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Abstract 18 

In the present work, laser-induced breakdown spectroscopy (LIBS) was employed to predict 19 

the sodium content of infant formula (IF) over the range of 0.5–4 mg Na/g. Calibration 20 

models were built using partial least squares regression (PLS), correlating the LIBS spectral 21 

data with reference Na contents quantified by atomic absorption spectroscopy (AAS). The 22 

aim of this study was to demonstrate the ability of LIBS as a rapid tool for quantifying 23 

sodium in IF, but also to explore strategies concerning the acquisition of measurements with 24 

LIBS. A range of different pre-processing techniques, measuring depths (repetition of laser 25 

shots) and accumulations were evaluated in terms of PLS performance. The best calibration 26 

model was developed using the third-layer spectra normalised by the H I 656.29 nm emission 27 

line, yielding a coefficient of determination (R2) of 0.93, and root-mean-square errors 28 

(RMSE) of 0.37 and 0.13 mg/g for cross-validation and validation, respectively. 29 

 30 

Industrial relevance 31 

Improving productivity and robustness of manufacturing processes, yet satisfying increasing 32 

concerns and strict regulations on the quality and safety of infant products could be achieved 33 

through the introduction of optical analytical techniques with real-time capabilities during 34 

processing. In this paper, LIBS is proposed as a potential cost-effective screening tool that 35 

can provide fast elemental composition analysis of IF. Specifically, the application of LIBS 36 

and multivariate data analysis for predicting sodium content over a range in conformity with 37 

regulatory guidelines is discussed in this work.  38 

 39 
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1. Introduction 42 

Infant formula (IF) is an industrially produced food intended as a substitute for breast milk. 43 

IFs are typically based on cow’s milk, and followed by several adjustments and addition of 44 

ingredients in order to bring the composition closer to that of human milk (Blanchard, Zhu, & 45 

Schuck, 2013). Infancy is a crucial period of growth and development, hence IF’s 46 

composition (e.g. fat, proteins, minerals, etc.) and manufacturing practices are strictly 47 

regulated by national authorities to ensure the safety and nutrient profile of infant formula 48 

products (Jiang, 2014; Montagne, Van Dael, Skanderby, & Hugelshofer, 2009).  49 

Sodium is an essential mineral; it is the main cation in extracellular fluid playing a vital role 50 

in the regulation of osmolarity, acid-base equilibrium, active transport across cells and 51 

membrane potential (Guo, 2014). Although a minimum intake is indispensable for healthy 52 

functioning, an excessive consumption of sodium in the human diet is related to higher blood 53 

pressure and an increased risk of developing cardiovascular diseases (Masotti, Erba, De Noni, 54 

& Pellegrino, 2012; Tamm, Bolumar, Bajovic, & Toepfl, 2016). With regard to infancy, 55 

studies have also associated an excessive sodium intake with increased blood pressure in the 56 

later stages of life, indicating that blood pressure may track with age (Campbell et al., 2014; 57 

John et al., 2016). 58 

Conventional well-established methods for mineral analysis in infant formula include atomic 59 

absorption spectroscopy (AAS), inductively coupled plasma optical emission spectroscopy 60 

(ICP-OES) and inductively coupled plasma mass spectroscopy (ICP-MS) (Poitevin, 2016). 61 

These methods, despite their high sensitivity and accuracy, generally require time-consuming 62 

and laborious sampling procedures and the use of chemical reagents such as acids and gases, 63 

as well as an associated high cost of consumables (e.g. argon) (Wu & Sun, 2013). 64 

Laser-induced breakdown spectroscopy (LIBS) is an analytical technique based on optical 65 

emission spectroscopy in which laser pulses are employed as the excitation source to 66 
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vaporise, atomise and ionise a small part of the target’s material. As a result, plasma arising 67 

from the sample surface is generated from which photons are released form the excited 68 

species in the plasma returning to their ground state levels of energy which can be analysed 69 

with spectrometers to infer the elemental composition of the sample (Cremers & Radziemski, 70 

