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Abstract
There exists a great variety of structural failure modes which must be frequently inspected to ensure continuous structural
integrity of composite structures. This work presents a finite element (FE) based method for calculating wave interaction
with damage within structures of arbitrary layering and geometric complexity. The principal novelty is the investigation
of pre-stress effect on wave propagation and scattering in layered structures. A wave finite element (WFE) method, which
combines FE analysis with periodic structure theory (PST), is used to predict the wave propagation properties along periodic
waveguides of the structural system. This is then coupled to the full FE model of a coupling joint within which structural
damage is modelled, in order to quantify wave interaction coefficients through the joint. Pre-stress impact is quantified by
comparison of results under pressurised and non-pressurised scenarios. The results show that including these pressurisation
effects in calculations is essential. This is of specific relevance to aircraft structures being intensely pressurised while on air.
Numerical case studies are exhibited for different forms of damage type. The exhibited results are validated against available
analytical and experimental results.
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Nomenclature
+,− Positive and negative going waves properties
a Wave amplitude
c Wave scattering coefficient
D,D Dynamic stiffness matrices of the waveguide

and the coupling joint
k Wavenumber
K,M,C Stiffness, mass and damping matrices of a

waveguide’s modelled periodic segment
q, f Physical displacement and forcing vectors

for an elastic waveguide
S Wave scattering matrix
T Wave propagation transfer matrix
z Physical displacement vector for the cou-

pling joint
φ,Φ Eigenvector and grouped eigenvector
ᵀ Matrix transpose
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λ Propagation constant and eigenvalue of the
wave propagation eigenproblem

i,n Property of interface and non-interface nodes
J Property of a coupling joint
K,M,C Stiffness, mass and damping stiffness matri-

ces of the coupling joint
ω Angular frequency
� Real operator
b, h Width and depth of a cross-section
E,G, ν, ρ Elastic modulus, shear modulus, Poisson’s

ratio and density of an elastic waveguide
g Global coordinate index
j Number of DoFs on each cross-section of the

periodic waveguide segment
k, n, N Waveguide indices and total number of

waveguides existing in the considered sys-
tem

L Length
L, R, I Left, right sides and interior indices
q, f Displacement and forcing indices
s Periodic segment positioning index
t Time
w,W Wave eigenvector index and total number of

waves accounted for in the waveguide
x, y, z Property in the x , y, or z direction
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1 Introduction

Composite structures are increasingly used in modern
aerospace and automobile industries due to their well-known
benefits. However, they exhibit a wide range of structural
failure modes, which include delamination, notch, crack,
fibre breakage and fibre-matrix debonding [1], for which the
structures have to be frequently and thoroughly inspected
in order to ensure continuous structural integrity. Approxi-
mately, 27% of an average modern aircraft’s lifecycle cost
[2] is dedicated on inspection and repair. The use of ’offline’
structural inspection techniques currently leads to a massive
reductionof the aircraft’s availability and significant financial
losses for the operator. Structural health monitoring (SHM)
combines non-destructive evaluation (NDE) technologies
with new modelling methodologies and robust sensing tech-
nologies to detect, identify and monitor the integrity of
structures and predict their remaining lifetime. The non-
destructive detection and evaluation of damage in industrial
structural components during service, is of pertinent impor-
tance for monitoring their condition and estimating residual
life. This evaluation has been widely studied using the ultra-
sonic guided wave techniques. These techniques are more
sensitive to gross defects compared to micro damage. How-
ever, acousto-ultrasonic techniques [3,4], which are excellent
for both forms of defects, have been receiving increasing
attention during the last decade.

Non-destructive ultrasonic wave distortion during prop-
agation in structural media has been studied as early as in
[5]. It has been demonstrated that ultrasonic waves can be
successfully employed in non-destructive detection of struc-
tural defects and deterioration (such as fatigue) [6–8]. The
developed NDE approaches can be classified into matrix for-
mulation techniques: in which ultrasonic waves in layered
media are defined by coupling thematrix formulation of each
of the layers which constitute the media, and wave propaga-
tion techniques: which strongly rely on the calculation of
dispersion curves and wave interaction reflection and trans-
mission coefficients to inspect and evaluate structural media.
The wave propagation NDE inspection techniques can fur-
thermore be categorised into two steps, namely response and
modal steps [9]. The former measures the wave reflection
and transmission characteristics of the structure, while the
latter determines the wave dispersion and propagation char-
acteristics, such as the wave phase and group velocities as
well as the wavenumber. These techniques have been suc-
cessfully demonstrated in various structural media such as
truss [10,11], beams [12], 3-D solid media [13] and compos-
ite structure [14]. It has also been applied to calculate wave
interaction coefficients from structural joints such as curved
[15], spring-type [16], welded [2], adhesive [17], angled [18]
and liquid-coupled joints [19].

Implementing a suitable modelling technique is as impor-
tant as selecting an appropriate NDE method for SHM. The
finite element (FE) method [20] is one of the most common
ones employed to analyse the dynamic behaviour of struc-
tures. The structure is split into a number of elements to form
a mesh and equilibrium relationships which are applied to
relate the entire structure and boundary conditions to arrive
at a unique solution for a specific problem. Finite element
based wave propagation NDE technique for periodic struc-
tures was first introduced in [21]. It was shown that the wave
dispersion characteristics within the layered media can be
accurately predicted for a wide frequency range by solving
an eigenvalue problem for the wave propagation constants.
The work was extended to 2-D media in [22]. The wave
finite element (WFE) method was introduced in [23] to facil-
itate the post-processing of the eigenvalue problem solutions
and the improvement of the computational efficiency of the
method was presented in [24]. The method is considered
as an expansion of Bloch’s theorem and its main assump-
tion being the periodicity of the structure to be modelled.
It couples the periodic structure theory to the FE method
by modelling only a small periodic segment of the struc-
ture, thereby saving a whole lot of computational cost and
time. WFE method has been successfully implemented in
1-D [23,25] and 2-D [26,27] wave propagation analyses.
The method has recently found applications in predicting
the vibroacoustic and dynamic performance of layered struc-
tures [28]. The variability of acoustic transmission through
layered structures [29,30], as well as structural identifica-
tion [31] have beenmodelled through the samemethodology.
The same FE based approach was employed to compute the
reflection and transmission coefficients of waves impinging
on linear joints in [25,32].

