the resulting RTD is less accurate than the other two models. (Further investigation 

for zero replicated error cases, not shown here, indicates that LSQ is accurate, not noisy and 

no smoothing is required for about 40 or fewer time bins in Ea and in Eb.) Further investigation 

is required to test if this method could be improved, it is not considered further in this paper. 

 

 

 

3.2 Experimental Examples 

 

3.2.1 Experimental Method 

 

 

 
 

Figure 5: Diagram showing the apparatus configuration used for measuring residence 

time distributions inside volumes A and B. The “inj” volume can be considered as the 

above system without A and B present. 

 

All the experiments described here were undertaken by the authors producing all the 

experimental results in section 3. A schematic of the experimental configuration is illustrated 

in Figure 5. A Gilson 305 pump was used to deliver a flow of deionised water through the 

system, with the flow rate controlled by computer script (via a Gilson 506C interface not shown 

in illustration). The flow was directed through an electronically actuated Rheodyne 6 port 2-

position switching valve mounted on a Gilson 234 autosampler (not shown in illustration). In 

the “load” position, the switching valve allowed water from the pump to flow through the valve 

and into the system (this valve position is indicated in the illustration); the autosampler was 

programmed to fill the 10 μl sample loop of the switching valve with an aqueous solution 

containing 10g.l-1 Nigrosin dye (Fischer Scientific) to be used as a tracer.  
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When instructed by the computer script, the valve switches to the “inject” position, which 

would introduce the fixed volume of tracer solution into the system at the predetermined flow 

rates. After passing through the system volumes of interest, the concentration of tracer detected 

at the system outlet was continuously measured using a Gilson 119 UV/vis detector, set to 

monitor at a wavelength of 545 nm (visible). 

 

The system volume was divided into two sections, referred to as sections A and B. The primary 

volume of section A was a 200 mm length of stainless steel tubing (0.25” outer diameter, 2.34 

ml volume) and section B a 300 mm length of the same tubing (3.51 ml volume). Both volumes 

also included short sections of 0.0625” tubing, which allowed sections A or B to also be 

investigated independently, with no requirement for additional tubing/fittings in any 

configuration. 

 

Four flow rates were investigated: 10, 15, 20 and 25 ml.min-1. For each flow rate, distribution 

measurements were acquired for volume A, volume B and both volumes in series (referred to 

as volume AB), as shown in Figure 6. The intention was to use the deconvolution models to 

estimate volume B by deconvolution of measured volume A from the measured volume AB. 

The estimated volume B could then be compared against the measured volume B in order to 

assess model accuracy in a practical scenario. Initial experiments pointed to a systematic time 

delay between estimated B and measured B whenever A was deconvoluted from AB. This 

timing discrepancy was seen to be identical when deconvoluting B from AB (in comparing 

estimated A with measured A). This discrepancy was attributed to both the additional volumes 

both before and after volume AB (i.e. connection to the sample loop and internal volumes of 

the UV/vis detector) which could not be removed from the system, in addition to a timing delay 

between the valve switching and the start of UV/vis absorption data acquisition. In order to 

account for this delay, the additional volume was measured separately using the same 

procedure, essentially measuring the system volume in absence of A and B (this measurement 

is referred to as “inj”). The timing of the resultant peak was found to exactly account for the 

timing discrepancy observed in deconvolution of either A or B. Figure 6 shows experimentally 

acquired distributions for A, B, AB and “inj”. For distributions A, B and AB, the time bins at 

which absorption is first detected are 124, 205 and 292 respectively. For independently 

measured “inj”, absorption is first detected at bin 40; this accurately accounts for the 

discrepancy observed between first detection of AB (290) and the combination of A and B 

(124+205). 

 

 

 



 16 

 
 

Figure 6: Example UV-Vis absorption traces against time for volumes A, B, A and B 

combined and the additional volume-time delay “inj”. The timing of distribution “inj” 

accounts for the discrepancy observed when convoluting measured A and B and 

comparing to measured AB 

 

 

 

When A, B and AB are measured separately, this timing delay and additional volume is 

included once per measurement. Therefore when the measured A or B distribution is 

deconvoluted from the measured AB distribution, the resulting estimation is that for A or B 

without the timing delay or additional volume. Although this is the intention in a practical 

scenario of residence time distribution measurements, the equivalent physical measurement 

cannot be obtained for comparison and evaluation of error in the deconvolution process. Rather 

than multiple deconvolution steps (which would compound any error in the deconvolution 

process), the estimation of distribution B can be convoluted with the measurement of “inj” as 

indicated in Figure 7; this allows for direct comparison with the measured distribution of B and 

to assess the accuracy of a single implementation of the deconvolution methods. 
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Figure 7: Schematic showing the steps taken in order to assess the accuracy of a single 

implementation of the deconvolution methods. After deconvoluting measured A from 

measured AB, the resulting approximation must be convoluted with the measurement of 