2013). LIBS, yet recent in the area of food analysis, has gained remarkable popularity in the 71 

last few years with an increase in the number of publications and extensive reviews 72 

concerning food samples (Maria Markiewicz-Keszycka et al., 2017; Sezer, Bilge, & Boyaci, 73 

2017). The advantages that LIBS offers compared to the conventional methods are its speed, 74 

a relatively low cost,  little to no sample preparation and elemental surface mapping 75 

capabilities (Dixit et al., 2017; Kim, Kwak, Choi, & Park, 2012). Further attractive features 76 

include: remote sensing, as it constitutes an entirely optical technique, and suitability for on-77 

/at-line applications, altogether allowing the technology to be considered a potential process 78 

analytical technology (PAT) for qualitative and quantitative chemical analysis (Cullen, 79 

Bakalis, & Sullivan, 2017) (for PAT literature the reader is referred to: Misra et al., 2015; van 80 

den Berg et al., 2013). Nonetheless, LIBS also has limitations or drawbacks, especially 81 

concerning quantitative analyses. Some of these limitations include signal fluctuations on a 82 

shot-to-shot basis (Tognoni & Cristoforetti, 2016) and difficulties in establishing good 83 

calibration curves due to strong matrix effects (Ferreira et al., 2010; Lei et al., 2011). Several 84 

publications evaluating and discussing strategies with the goal of overcoming such problems 85 

can be found in the literature (dos Santos Augusto, Barsanelli, Pereira, & Pereira-Filho, 2017; 86 

El Haddad, Canioni, & Bousquet, 2014; Jantzi et al., 2016). 87 

In this study, LIBS and  multivariate data analysis with partial least squares regression (PLS) 88 

was employed to predict the sodium content of IF samples. In order to provide for reference 89 

Na contents, atomic absorption spectroscopy (AAS) was used. The aim of this study was to 90 

demonstrate the ability of LIBS as a rapid screening tool for quantifying sodium over a range 91 
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relevant to IF manufacturing, offering a means for industries to rapidly verify target mineral 92 

contents. Furthermore, strategies concerning the acquisition of measurements with LIBS were 93 

explored, namely the repetition of laser shots on a single location. Such an approach 94 

examines the impact of measuring the inner layers of the sample and, whether to accumulate 95 

laser shots or use the spectra collected from a single layer.    96 

2. Material and methods 97 

2.1. Sample preparation 98 

Commercial powdered IF and follow-on formulas (formulas intended for children over 6 99 

months of age) were acquired from a local supermarket in Dublin, Ireland. Lactose (α-lactose 100 

monohydrate ≥ 99 %) and sodium chloride (NaCl ≥ 99 %) were purchased from Sigma 101 

Aldrich (St. Louis, MO, USA).  102 

Samples with varying content of sodium were prepared by blending IF with sodium chloride 103 

or lactose, whether the goal was to increase or decrease the sodium content in the mix. In 104 

total, 7 samples were obtained, including one sample which consisted only of IF. The 105 

selected range of sodium was approx. from 0.5 to 4 mg/g (concentrations corresponding to 106 

the lowest and highest Na content samples, respectively). This range was intended to cover 107 

the regulatory sodium levels provided by the Codex Alimentarius Commission (Codex, 108 

2007). Constituents of the mixtures (IF, NaCl and lactose) and follow-on formulas were 109 

ground and pre-mixed using a laboratory blender (8011G, Waring Laboratory Science, CT, 110 

USA) equipped with rotatory stainless-steel blades for 2 minutes to ensure there were no 111 

aggregates occurring in the powders, with the goal of improving subsequent blending 112 

performance. Dry mixing was then carried out using a laboratory V-mixer (FTLMV-1L&, 113 