The principal contribution of the work hereby presented is
to investigate wave propagation and interaction with defects
in periodic structures, and examine the effect of pre-stressing
on the wave interaction coefficients. The structure can be of
arbitrary complexity, layering and material characteristics
as an FE discretisation is employed. The defective struc-
ture is discretised into a number of healthy waveguides
coupled through a defective coupling joint. Free wave prop-
agation properties of the periodic waveguides are computed
through a wave finite element method. A hybrid WFE–FE
methodology is then developed to quantify interaction of the
WFE computed waves with defect within the full FE defined
coupling joint. In general, the structure is pre-stressed by
subjecting it to a uniformly distributed surface pressure. The
pre-stress effect is evaluated by comparing thewave response
(dispersion and reflection properties) of the pressurised struc-
ture to that of non-pressurised structure. This is exhibited
through presented numerical case studies.
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Fig. 1 Internal (core) pressurisationof a periodic segment of a sandwich
structure

2 Stiffness Property of a Pressurised
Structure

Pre-stress impact (due to pressurisation) on the coefficients
of wave interaction with defects is examined in this work.
Consider an arbitrary periodic segment internally pressurised
as shown in Fig. 1. The stress stiffening effect as a result of
the applied pressure is accounted for by adding a pre-stress
stiffness matrix, Kp, to the unstressed stiffness matrix, K0,
of the system.

Kp is dependent on the geometry, displacement field and
the state of stress of each structural element [33]. For a 3-
D element, which is considered in this work, the pre-stress
stiffness matrix is given as [34]

Kp =
∫∫∫

S�
g SmSg dxdydz (1)

where Sg is the shape function derivative matrix, Sm is the
Cauchy stress tensor and [•]� is a transpose. Hence, the total
stiffness matrix of the pre-stressed system is given as

K = K0 + Kp (2)

Evidently, K equals to K0 under no pressurisation scenario.

3 Finite Element Modelling of Structural
Damage

A system of N waveguides connected through a coupling
joint (Fig. 4) is considered in this study. In the general case,
waves travel from one of the waveguides to other waveguides

through the joint. Scattering coefficients are calculated from
interaction of the waves with structural inconsistencies (such
as damage). Composite structures are prone to a number of
structural failure modes which range from microscopic fibre
faults to large, gross impact damage. Among these failure
modes, notch, cracks, delamination and fibre breakage are
important modes of failures commonly found in composites
[1,35].

Simplified FE methods can be used to simulate the effect
of the damage on the mechanical behaviour of the cou-
pling joint. Some of these methods include element deletion,
stiffness reduction, duplicate node and kinematics based
methods. Descriptions of each of these methods and their
applicability are given in the following sections.

3.1 Element DeletionMethod

This method is mainly applicable for modelling notches such
as holes (fibre fractures) and rectangular notches in compos-
ites. Here, an element or a number of elements along the axis
of the defect is/are deleted from the structure to simulate the
effect of the defect. This leads to a reduction in the overall
mass and stiffness of the structure. It is one of the simplest
FE damage modelling methods as it doesn’t require mesh
modification.

3.2 Stiffness ReductionMethod

It is a known fact that structural defects contribute to a
reduction in the overall stiffness properties of the structural
segment. In this method, the stiffness loss is incorporated in
the FEmodelling of the structure by multiplying the material
property of the structure by a reduction factor β as

P = βP0, 0 < β ≤ 1 (3)

where P is the reduced material property, P0 the original
magnitude of the property (which can be elastic modulus,
shear modulus or density). β being the reduction factor,
equals unity for a pristine structure. Thismethod is applicable
to model cracks and delamination, but it is limited to wave
interaction problem where mode conversion is not expected.

3.3 Node DuplicationMethod

The node duplicationmethod is applicable formodelling var-
ious damage types such as single and multiple delamination
and cracks, and fibre breakages.

In this method, nodes along axis of the crack, within
the structural segment, are disconnected by adding dupli-
cate nodes, which have the same nodal coordinates but
different nodes numbers, to the nodes being disconnected.
Each duplicate node is assigned to an adjacent element such
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Fig. 2 Finite element modelling
of damage using node
duplication method: a damaged
structural segment, b node
duplication model

(a) (b)

that when a tensile force is applied, the nodes along the
crack front are separated. In this respect, if the original
nodes are connected to the left side elements, the dupli-
cate nodes will be connected to the elements on the right
side.

As an illustration of thismethod, a structural segment with
six plane strain FEs is considered. Elements and nodes num-
bering of the segment are as shown Fig. 2. For the damage
depth considered, nodes 6, 7 and 8, which are along the dam-
age axis, are disconnected by adding duplicate nodes 13, 14
and 15 of same respective nodal coordinates. In a pristine
state of the segment, nodal arrangement of finite element
2 is [2, 6, 7, 3] in that order, while that of element 5 is
[6, 10, 11, 7]. But, in a damaged state, nodal arrangement
of element 2 remains [2, 6, 7, 3] while that of element 5
becomes [13, 10, 11, 14] to model defects at the interface
of the two FEs. Similar node ordering holds for elements
3 and 6 with nodal arrangements [3, 7, 8, 4] and [14, 11,
12, 15] respectively in the damaged state of the structural
segment.

Although a 2D structural segment is used to illustrate
the procedure of this method, extending the procedure
to model damage in a 3D structure is quite similar and
straightforward.

3.4 Kinematics BasedMethod

This approach has a lot of similarities to the node duplication
method. It involves enforcing kinematics to the nodes sur-
rounding the damage. The structural segment is segmented
intomultiple domains along the crack front. The stiffness and
mass matrices of each domain are generated and coupled to
obtain the overall matrices of the structural segment. More
details on the approach can be found in [36]. The method
is applicable to model delamination, cracks and fibre break-
ages.