“inj” (at the specific flow rates) in order to be comparable with individually measured B 

 

 

  

Although the intention is to apply the deconvolution methods to a scenario with genuine error, 

efforts were made here to minimise experimental error where possible. Experimental 

measurements of flow distributions at each flow rate were therefore performed 5 times for each 

configuration (inj, A, B and AB). A hypothetical mean trace was created for each set of 

measurements, and the closest of the measurements (based on minimum mean square error) to 

the hypothetical mean was selected. This ensured that “real” data was used, but that the 

distribution was a fair representation rather than an outlying result. Figure 8 shows an example 

case of the measured RTDs. 

 

 

 

 



 18 

 
 

Figure 8: Experimental tracers as probability distributions for flow 15 ml.min-1 showing 

RTD for: individual volumes A, B; and for the two vessels in series with an extra “inj” 

volume to aid illustration of experimental error; and for A and B convoluted (which then 

counts “inj” twice). The comparison of the two AB curves is effectively an indication of 

experimental error.   

 

 

 

3.2.2 Comparing model and experimentally measured results                        

 

The measured distribution of A was deconvoluted from that of AB to generate an estimation 

of B at four different flowrates. The deconvolution was conducted with models BAY and FFT 

since these looked the most promising in section 2. The predicted distributions and actual 

distribution are plotted in Figure 9; the model accuracy is shown in Tables 4 and 5 along with 

example CPU computer runtimes. 
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Figure 9: Plots comparing FFT and BAY nitr =100 methods for approximating B from 

experimentally measured distributions of AB and A for flowrate 15 ml.min-1. (blue dot: 

experimentally measured points; red line: model) 
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Table 4: Accuracy of model fit to experimental RTD of B for FFT and BAY nitr =100  

Flow rate 
(ml.min-1) 

MSE x10-8 R2 OVL 

 FFT BAY FFT BAY FFT BAY 

10 1.04 1.04 0.9929 0.9929 0.9461 0.9462 

15 5.72 5.72 0.9799 0.9798 0.9146 0.9146 

20 7.09 7.08 0.9840 0.9841 0.9148 0.9147 

25 2.40 2.40 0.9961 0.9961 0.9554 0.9554 

 

 

Table 5: Accuracy of model fit to experimental RTD of B for flowrate 10 ml.min-1 for 

FFT and BAY nitr variation with CPU times  

 MSE x10-8 R2 OVL CPU (s) 

BAY nitr =5 3.20 0.9779 0.9268 4.3 

BAY nitr =10 1.13 0.9923 0.9415 7.1 

BAY nitr =100 1.04 0.9929 0.9462 65 

FFT 1.04 0.9929 0.9461 0.4 

 

 

 

Essentially the BAY and FFT models produce near identical estimates which are very accurate 

in all four cases. There is some variation in experimental error, which in all cases is less than 

the theoretical error introduced in section 3.1.2. 

 

The CPU times should be considered as a guide only. They are undertaken with Matlab R2015a 

on a high spec desktop PC, 3.5GHz Intel processor. There is some small variation with repeated 

simulations. These are simulations without plotting the figures since this output takes a 

significant time in proportion. Note that FFT uses library routines but BAY runs mainly with 

author code, which would be significantly faster if compiled. The runtimes are short and this 

would only be an issue in real time control systems with many repeated simulations. If BAY 

were to be used in such a situation this issue would need further consideration. 
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4 Conclusions    

 

The three RTD deconvolution models, BAY, LSQ, FFT are all accurate in theoretical tests with 

no simulated error.  

 

Further tests incorporating simulated error in the convoluted distribution showed that FFT and 

BAY are very accurate; LSQ is the least suitable.  

 

The polynomial division method is fundamentally unsuitable. 

 

Experimentally tested BAY and FFT models produced near identical results which are very 

accurate.  

 

R2 and OVL are useful statistical measures here.   

 

BAY does not require any filtering or smoothing here, and so potentially there are applications 

where it might be practically the most useful, although there may be a runtime penalty. 
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