Filtra Vibracion S.L., Spain) for 20 minutes. In order to ensure reproducibility, two 114 

independent batches were prepared (batch 1 and batch 2). Each batch was composed of the 115 

aforementioned 7 samples divided into: 5 calibration samples (referred to as C1–C5), 116 
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employed for PLS modelling, and 2 validation samples (V1, V2) to test the robustness of the 117 

models. In addition to these validation samples, 2 different follow-on formula brand samples 118 

(V3, V4) were used to assess the ability of the calibrations for predicting mineral content in 119 

infant products with different formulations. 120 

For LIBS analysis, samples were pelletized by pressing approx. 400 mg of each sample using 121 

a manual hydraulic press fitted with a 13 mm pellet die (Specac Ltd., UK) at 10 tons for 3 122 

minutes. Pellets were prepared in triplicates (3 replicates per sample), giving a total number 123 

of 48 pellets. The two batches of samples were measured on different days. 124 

2.2. Atomic absorption spectroscopy (AAS) 125 

AAS was selected as the reference method for sodium quantification in IF mixtures. Na 126 

contents were established using a Varian 55B AA spectrometer (Varian, United States) 127 

following the standard method 985.35 for mineral determination in IF of the AOAC (Official 128 

Methods of Analysis of AOAC International) with slight modifications. Approximately 1.5 g 129 

of each sample was transferred to a crucible in triplicates (3 replicates). Crucibles were 130 

placed on a hot plate and heated until smoking ceased. Organic matter was then decomposed 131 

by dry ashing in a muffle furnace at 525°C for 4 h. Ashes were dissolved in 50 mL 1 M nitric 132 

acid. A further dilution step was required to bring concentrations within the linear range of 133 

the instrument (0–1 ppm).  134 

Calibration curves were established by using aqueous standards prepared from a commercial 135 

sodium stock solution (Sodium standard for AAS – 1,000 mg/L, Sigma-Aldrich). Sodium 136 

absorbance was measured at 589 nm with a slit width of 0.5 nm. All replicates and batches 137 

were measured on different days. 138 
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2.3. LIBS instrumentation and measurements 139 

2.3.1. Instrument set-up  140 

LIBS spectra were recorded using a LIBSCAN-150 system (Applied Photonics Ltd, UK) 141 

described in a previous publication (X. Cama-Moncunill et al., 2017). The system was fitted 142 

with a 150 mJ Q-switched Nd:YAG laser (Ultra, Quantel laser, MT, USA) operating at 1064 143 

nm and a pulse duration of 5 ns, coupled to six fibre-optic spectrophotometers (AvaSpec, 144 

Avantes spectrometers, Netherlands) covering the wavelength range of 181–904 nm. 145 

Moreover, the system was equipped with a miniature CCD camera which enabled the 146 

monitoring of the measurements.  147 

For the experiments, plasma emission was analysed with a delay time of 1.27 µs and an 148 

integration time of 1.1 ms. The laser was operated with a firing repetition rate of 1 Hz.  149 

2.3.2. Sampling method 150 

Pellets were measured individually using a sample chamber equipped with a three-axis 151 

translation stage (Applied Photonics Ltd, UK) which facilitated the acquisition of spectra at 152 

multiple locations of the pellet surface, that is, 100 locations following a 10×10 grid pattern. 153 

Spectral acquisition was carried out by recording 5 consecutive laser shots (depth 154 

measurements) at each of the 100 locations, giving a total number of 500 measurements per 155 

pellet. Data resulting from these consecutive laser shots can be considered as spectra 156 

corresponding to 5 different layers of the pellets, i.e. the repetitive firing of the laser at the 157 

same location causes the ablation of the outer material penetrating and allowing to measure 158 

deeper into the sample (Cremers & Radziemski, 2013).  159 

Spectral data collected from the 5 laser shots were stored separately in order to assess the best 160 

layer from which to build the sodium quantification model, and to allow subsequent 161 

comparison between accumulated and non-accumulated laser shots.    162 
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2.4. Data analysis 163 

Data analysis was performed with R (R Core Team, 2014) using the R package “pls” (Mevik, 164 