Fig. 3 WFE modelled layered composite waveguide with the left and
right side nodes qL, qR bullet marked. The range of interior nodes qI
also illustrated

4 FreeWave Propagation in an Arbitrarily
Periodic Structure byWFEMethod

Linear elastic wave propagation is considered in the x direc-
tion of the arbitrary periodic structural waveguide of Fig. 3. A
FEmodel, of a periodic segment of the structural waveguide,
is meshed using commercial FEA software.

The problem can be condensed using a transfer matrix
approach as in [23]. The frequency dependent dynamic stiff-
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nessmatrix (DSM),D, which relates the nodal displacements
and the internal forces (of the periodic segment’s nodes)
under a time-harmonic behaviour assumption, is given as

[K + iωC − ω2M]q = f (4)

where q and f are the displacement and internal force vec-
tors respectively. C andM are respectively the damping and
mass matrices of the segment. The internal force vector is
responsible for transmitting waves from one element to the
other within the structure, hence it is not zero, even for a free
wave motion where no external load is applied [27], as is the
case being considered in this work.

The DSM can be partitioned with regards to the left L ,
right R and internal I DoFs of the periodic segment as

⎡
⎣DLL DLI DLR

DIL DII DIR

DRL DRI DRR

⎤
⎦

⎧⎨
⎩
qL
qI
qR

⎫⎬
⎭ =

⎧⎨
⎩
fL
fI
fR

⎫⎬
⎭ (5)

Using a dynamic condensation technique for the internal
nodes DoFs, Eq. (5) can be expressed in the form

[
DLL−DLID

−1
II DIL DLR − DLID

−1
II DIR

DRL−DRID
−1
II DIL DRR − DRID

−1
II DIR

] {
qL
qR

}
=

{
fL
fR

}

(6)

As earlier stated, it is assumed that no external forces are
applied on the segment. As a result of this, the displacement
continuity and equilibriumof forces equations at the interface
of two consecutive periodic segments s and s + 1 are given
as

qsR = qs+1
L

fsR = − fs+1
L

(7)

The transfer matrix, T, relates the displacement and force
vectors of the left and right sides of the periodic segments.
This is done by combining Eqs. (6) and (7) as

{
qs+1
L

fs+1
L

}
= T

{
qsL
fsL

}
(8)

and the expression for the symplectic transfer matrix is
defined as

T =
[
D11 D12

D21 D22

]
(9)

with

D11 = − (DLR − DLID
−1
II DIR)−1(DLL − DLID

−1
II DIL)

D12 = (DLR − DLID
−1
II DIR)−1

D21 = (−DRL + DRID
−1
II DIL) + (DRR + DRID

−1
II DIR)

× (DLR − DLID
−1
II DIR)−1(DLL − DLID

−1
II DIL)

D22 = − (DRR + DRID
−1
II DIR)(DLR − DLID

−1
II DIR)−1

(10)

With a wave propagating freely along the x-direction (1-
dimensional wave propagation), the propagation constant,
λ = e−ikLx , relates the left and right nodal displacements
and forces by

qsR = λqsL
fsR = −λfsL

(11)

By substituting Eqs. (7) and (11) in Eq. (8), the free wave
propagation is described by the eigenproblem relation

λ

{
qsL
fsL

}
= T

{
qsL
fsL

}
(12)

whose eigenvalues λω and eigenvectors φω = λ

{
φq
φ f

}
ω

solution sets provide a comprehensive description of the
propagation constants and the wave mode shapes for each
of the elastic waves propagating in the structural waveguide
at a specified angular frequency ω. Both positive going (with
λ+

ω and φ+
ω ) and negative going (with λ−

ω and φ−
ω ) waves are

sought through the eigensolution. Positive going waves are
characterised [23] by

|λ+
ω | ≤ 1

�(iωφ
+ᵀ
f φ+

q ) < 0 if |λ+
ω | = 1

(13)

which states that when a wave is propagating in the positive
x direction, its amplitude should be decreasing, or that if its
amplitude is constant (in the case of propagating waves with
no attenuation), then there is time average power transmis-
sion in the positive direction. Then the wavenumbers of the
waves (at a specified angular frequency) in the positive k+

ω

and the negative k−
ω directions can be determined from the

propagation constants as

k+
ω = − ln (λ+

ω )

i Lx

k−
ω = − ln (λ−

ω )

i Lx

(14)
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Fig. 4 Periodic elastic
waveguides connected through a
coupling joint. Waves having
amplitudes a+

n impinging on the
joint from the nth waveguide
will give rise to waves of
reflection coefficients cn,n in the
nth waveguide and waves of
transmission coefficients ck,n in
the kth waveguide

5 Elastic Wave InteractionModelling by
HybridWFE-FE Approach

In the general case, a system of N healthy periodic waveg-
uides connected through a structural coupling joint as shown
in Fig. 4 is considered. The coupling joint could exhibit
arbitrarily complex mechanical behaviour such as damage,
geometric or material inconsistencies and is fully FE mod-
elled. As already stated, each waveguide can be of different
and arbitrary layering and can also support a number (W ) of
propagating waves at a given frequency.

Propagation constants of the waves are sought through the
WFE methodology as presented in Sect. 4. Each supported
wavemode w with w ∈ [1 · · · W ] for waveguide n with
n ∈ [1 · · · N ] in the system can be grouped as

�+
n,q =

[
φ+
q,1 φ+

q,2 · · · φ+
q,W

]

�+
n,f =

[
φ+

f ,1 φ+
f ,2 · · · φ+

f ,W

]

�−
n,q =

[
φ−
q,1 φ−

q,2 · · · φ−
q,W

]

�−
n,f =

[
φ−

f ,1 φ−
f ,2 · · · φ−

f ,W

]
(15)

with each matrix being of dimension [ j × W ]. The wave-
modes of the entire system can be computed at each specified
angular frequency and be grouped as

�+
q =

⎡
⎢⎢⎢⎢⎢⎣

�+
1,q 0 · · · 0

0 �+
2,q · · · 0

· · · · · · · · · · · ·
0 0 · · · �+

N,q

⎤
⎥⎥⎥⎥⎥⎦

[ j N×WN ]

(16)

with respective similar expressions for �+
f , �

−
q and �−

f . A
local coordinate system is defined for each waveguide such
that the waveguide’s positive axis is directed towards the
joint. The rotation matrix Rn transforms the DoFs of each
waveguide from the local to the global coordinates of the
system as

�
g,+
q = R�+

q (17)

with respective similar expressions for�g,+
f ,�g,−

q and�
g,−
f .

g denotes the global coordinates index and R represents the
rotation matrices of the system’s waveguides, grouped in a
block diagonal matrix as

R =

⎡
⎢⎢⎣
R1 0 · · · 0
0 R2 · · · 0
· · · · · · · · · · · ·
0 0 · · · RN

⎤
⎥⎥⎦

[ j N× j N ]

(18)

The equation ofmotion for the FEmodelled coupling joint
can be in general written as

Mz̈(t) + Cż(t) + Kz(t) = fe(t) (19)

with the frequency dependent DSM of the joint expressed as

D = K + iωC − ω2M (20)

where K,C and M are stiffness, damping and mass matrices
of the coupling joint, z is the physical displacement vector of
the coupling joint and fe is the set of elastic forces applied to
the coupling joint at its interface with connected waveguides.
It is assumed that all connected waveguides are considered
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to be purely elastic and that no external force is applied at the
non-interface nodes of the joint. As a result of this and similar
to the waveguides, the DSM of the joint can be partitioned
with regards to the interface i and non-interface n nodes of
the joint with the waveguides as

[
Dii Din
Dni Dnn

] {
zi
zn

}
=

{
fe
0

}
(21)

Using a dynamic condensation for the non-interfaceDoFs,
Eq. (21) can be expressed as

DJzi(t) = fe(t) (22)

with

DJ = Dii − DinD
−1
nnDni (23)

where DJ is of dimension [ j N × WN ].
The equilibrium of forces at the coupling joint gives

fe(t) − Rf(t) = 0 (24)

where f is the set of forces applied by the waveguides con-
nected to the joint and the continuity conditions for the joint
give

zi(t) = Rq(t) (25)

with

q = [q1 q2 · · ·qN]ᵀ[jN×1] (26)

Waves of amplitudes a+
n are impinging on the coupling

joint from the nth waveguide. These give rise to reflected
waves of amplitudes a−

n in the nth waveguide and transmitted
waves of amplitudes a−

k in the kth waveguide (and vice versa
as shown in Fig. 4) expressed as

a−
n = cn,na+

n

a−
k = ck,na+

n
(27)

with cn,n and ck,n respectively being matrices containing
the reflection and transmission coefficients of the scattered
waves. Hence, the incident waves amplitudes can be related
to the amplitudes of the scattered waves as

a− = Sa+ (28)

where a+
[WN×1] is the vector containing the amplitudes of

the incident waves moving towards the coupling joint and
a−
[WN×1] the vector containing the amplitudes of the reflected
and transmitted scattered waves. The wave scattering matrix

S whose diagonal and off-diagonal elements respectively
represent the reflection and transmission coefficients of the
scattered waves can be expressed in the form

S =

⎡
⎢⎢⎢⎢⎣

c1,1 · · · c1,W · · · c1,WN

· · · · · · · · · · · · · · ·
cW,1 · · · cW,W · · · cW,WN

· · · · · · · · · · · · · · ·
cWN,1 · · · cWN,W · · · cWN,WN

⎤
⎥⎥⎥⎥⎦

[WN×WN ]
(29)

A transformation can be defined for the motion in the
waveguides between the physical domain, where the motion
is described in terms of q(t) and f(t) and the wave domain,
where the motion is described in terms of waves of ampli-
tudes a+ and a− travelling in the positive and negative
directions respectively as

qn(t) = �+
n,qa

+
n cos(ωt) + �−

n,qa
−
n cos(ωt)

fn(t) = �+
n,f a

+
n cos(ωt) + �−

n,f a
−
n cos(ωt)

(30)

andby concatenating the correspondingvectors andmatrices,
the general expressions for q(t) and f(t) for the system’s
waveguides can be expressed as

q(t) = �+
q a

+
n cos(ωt) + �−

q a
−
n cos(ωt)

f(t) = �+
f a

+
n cos(ωt) + �−

f a
−
n cos(ωt)

(31)

Substituting Eq. (22) into the equilibrium equation (Eq.
(24)) and then substitute the continuity equation (Eq. (25))
into the resulting expression gives

DJRq = Rf (32)

Substituting Eqs. (17) and (31) in Eq. (32) and express
the resulting equation in the form of Eq. (28) gives the wave
interaction scattering matrix as

S = −[�g,−
f − DJ�

g,−
q ]−1[�g,+

f − DJ�
g,+
q ] (33)

6 Numerical Case Studies

This section presents case studies to demonstrate the appli-
cation of the developed methodology. The case studies are
divided into two; validation and test case studies. The vali-
dation cases are presented for models whose analytical and
experimental wave dispersion and scattering properties can
be obtained. The analytical and the experimental results are
compared to the numerically predicted results in order to
illustrate the validity of the presented methodology. The test
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Fig. 5 Two bars connected
through another bar (coupling
joint)

cases present the application of the proposed scheme in com-
puting waves propagation constants and quantifying waves
interaction with defects within damaged layered structures
subjected to pressurisation. Effect of pre-stress (due to pres-
surisation) on these waves properties is also examined. In
all cases, finite element size is chosen to ensure that mesh
density is fine enough to represent the structure accurately at
a reasonable computational cost. All properties and dimen-
sions are in SI units, unless otherwise stated.