Wehrens, & Liland, 2015) for conducting PLS (partial least squares regression), as well as 165 

other in-house functions.  166 

Firstly, the average of the LIBS spectra collected at multiple locations was calculated for 167 

each layer, resulting in 5 spectra per pellet. Data was then divided into a training data set 168 

(N=30) and a test set (N=12), additionally  the follow-on formula extra validation samples 169 

(N=6) were tested. Prior to PLS modelling, combinations of different pre-processing 170 

techniques and normalisation methods were applied to the spectra with the aim of reducing 171 

the signal fluctuations due to extraneous sources of variability and to minimize any matrix 172 

effects (Sobron, Wang, & Sobron, 2012). Specifically, the techniques explored were: baseline 173 

correction (R package “baseline”), second derivative and standard normal variate (SNV). 174 

Spectral normalisation using other approaches, including normalisation by an internal 175 

standard and the Euclidean norm, were also explored. 176 

PLS calibration models using the different pre-processing techniques were developed for 177 

each of the 5 layers of the pellets. The performance of each model was evaluated by the 178 

leave-one-out root-mean-square error of cross-validation (RMSECV) technique, as well as 179 

the root-mean-square error of prediction (RMSEP). The wavelength range used for the 180 

modelling was limited to 560–825 nm since this region encompassed the main Na emission 181 

lines, while decreasing the total number of variables that do not contain useful peaks 182 

(Moncayo, Manzoor, Rosales, Anzano, & Caceres, 2017). 183 

In order to provide for a comparison between the accumulated and non-accumulated shots, 184 

spectra corresponding to the different layers were summated to one another so that 2, 3, 4 and 185 

5 accumulations were obtained. PLS modelling of the accumulated spectra was then carried 186 
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out, and their resulting performances were compared to those of the single-layer-spectra 187 

models.  188 

The limit of detection was computed according to the pseudounivariate approach (LODpu) for 189 

PLS models as proposed in a publication elsewhere (Allegrini & Olivieri, 2014) in 190 

accordance with IUPAC official recommendations. LODpu calculation was performed as 191 

shown in Eq. 1. 192 

𝐿𝑂𝐷𝑝𝑢 =
3.3

𝑆𝑝𝑢
 [(1 + ℎ0 𝑚𝑖𝑛 +  

1

𝐼
) 𝑣𝑎𝑟𝑝𝑢]

1
2⁄

         (1) 193 

where Spu is the slope of the pseudounivariate line, ho min is the minimum leverage when the 194 

analyte concentration is zero, I the number of samples employed for calibration, and varpu is 195 

the variance of the regression residuals. 196 

3. Results and discussion 197 

3.1. AAS 198 

In AAS, the accuracy of the results relies heavily upon the calibration curve established from 199 

reference standard solutions of the desired element. Good calibration curves were obtained 200 

rendering values for the coefficient of determination (R2) ≥ 0.99. Sodium contents of the IF 201 

samples determined with AAS, expressed in mg/g, are shown in Table 1. 202 

3.2. LIBS spectral features 203 

An initial exploratory analysis of the LIBS spectra was conducted in order to determine the 204 

principal differences among the samples studied. For comparison purposes, the averaged 205 

spectra of pellets corresponding to the lactose-IF mixture (C1, approx. 0.5 mg Na/g), pure IF 206 

(C2, approx. 1.3 mg Na/g) and the sodium chloride-IF mixture (C5, approx. 3.7 mg Na/g) are 207 

shown in Fig. 1. In the figure, several of the most important spectral lines of elements 208 

occurring in the spectra can be seen. The main element emission lines in the spectra were 209 

identified using the NIST database (Kramida, Ralchenko, Reader, & NIST ASD team, 2016). 210 

These emission lines included: C I 247.86 nm, Ca II 393.37; 396.85 nm, Ca I 422.67; 558.88; 211 
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612.22; 616.22 nm, H I 656.29 nm, N I 744.23; 746.83 nm, K I 766.49; 769.90 nm, O I 212 

777.19 nm and Na I 589.05; 589.59 nm. Moreover, three Na I lines were identified at 568.26, 213 

568.82 and 819.48 nm. Other possible Na lines in the spectra were discarded and not 214 

considered for quantitative analysis since the intensities at these wavelengths were marginal, 215 

which is consistent with the NIST guidelines for sodium.    216 

3.3. Multivariate analysis with PLS 217 

PLS is a method for predicting a quantitative response (i.e. sodium content), stored in a 218 

matrix Y, from numerous predictor variables (i.e. spectral data), stored in a matrix X. In order 219 

to do so, it decomposes simultaneously the two matrices into new variables, known as factors 220 

or latent variables (LV), in such a way that they explain as much as possible of the covariance 221 

between X and Y. A multivariate linear model is then fitted using the latent variables to 222 

predict the quantitative response (Abdi, 2010).  223 

PLS modelling has been demonstrated to successfully develop quantitative calibration models 224 

from LIBS spectral data of food samples in previous publications (Andersen, Frydenvang, 225 

Henckel, & Rinnan, 2016; Bilge et al., 2016; M. Markiewicz-Keszycka et al., 2018). In the 226 

present study, PLS was employed to build the calibration models for the determination of 227 

sodium content by correlating the pre-processed LIBS spectra in the wavelength range of 228 

560–825 nm to the reference Na contents extracted from AAS analysis.  229 

3.3.1. PLS modelling: performance of sampling methods and spectral pre-processing 230 

As previously mentioned, different techniques and normalisation methods were explored as 231 

pre-processing techniques of the spectra prior to modelling. To this end, various calibrations 232 

were developed using the approaches detailed in section 2.4. A summary of PLS 233 

performances for these calibrations can be found in Table 2 (for briefness, this table only 234 

includes some of the most relevant models). The criterion followed for establishing an 235 

optimum number of LVs for each model considered a low value of RMSECV (root-mean-236 
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square error of cross-validation) with a low number of LVs to avoid overfitting. In order to 237 

determine the best calibration for quantifying sodium content in IF samples, both RMSECV 238 

and RMSEP (root-mean-square error of prediction) were used.  239 

With regards to pre-processing techniques, the best performances were obtained for 240 

normalised spectra with SNV, Euclidean norm and normalisation using the H I at 656.29 nm 241 

and Ca I at 422.6 nm emission lines as internal standards. All the methods above yielded 242 

similar results for calibration (Table 2): e.g. the third-layer-spectra models (measurement 243 

depth: 3) using these pre-processing techniques rendered values of almost 0.94 for the 244 

coefficient of determination (R2). These models also provided similar results for root-mean-245 

square errors of cross-validation and prediction: third-layer-spectra models yielded values of 246 

approx. 0.37 mg/g for RMSECV and values in the range of approx. 0.13–0.16 mg/g for 247 

RMSEP. Other techniques such as baseline correction or normalisation with other internal 248 

standards (C I at 247.9nm and K I at 766.4 nm) provided good calibrations and reasonable 249 

validation performances. However, the RMSEP values were slightly higher than those 250 

obtained with SNV, Euclidean, H I 656.29 nm or Ca I 422.6 nm. Second derivative pre-251 

processing was found not to be effective for calibration showing low values of R2 and R2
CV 252 

(coefficient of determination for cross-validation), as well as high values of root-mean-square 253 

errors (RMSE, RMSECV).  254 

Regarding the modelling of layers or depth measurements, it was observed that the third-layer 255 

spectra exhibited the best results regardless of the pre-processing techniques used. The first 256 

and second layers, while providing a good calibration, showed performances considerably 257 

lower for cross-validation and validation. The fourth and fifth layers exhibited an overall 258 

good performance, but with lower R2 values and higher RMSECV and RMSEP as compared 259 

to the third layer. The effect of measuring deeper into the sample on spectral quality, and as a 260 