6.1 Validation Case Studies

6.1.1 Two Collinear Bars Coupled Through a Finite Bar

Two collinear bars connected through another bar (the
coupling joint) of a different material characteristics is con-
sidered. The bars are of uniform circular cross-section and
undergo longitudinal vibration. Arrangement of the bars is
presented in Fig. 5. Each waveguide is made of aluminium
(E1 = E2 = 70 × 109, ρ1 = ρ2 = 2600) and the joint is
made of steel (EJ = 210×109, ρJ = 7500). Cross-sectional
areas A1 = A2 = AJ = 0.003, lengths L1 = L2 = 0.2 and
L J = 0.003.

Incident wave of amplitude a+
1 impinging on the coupling

joint from waveguide 1 will give rise to reflected and trans-
mitted waves of amplitudes a−

1 and a+
2 in waveguides 1 and 2

respectively. Standing wave is present in the joint since both
forward and backward moving waves of amplitudes a+

J and
a−
J are simultaneously present.
Imposing necessary boundary conditions across the cou-

pling joint gives the transfer function of the waves as [15]

[
B

] {
a−
1 a+

J a−
J a+

2

}ᵀ = {
1 k1E1A1 0 0

}ᵀ
a+
1 (34)

with

B =

⎡
⎢⎢⎣

−1 1 1 0
k1E1A1 kJ EJ AJ −kJ EJ AJ 0

0 e−ikJ L eikJ L −e−ik2L

0 −kJ EJ AJ e−ikJ L kJ EJ AJ eikJ L k2E2A2e−ik2L

⎤
⎥⎥⎦

(35)

Frequency [kHz]
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Fig. 6 Dispersion curves for the longitudinal wave in the bar:
Analytical(-), WFE(- -)

where kn are longitudinal wavenumbers of the bars deter-
mined at each considered frequency ω as

kn = ω

√
ρn

En
n ∈ [1, 2, J ] (36)

Equation (34) is solved for the reflection c11 (with a−
1 =

c11a
+
1 ) and transmission c21 (with a

+
2 = c21a

+
1 ) coefficients

of the system.
The methodology presented in this work is used to com-

pute the numerical solution of the problem. A segment of
each waveguide is modelled using LINK180 FE of length
Δ = 0.001 in ANSYS. The coupling joint is modelled
using three finite elements of similar element size as the
waveguides. Then Eq. (12) is solved to obtain the WFE
wave dispersion properties. Equation (33) is solved for the
WFE/FE wave interaction coefficients. Comparison of the
presented WFE/FE predictions and the analytical results are
presented in Figs. 6 and 7 respectively. Excellent agreements
are observed in the results. Correlation of the transmission
coefficient results is good but with little deviation at higher
frequencies. This is as a result of FE discretisation whose
accuracy limit is recommended to satisfy [37]

|kΔ| ≤ 1 (37)
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Fig. 7 Wave interaction
coefficients for two collinear
bars coupled through a finite
bar: analytical(-), WFE-FE(- -).
a Reflection coefficient. b
Transmission coefficient
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Fig. 8 Schematic illustration of a delaminated beam discretised as a
system of two healthy beams connected through a delaminated beam
(coupling joint)

As a result of this, for a particular element size Δ,
FE discretisation error increases with frequency because
wavenumber increases as frequency increases (as shown in
Fig. 6). Hence, the deviation observed at higher frequencies
between the numerical and analytical results can be attributed
to FE discretisation error. This error can be subdued using
smaller element size Δ but at a higher computational cost.

6.1.2 Delaminated Beam

The presented methodology is next validated using delami-
nated continuous aluminium beam having a uniform cross-
sectional area with L1 = L2 = 0.2, L J = 0.001, b = 0.003
and h = 0.001. The beam is made of aluminium with mate-
rial properties E = 70 × 109, ρ = 2600 and ν = 0.3. The
continuous beam is discretised as a system of two healthy
waveguides connected through a delaminated coupling joint
as shown in Fig. 8. The beam supports propagating longitu-
dinal, in-plane bending, out-of-plane bending and torsional
waves.

A segment of each waveguide is modelled using
SOLID185 finite element of length Δ = 0.001 in ANSYS.
The coupling joint is modelled using similar segment length
as the waveguides. The through width delamination in the
coupling joint is modelled using the stiffness reduction
method (Sect. 3.2) with a reduction factor β = 0.01. Equa-
tion (12) is solved to obtain the WFE wave dispersion
properties. Then the WFE-FE reflection and transmission
efficiencies are calculated as the absolute square of the reflec-
tion and transmission coefficients obtained through Eq. (33).

Waves dispersion properties, and reflection and transmis-
sion efficiencies of the system are obtained analytically as in
[15,38]. These are compared to theWFE/FE predicted results
as shown in Figs. 9 and 10. The analytical and numerical pre-
dictions are in very good agreement.

The coupling joint is undamped, i.e. it is of real-valued
elastic and shear moduli. As a conservation of energy con-
dition, the algebraic sum of reflection and transmission
efficiencies of a lossless (undamped) structural segment
equals unity. As observed in Fig. 10, conservation of energy
condition is satisfied for all presented waves as sums of
reflection and transmission efficiencies are ones. This further
establishes the validity of the presented methodology. Also
observed in the waves transmission and reflection results is
the fact that the incident waves in waveguide 1 is transmitted
or reflected through the coupling joint into waves of the same
type without any form of mode conversion. This is expected
in waveguides collinearly connected through a joint as waves
will be fully transmitted without reflection and modes con-
version. Reflection observed is solely as a result of damage
in the coupling joint.

6.1.3 Notched Plate

Validity of the presentedmethodology is further proven using
notched plate of thickness 2d = 0.003 and length L = 0.6.
The plate is made of mild steel (E = 210 × 109, ρ = 7850
and ν = 0.29) and has uniform area throughout its cross
sections.

Based on the presented methodology, the plate can be
discretised as a system of two pristine waveguides (L1 =
L2 = 0.295) connected through a notched coupling joint
(L J = 0.01) as shown in Fig. 11. Plane strain condition is
assumed.

ANSYS is used tomodel a segment (of lengthΔ = 0.001)
of each waveguide with PLANE 182 (4-noded quadrilateral
finite elements with two translational DoFs per node) FEs.
The segment of each waveguide is meshed across its width
using 12 elements. Similar element size used for the waveg-
uide segments is repeated for the coupling joint, thereby
meshing the joint using 120 elements.
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Fig. 9 Dispersion curves for the
beam: Present methodology (-)
and Analytical results (o). a
Bending wave about y-axis. b
Bending wave about z-axis. c
Torsional wave. d Longitudinal
wave
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Fig. 10 Reflection and
transmission efficiencies of the
delaminated beam joint. Present
methodology: reflection (o),
transmission (∗). Analytical
results: reflection (- -),
transmission (-). Conservation
of energy (. . . ). a Bending wave
about y-axis. b Bending wave
about z-axis. c Torsional wave.
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Fig. 11 Schematic illustration of a notched plate discretised as a system
of two healthy waveguides connected through a notched coupling joint

Waves reflections are obtained from notches, of depths
0.0005, 0.001 and 0.002, which are respectively 17, 33 and
67% of the plate thickness. Uniform notch (of width 0.0005)
is used in all cases. The notches are modelled using the ele-
ment deletion approach presented in 3.1.

In practice, the wave reflection calculation can be made
by a full FE transient simulation. TheWFE computed eigen-
vectors can bewindowed and then applied as time-dependent
harmonic displacement boundary conditions (of excitation
frequencyω) at one of the extreme cross-sections of the plate.
In this case, the entire plate is modelled as one plate instead
of a system of waveguides and coupling joint as in the case
of the presented WFE-FE approach.

Results obtained through the WFE-FE methodology are
compared with that of the full FE transient simulation and
the experimental measurements presented in [39].Modelling
parameters used for the WFE/FE methodology are chosen to
match those used for the full FE simulation and the experi-
mental measurements in [39].

Good agreement is observed among the WFE-FE, full FE
and experimental results as shown in Fig. 12. It is also wor-
thy to state that the developed methodology is more efficient
(than the full FE approach) for predicting wave scattering
(reflection and transmission) from damage within structural
waveguides for the following noted reasons. First, model size
and computational time. Finite element mesh of the plate
consists of 7200 elements and 15,626 DoFs in the full FE
model against a total of 144 elements (12 for each waveg-
uide and 120 for the joint) and 390 DoFs in the presented
WFE-FE model. Solving the full FE model requires a com-
putational time of about 105 min compared to the WFE-FE
model which is solved under 5min. Therefore, a great deal of
computational time and hence cost is saved by the WFE-FE
approach. Another noted point is in terms of the complex-
ity of the structural system. Full FE model mostly assume
plane strain condition in order to simplify and reduce model
size of a structural system. In this manner, some propagating
waves especially those along the suppressed axis might not
be captured. However, the presented WFE/FE approach can
be applied for analysing wave interaction in complex struc-
tural systems (such as composite structures and structural
networks) with low computational size and cost.
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Fig. 12 Comparison of the wave reflection coefficients from notch of
varying depths: Presented WFE-FE methodology (-), Full FE predic-
tions (- -) and Experimental measurements (◦) in [39]. a 67% notch
depth. b 33% notch depth. c 17% notch depth

6.2 Test Case Studies

6.2.1 Transversely-Isotropic Beam

In this example, a cracked transversely-isotropic laminate
having a uniform cross-sectional area (b = 0.01 and h =
0.005) is considered. The beam is defined as a system of
two pristine beams (L1 = L2 = 0.2) connected through
a cracked beam (L J = 0.004) as shown in Fig. 13. Each
beam comprises five layers of glass-epoxy whose material
properties are Ex = Ey = 68 × 109, Ez = 40 × 109,
Gxy = 3.6 × 109, Gyz = Gxz = 1.2 × 109, νxy = 0.25,
νyz = νxz = 0.334 and ρ = 2700.
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Fig. 13 Schematic illustration
of the WFE-FE configuration of
a pressurised
transversely-isotropic laminated
beam

Fig. 14 Dispersion curves for
the transversely-isotropic beam:
non-pressurised (-), internal
pressure p = 0.1 GPa (-+), 0.5
GPa (-x), 1.0 GPa (-*) and 1.5
GPa (-o). a Bending wave about
y-axis. b Bending wave about
z-axis. c Longitudinal wave. d
Torsional wave
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A segment (of length Δ = 0.001) of each waveguide
is modelled in ANSYS with 40 SOLID185 finite elements
using cubed sized elements of length 0.001. Using similar
element size, the coupling joint is modelled with 160 finite
elements. The crack within the joint is modelled using the
node duplication approach (Sect. 3.3). Two crack scenarios,
of depths 0.001 and 0.002, are considered. These are respec-
tively equivalent to 20 and 40%of the total depth of the beam.
The cracks are through-width and located at mid length of
the joint.

Each beam is pre-stressed using uniform internal pressure.
The pressure is applied across the surfaces of the three inter-
nal layers of the laminated beam as shown in Fig. 13. Five
different pressure scenarios are considered; non-pressurised
case and pressurised cases with applied pressure p = 0.1
GPa, 0.5 GPa, 1.0 GPa and 1.5 GPa.