mechanism to avoid surface contamination has been previously investigated (R. Cama-261 
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Moncunill et al., 2017). Similarly, in this publication PLS models were developed for 262 

different layers of the samples with the aim of quantifying copper and iron contents in infant 263 

formula premixes (blends used in IF manufacturing which are designed to contain specified 264 

nutrients). The authors observed that PLS performances, especially with regard to validation, 265 

improved as the measuring depth increased. In the present study, this trend was also 266 

observed, however, finding an optimum at the third measurement depth. It is worth noting 267 

that depending on the laser energy and sample type, the optimum number of shots on the 268 

same location may change substantially since these parameters affect the laser-material 269 

interaction, for instance the size of the crater formed or the amount of ablated mass (Tognoni 270 

& Cristoforetti, 2016).  271 

Table 2 also shows the performances for some of the PLS models developed with the 272 

accumulated spectra. In this regard, the modelling of accumulated spectra only proved to 273 

yield notable better performances for the first two laser shots as compared to applying PLS 274 

separately on these layers. A larger number of accumulations did not provide better models 275 

than using the third-layer-spectra alone. In several publications, authors chose to accumulate 276 

spectra as a means to mitigate signal fluctuations (Maria Markiewicz-Keszycka et al., 2017). 277 

The fact that, in this work, accumulating spectra did not considerably improved the results 278 

may be due to an already high sampling number (average of 100 locations) along with an 279 

optimum of 3 laser shots, the first two of which ablate away the surface which may have been 280 

contaminated.  281 

Considering both pre-processing and sampling method, the best performing PLS model to 282 

predict sodium content was the third-layer spectra which had been normalised using the H I 283 

emission line at 656.29 nm.  284 
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3.3.2. Validation of the selected calibration model 285 

The hydrogen-normalised third-layer-spectra model was used as the calibration to perform 286 

sodium content predictions. Fig. 2 (a) shows the values of RMSECV for each LV of this 287 

model. A number of 3 LVs was selected as further factors did not result in a notable 288 

improvement in terms of RMSECV while, at the same time, the quality of the predictions for 289 

the validation set decreased, indicating that a higher number of LVs could result in overfitting 290 

of the model. The first 3 main LVs explained approximately 95.7% of the total spectral 291 

variance.  292 

Fig. 2 (b) shows the loading values for the first factor of the PLS model in the wavelength 293 

range assessed. One main sodium (Na I) emission line at 589.59 nm contributed to the 294 

loading values. Other Na I spectral lines were the doublet at 568.26 and 568.82 nm, and the 295 

emission line at 819.48 nm. These spectral lines had a relatively small contribution as 296 

compared to the sodium doublet at around 589 nm. Negative loading values were only 297 

observed for nitrogen (N I 744.23 and 746.83 nm) and oxygen (O I 777.19 nm), both 298 

elements showing minor values.  299 

The PLS model exhibited an R2 of 0.93 for the calibration. With regards to cross-validation, 300 

an R
2
CV value of 0.886 and an RMSECV of 0.373 mg/g were obtained, indicating a reasonable 301 

fit and accuracy of the calibration. The validation of the PLS model was carried out by 302 

predicting the Na contents of 2 samples not included in the training set with the aim of 303 

evaluating the robustness of the model. The model exhibited a good prediction accuracy as 304 

indicated by a high R
2
p (coefficient of determination for the validation set) of 0.967 and a 305 

RMSEP value of 0.129 mg Na/g. Fig. 3 shows the PLS calibration curve with the predicted 306 

values for the validation set. To further evaluate the closeness of the predictions to the actual 307 

values of concentration, the relative error (RE) was calculated as reported elsewhere (Câmara 308 

et al., 2017). The RE value of the validation set was 7.22%. 309 
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Additionally, Na contents for 2 follow-on formulas were also predicted in order to explore 310 

the model’s response to different formulations of infant products. In this case, the predictions 311 

were not as accurate as the validation set, giving a RE value of 23.32%. However, this result 312 

may indicate that the model can provide reasonable predictions even with a certain degree of 313 

variability in the raw materials.   314 

As mentioned before , the best performance was given by spectra collected after 3 laser shots. 315 