Dispersion curves for each waveguide are obtained by
solving Eq. (12) within frequency range ω = [1.0 ×
102−3.3 × 104] Hz. The dispersion curves are presented
in Fig. 14. Four propagating modes at each frequency are
obtained for the non-pressurised waveguide. For the pres-
surisedwaveguide, there are three propagatingmodes (y-axis
bending wave, z-axis bending wave and longitudinal wave)
at low frequency range. Fourth mode (torsional wave) cuts
on at ω = 3.8 × 103, 8.1 × 103, 9.6 × 103 and 1.0 × 104

Hz in the 0.1, 0.5, 1.0 and 1.5 GPa pressurised waveguides.
In the low frequency range, the wavenumbers of the pres-
surised waveguide are significantly different compared to
the non-pressurised one. An average difference of about
32% per 0.1 GPa is observed for the bending waves at
low frequency range. Differences of about 20 and 11% are
observed for the longitudinal and torsional wavenumbers.
Increase in the wavenumbers can be attributed to reduc-
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Fig. 15 Wave reflection
coefficients for the
transversely-isotropic laminate
with 20% depth crack:
non-pressurised (-), internal
pressure p = 0.1 GPa (-+), 0.5
GPa (-x), 1.0 GPa (-*) and 1.5
GPa (-o). a Bending wave about
y-axis. b Bending wave about
z-axis. c Longitudinal wave. d
Torsional wave
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tion in loss factor of the waveguide due to an increase
in strain energy as a result of the applied pressure. The
difference in wavenumbers (of the non-pressurised and pres-
surised waveguides) diminishes gradually as frequency gets
higher.

Equation (33) is solved for the wave interaction coeffi-
cients from the cracked coupling joint. Reflection coefficients
for the 20 and the 40% depth cracks are presented in
Figs. 15 and 16. As observed from the results, magnitude
of the wave reflection coefficient increases with depth of
crack.

With respect to applied pressure, it can be seen that wave
reflection coefficient magnitudes increase with an increase
in the magnitude of applied pressure. Average increments
of about 45, 20, 25 and 90% per 0.1 GPa are respectively
observed for the y-axis bending wave, the z-axis bending
wave, the longitudinal and the torsional wave.

Consequently from the presented results, magnitudes
of wave constants and interaction coefficients are gener-
ally boosted by applied pressure. This can therefore be
used to detect micro structural defects which may not be
easily detected under non-pressurisation scenario. Applica-
tion of pre-stressing (through pressurisation) as a damage
detection method is further examined using a sandwich
laminate with micro delamination as presented in next sec-
tion.

6.2.2 Sandwich Beam

In the final test case, a delaminated sandwich beam is con-
sidered. The asymmetric sandwich beam consists of carbon
epoxy facesheets (ρ = 3500, Ex = Ey = Ez = 54 × 109,
Gxy = 2.8 × 109, Gyz = Gxz = 1.0 × 109, νxy = νyz =
νxz = 0.3, hs1 = 0.002, hs2 = 0.001) and an isotropic core
(E = 70 × 109, ρ = 50, ν = 0.3, hc = 0.01). The beam’s
cross-section (b = 0.005, h = 0.013 is constant throughout
and are fixed at both ends.

The delaminated beam is discretised as two healthy beams
(L1 = L2 = 0.2) coupled through a delaminated joint (L J =
0.004) as shown in Fig. (17). The beams are modelled in
ANSYSusing SOLID185 elements. Cubed sized elements of
length 0.001 are used tomodel the facesheets, while elements
of size 0.001 × 0.002 × 0.001 are employed for modelling
the core. As a result, 40 finite elements are used for the WFE
model of a periodic segment (of length Δ = 0.001) of each
waveguide and 160 elements for the full FE model of the
coupling joint.

Interlaminar delamination, along the interface of the upper
facesheet and the core, is considered. Two delamination sce-
narios (20 and 40% of the beam width) are examined. They
are both of length 0.002 (symmetrically located about the
mid length of the joint).

As in the previous example, each beam is pre-stressed
using uniform internal pressure. The pressure is applied
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Fig. 16 Wave reflection
coefficients for the
transversely-isotropic laminate
with 40% depth crack:
non-pressurised (-), internal
pressure p = 0.1 GPa (-+), 0.5
GPa (-x), 1.0 GPa (-*) and 1.5
GPa (-o). a Bending wave about
y-axis. b Bending wave about
z-axis. c Longitudinal wave. d
Torsional wave
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Fig. 17 Schematic
representation of the WFE-FE
configuration of a pressurised
sandwich beam

across the surfaces of the sandwich core as shown in Fig.
17. Six different pressure scenarios are examined; one with
no pressure applied and the rest with applied pressure of 0.1,
0.2, 0.3, 0.4 and 0.5 GPa per (0.001× 0.002) cross sectional
area.

Equation (12) is solved for the dispersion curves of the
waveguide. Four propagating waves are obtained, with the
remaining waves being nearfield waves. Presented in Fig.
18 are the dispersion curves of the propagating waves as
a function of frequency. The curves are presented for each
of the seven pressure scenarios. For the pressurised waveg-
uide, a smooth, nearly linear behaviour (with regards to the
wavenumbers) is observed as a function of frequency. This
is observed up until a certain frequency, then a rapid rise

takes place. This behaviour is similar for all the pressure
scenarios. However, the frequency at which the rapid rise is
observed varies with the applied pressure. It is observed at
about 1.0, 1.6, 2.2, 2.8 and 3.4 kHz respectively in the 0.1,
0.2, 0.3, 0.4 and 0.5 GPa pressurised waveguides. There is
also a steady increase in the wavenumbers as a function of
applied pressure. An average increase of about 27% per 0.1
GPa is observed at each frequency in the low frequency range.
It should be noted that the differences are normalised as fre-
quency gets higher and tend to become equal irrespective of
the magnitude of pressure applied.

Equation (33) is solved for the wave reflections coeffi-
cients from the delamination. Figure 19 presents the coef-
ficient magnitudes of wave reflections from the 20 and the
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Fig. 18 Dispersion curves for
the sandwich beam:
non-pressurised (-), pressure
p = 0.01 GPa (- -), 0.1 GPa
(-+), 0.2 GPa (-x), 0.3 GPa (-*),
0.4 GPa (-o) and 0.5 GPa (->).
a Bending wave about y-axis. b
Bending wave about z-axis. c
Longitudinal wave. d Torsional
wave
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40% widths delaminations in the non-pressurised sandwich
beam. Due to the minute severity of the considered delami-
nations, little reflection magnitudes are obtained within the
considered frequency range. It can also be seen that negli-
gible differences are observed between both delamination
scenarios for all propagating wave types.

The reflection coefficients magnitude becomes greatly
significant in the pressurised system as shown in Fig. 20.
Compared to the non-pressurised system, there is an aver-
age change of about 50–70% in the low frequency range
and of about 10–25% in the high frequency range. This can
be explained by the fact that structural pre-stressing brings
about change in the loss factor of the structure. In general,
this consequently affects the magnitude of wave propagation
properties.

As a function of frequency, the reflection magnitudes are
constant over the low frequency range, then reduce slowly
over the mid frequency range before reducing rapidly over
the high frequency range. This behaviour is similar for all
wave types and at each applied pressure.

Variation of the reflection coefficient magnitudes as a
function of applied pressure is extensively examined at differ-
ent frequency within each of the identified frequency ranges
i.e., atwhich coefficientmagnitude is constant (e.g., 0.2 kHz),
slightly reduces (e.g., 0.8 kHz) and rapidly reduces (e.g., 6.4
kHz) with respect to frequency.

At 0.2 kHz (Fig. 21), there is a proportional reduction of
about 28% per 0.1 GPa in the reflection coefficient of the
y-axis bending wave. Similar trend is observed for the z-
axis bending wave. An average increment of about 30% per
0.1 GPa is observed for the torsional wave while a slight
steady increment of about 2% per 0.1 GPa is observed for
the longitudinal wave.

At 0.8 kHz (Fig. 22), the reflectionmagnitudes of the x and
y axes bendingwaves increasewith the applied pressure up to
1 GPa. Beyond this pressure, reduction in the magnitudes is
observed. Longitudinal and torsional waves both show simi-
lar trends. There is an increase in their coefficientmagnitudes
with respect to applied pressure. Increment obtained for the
torsional wave is however more than that of the longitudinal
wave.

Unlike at 0.2 and 0.8 kHz, the reflection coefficient mag-
nitudes of the bending waves at 6.4 kHz (Fig. 23) increase
with respect to applied pressure. The longitudinal and the
torsional waves maintain similar trend as in 0.2 and 0.8 kHz.

Similar to the non-pressurised system, it is noted that there
is no significant difference observed in the reflection coeffi-
cients (with respect to frequency and applied pressure) of the
20% width delaminated joint compared to that of the 40%
width delamination.
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Fig. 19 Wave reflection coefficient magnitude from the 20% (-) and the 40% (- -) widths delaminations in the non-pressurised sandwich beam. a
Bending wave about y-axis. b Bending wave about z-axis. c Longitudinal wave. d Torsional wave

7 Concluding Remarks

This paper presents a FE-based methodology for quantify-
ing wave interaction with localised structural defects. The
scheme can be applied to structures of arbitrary complex-
ity, layering and material characteristics as FE discretisation
is employed. The scheme discretises defective structural
waveguide into a system of two pristine waveguides con-
nected through a defective coupling joint. The wave propa-
gation properties within the pristine waveguides are coupled
to the localised defect in the joint in order to compute the
wave reflection and transmission properties for each propa-
gating wavemode in the system. The presentedmethodology
also examine the effect of pre-stress on the wave propaga-
tion and transmission properties of pressurised structures.
The principal outcome of the work can be summarised as
follows:

(a) The presented approach is validated with analytical and
full FE transient response predictions. Very good agree-
ment is observed.

(b) The approach is able to predict the dispersion properties
of an arbitrarily complex structure as well as the reflec-
tion and transmission coefficients of thewave interaction
with defects within the structure.

(c) The approach also successfully examined the effect of
pre-stress on the wave properties of pressurised struc-
tures. It was shown that pressurisation can be used to
detect micro defects which may be too small to detect
under no pressurisation.

Future development focuses on implementing multi-scale
damage models in order to capture the nonlinear mechan-
ics of advanced damage.
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Fig. 20 Wave reflection
coefficient magnitude from the
20% (-) width delamination
within the sandwich beam:
non-pressurised (-), pressure
p = 0.01 GPa (- -), 0.1 GPa
(-+), 0.2 GPa (-x), 0.3 GPa (-*),
0.4 GPa (-o) and 0.5 GPa (->).
a Bending wave about y-axis. b
Bending wave about z-axis. c
Longitudinal wave. d Torsional
wave
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Fig. 21 Wave reflection
coefficient magnitude at 0.2 kHz
for the pressurised sandwich
beam as a function of applied
pressure: 20% (-) width
delamination, 40% (- -) width
delamination. a Bending wave
about y-axis. b Bending wave
about z-axis. c Longitudinal
wave. d Torsional wave

Applied pressure [GPa]

5

R
ef

le
ct

io
n 

co
ef

fic
ie

nt

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Applied pressure [GPa]

5

R
ef

le
ct

io
n 

co
ef

fic
ie

nt

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Applied pressure [GPa]
5

R
ef

le
ct

io
n 

co
ef

fic
ie

nt

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Applied pressure [GPa]

0 0.1 0.2 0.3 0.4 0. 0 0.1 0.2 0.3 0.4 0.

0 0.1 0.2 0.3 0.4 0. 0 0.1 0.2 0.3 0.4 0.5

R
ef

le
ct

io
n 

co
ef

fic
ie

nt

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

(c) (d)

123



 48 Page 18 of 19 Journal of Nondestructive Evaluation   (2018) 37:48 

Fig. 22 Wave reflection
coefficient magnitude at 0.8 kHz
for the pressurised sandwich
beam as a function of applied
pressure: 20% (-) width
delamination, 40% (- -) width
delamination. a Bending wave
about y-axis. b Bending wave
about z-axis. c Longitudinal
wave. d Torsional wave
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Fig. 23 Wave reflection
coefficient magnitude at 6.4 kHz
for the pressurised sandwich
beam as a function of applied
pressure: 20% (-) width
delamination, 40% (- -) width
delamination. a Bending wave
about y-axis. b Bending wave
about z-axis. c Longitudinal
wave. d Torsional wave
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