To further investigate why the third layer provided better results, sodium content was 316 

predicted, in this case, for each location in the 10×10 measuring grid. In order to do so, the 317 

raw spectral data acquired from sample V2, chosen as a point close to the centre of the 318 

calibration curve, was normalised by the hydrogen emission line without averaging the data 319 

of multiple locations, i.e. obtaining 500 pre-processed spectra instead of 5. Na contents were 320 

subsequently predicted employing the coefficients extracted from the PLS model. Fig. 4 321 

shows a schematic representation of the V2 pellet displaying sodium content in each spatial 322 

position for the first 3 measurement depths. The same intensity scale for the three 323 

measurements was implemented to allow comparison. It can be observed that the predictions 324 

for the third layer, Fig.4(c), provided a more homogeneously distributed sodium within the 325 

analysed area.    326 

The limit of detection of the model was estimated by following the pseudounivariate 327 

approach as described in Eq. 2. The LOD value corresponding to the calibration model was 328 

1.11 mg/g.  329 

4. Conclusions 330 

LIBS was successfully applied for quantifying sodium over a range in conformity with the 331 

product’s regulatory guidelines, hence, demonstrating the feasibility of the technique as a 332 

potential screening tool for IF manufacturing. Multivariate analysis with PLS was applied to 333 

spectral data processed by a range of different pre-processing techniques, measuring depths 334 
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and accumulations. The resulting calibration models were compared in terms of PLS 335 

performance: coefficients of determination and root-mean-square errors; for calibration (R2, 336 

RMSEC), leave-one-out cross-validation (R
2
CV, RMSECV) and validation (R

2
p, RMSEP). The 337 

best PLS calibration was obtained using the third-layer spectra normalised by the H I 338 

emission line at 656.29 nm, yielding a R2 of 0.93 and a R
2
CV of 0.886. When performing 339 

validation of this model, the resulting R
2
p and RMSEP values were 0.967 and 0.129 mg Na/g 340 

respectively, proving its ability to accurately predict samples not included in the calibration 341 

set. 342 

In this study, accumulation of the spectra on the same spot did not notably improve the 343 

performances of the PLS models as compared to using the third layer alone. Furthermore, 344 

chemical mapping with PLS of the analysed area (100 measurements in a 10×10 grid pattern) 345 

showed that sodium was more homogeneously distributed than for the first two layers. These 346 

results suggested that conditioning the surface of the pelletized sample, while keeping a low 347 

number of shots on the same spot, can provide a good predictive accuracy without the need of 348 

large sampling numbers. 349 
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Table 1 491 

Sodium contents in milligrams per gram of samples corresponding to calibration (C1–C5) 492 

and validation (V1–V4) determined by AAS. 493 

Sample Constituents 
Batch 1 Batch 2 Extra validation 

Na content (mg/g) a  Na content (mg/g) a Na content (mg/g) a  

C1 IF + lactose 0.48 ± 0.05 0.54 ± 0.03 ‒ 

C2 IF 1.40 ± 0.21  1.34 ± 0.07 ‒ 

C3 IF + NaCl 2.11 ± 0.11 2.07 ± 0.02 ‒ 

C4 IF + NaCl 2.78 ± 0.16 2.72 ± 0.07 ‒ 

C5 IF + NaCl 3.69 ± 0.54 3.74 ± 0.18 ‒ 

V1 IF + lactose 0.93 ± 0.06 0.98 ± 0.06 ‒ 

V2 IF + NaCl 2.22 ± 0.04 2.48 ± 0.21 ‒ 

V3 follow-on ‒ ‒ 1.18 ± 0.04 

V4 follow-on ‒ ‒ 2.38 ± 0.36 

a Contents expressed as mean ± standard deviation of three replicates.  494 
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Table 2 495 

Summary of performances for the PLS models developed using different sampling methods 496 

and pre-processing techniques.  497 

a Number of conditioning shots. 498 

b Number of accumulated spectra.  499 

Experiment Depth Pre-

processing 

 Calibration  Cross-validation  Validation 

LVs R2 RMSEC R
2
CV RMSECV R

2
p RMSEP 

Single layer 3 None  3 0.851 0.426  0.771 0.529  0.904 0.218 

Single layer 1 H I 656.3  3 0.899 0.352  0.822 0.465  0.612 0.438 

Single layer 2 H I 656.3  3 0.856 0.419  0.776 0.523  0.498 0.498 

Single layer 3 H I 656.3  3 0.930 0.291  0.886 0.373  0.967 0.129 

Single layer 4 H I 656.3  3 0.879 0.384  0.786 0.511  0.915 0.205 

Single layer 5 H I 656.3  3 0.824 0.463  0.665 0.639  0.914 0.207 

Accumulations 4 (0a/4b) H I 656.3  3 0.931 0.290  0.884 0.377  0.914 0.206 

Accumulations 5 (0a/5b) H I 656.3  3 0.916 0.320  0.856 0.419  0.935 0.179 

Accumulations 4 (1a/3b) H I 656.3  3 0.924 0.287  0.872 0.366  0.940 0.213 

Single layer 3 Ca I 422.6  3 0.937 0.276  0.893 0.361  0.966 0.131 

Single layer 3 C I 247.9   3 0.923 0.306  0.876 0.389  0.894 0.229 

Single layer 3 K I 766.4  3 0.942 0.266  0.911 0.330  0.908 0.213 

Single layer 3 SNV  3 0.938 0.276  0.888 0.369  0.945 0.164 

Single layer 4 SNV  3 0.917 0.318  0.851 0.426  0.866 0.258 

Single layer 5 SNV  2 0.865 0.405  0.816 0.473  0.911 0.210 

Accumulations 4 (0a/4b) SNV  2 0.879 0.384  0.840 0.442  0.849 0.274 

Accumulations 5 (0a/5b) SNV  2 0.881 0.382  0.841 0.441  0.897 0.225 

Accumulations 4 (1a/3b) SNV  2 0.878 0.389  0.831 0.446  0.888 0.312 

Single layer 3 Euclidean  3 0.938 0.274  0.889 0.367  0.950 0.157 

Single layer 4 Euclidean  2 0.871 0.397  0.824 0.463  0.889 0.234 

Single layer 5 Euclidean  2 0.865 0.405  0.816 0.474  0.910 0.211 

Accumulations 4 Euclidean  2 0.879 0.383  0.839 0.443  0.811 0.306 

Accumulations 5 Euclidean  2 0.881 0.381  0.841 0.441  0.874 0.250 
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Figure 1 500 

 

Fig. 1. Averaged spectra corresponding to, from top to bottom, the sodium chloride -IF mixture 501 

at approx. 3.7 mg Na/g, the pure IF sample at approx. 1.3 mg Na/g and the sodium lactose-IF 502 

mixture at approx. 0.5 mg Na/g. Spectra are vertically offset for illustration purposes. 503 
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Figure 2 504 

 

Fig. 2. (a) RMSECV (root-mean-square error of cross-validation) for each number of PLS 505 

factors or latent variables. (b) Loading values of each wavelength for the first latent variable.  506 
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 Figure 3 507 

 

Fig. 3.  PLS calibration model developed using the third-layer spectra and normalised by the 508 

H I 656.29 emission line showing predicted Na contents for the validation and follow-on 509 

formulas sets. Standard deviation values (σ) are expressed in mg/g.  510 
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Figure 4 511 

 

Fig.4. Predicted sodium maps for the validation sample at 2.48 mg/g of sodium for the first 512 

three depths: (a) first layer, (b) second layer, (c) third layer. The same intensity scale was 513 

implemented for the three samples to facilitate comparison. 514 


