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Abstract

Amongst all the multiphase models in the lattice Boltzmann (LB) community, the pseudopoten-

tial model has been the most popular approach due to its simplicity and high-efficiency. Recently

a number of liquid-vapour phase change models were also proposed based on the pseudopotential

LB model. Our study finds that most of the published pseudopotential phase change models rely

on an entropy-based energy equation, while the entropy-based energy equation is derived with the

equation of state of ideal gas. That means this entropy-based energy equation is not completely

suitable for multiphase flow which applies non-ideal equation of state for the phase separation sim-

ulation. Therefore a new phase change LB model is proposed in this work, where an improved

pseudopotential multiphase model (Li et al., 2013) and a modified energy equation which is solved

in the classical fourth-order Runge-Kutta scheme are coupled in a hybrid scheme. The results show

that the numerical simulation can capture the basic liquid-vapour phase change features. The D2

law for droplet evaporation is validated and the square of diameter variation is in good agreement

with experimental data. Moreover, the three boiling stages (nucleate boiling, transition boiling

and film boiling) are accomplished using the modified model, and the corresponding transient heat

fluxes are presented.
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1. Introduction

In the past few decades, the lattice Boltzmann (LB) method as an unconventional CFD ap-

proach based on kinetic theory has been developed dramatically to be a remarkable numerical tool,

especially in the area of mesoscale flow and heat transfer simulation [1–4]. Due to its advantages

such as explicit scheme, parallel computing and simple boundary treatment, LB has been widely ap-

plied in flow and heat transfer phenomena for single/multi- phase fluid, rarefied gas, phase change,

etc [5–12]. Amongst all the LB community members in the field of multiphase flow, the pseu-

dopotential LB model which was first proposed by Shan and Chen [13, 14] has shown tremendous

superiority because of its simplicity, versatility and the distinctive feature of automatic phase sepa-

ration without any specific techniques for interface capturing or tracking. Correspondingly, the LB

simulations of liquid-vapour phase change based on the pseudopotential model have drawn more

and more attention.

The first liquid-vapour phase change LB model based on pseudopotential model might be at-

tributed to Zhang and Chen [15], who presented the model which has the capability of thermo-

dynamic multiphase flow simulation and successfully achieved liquid-vapour boiling process. Then

Hazi and Markus [16] proposed another thermal pseudopotenial model in which an energy equa-

tion depicting the local balance law for entropy was coupled. They derived the target temperature

equation from the entropy based energy equation and the thermodynamic relationship of non-ideal

gases, and gave the corresponding thermal LB equation. Evaporation through a plane interface

and two-phase Poiseuille flow were simulated using their thermal LB model [17]. Biferale et al. [18]

presented an LB based thermal model in multiphase flow (boiling) and performed a series of 3D

simulations at the Rayleigh number Ra ∼ 107. The exponential-form pseudopotential was adopted
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in their model and the non-ideal equation of state was not employed. Gong and Cheng [19, 20]

proposed an LB phase change model for simulation of pool boiling. This model has been used to

study bubble nucleation, growth, departure, and surface wettability effects on pool boiling heat

transfer [21, 22], and also been applied to simulate film condensation [23]. Study from Li and

Luo [24] showed that the error term in the recovered energy equation by thermal LB equation can

generate nonnegligible numerical errors, and then Li et al. [25] developed a new thermal pseudopo-

tential LB model in a hybrid scheme where the entropy based temperature equation was solved by

a finite-difference method. Recently Li at al. [26] points out the replacement of ∇·(λ∇T ) /ρcv with

∇· (α∇T ) in some existing thermal LB models is not appropriate. They then improved the thermal

LB model for liquid-vapour phase change and some error terms existing in the recovered macro-

scopic temperature equation in some models are also eliminated in their model. Our latest work

[27] studied the feature of single-component multiphase pseudopotential LB models that a steady

multi-bubble/droplet configuration is inaccessible using most of such models, and we thought the

most likely reason for that might be the essential attractive interaction forces. After discussion

with other researchers, we think that problem still needs further investigation. In addition, the un-

steady transition between different bubbles proceeds slowly and has little difference on simulation

of boiling process.

In this work, we found that most of the pseudopotential thermal LB models are related to the en-

tropy based energy equation, where the obvious feature is the existence of the term
T

ρcv

(
∂pEOS
∂T

)
ρ

∇·

v in the recovered macroscopic energy equation. However, it is found that the derivation of this term

is paradoxical, when the equations of state for both ideal gas and non-ideal gas are applied simul-

taneously. Therefore our work aims at proposing an improved thermal LB model for liquid-vapour

phase change by modifying the energy equation in the existing models. Since it has been widely
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reported a convection-diffusion equation cannot be completely recovered by a standard thermal LB

equation [24, 28–30], a hybrid thermal LB scheme for liquid-vapour phase change is employed to

avoid the numerical errors of the thermal LB equation. The present paper is organized as follows.

The energy equations used in existing thermal LB models are discussed in Sec. 2. The numerical

model and simulation using the modified thermal LB model are presented in Sec. 3, followed by

conclusions in Sec 4.

2. The energy equation

The most commonly used recovered energy equation in the thermal LB models mentioned above

for liquid-vapour phase change are

∂tT + v · ∇T =
1

ρcv
∇ · (λ∇T )− T

ρcv

(
∂pEOS
∂T

)
ρ

∇ · v (1)

∂tT + v · ∇T = ∇ · (α∇T )− T

ρcv

(
∂pEOS
∂T

)
ρ

∇ · v (2)

where T,v, ρ, cv, λ, p and α are temperature, velocity, density, specific heat at constant volume,

thermal conductivity, pressure and thermal diffusivity, respectively. The difference between the two

equations is the diffusion term, where in Eq. (2) the volumetric heat ρcv is treated as a constant

in the whole computational field. However, the density changes significantly in the liquid-vapour

interface area, which means such simplification theoretically is not an appropriate approach in terms

of the physical mechanism. Now attention turns to Eq. (1), which was summarized using the local

balance law for entropy by Anderson et al. [31]. The local balance law for entropy can be given as

ρT
ds

dt
= ∇ · (λ∇T ) (3)
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where s represents the entropy, and the viscous heat dissipation is neglected. d/dt = ∂t + v · ∇ is

the material derivative. With the addition of the entropy differential equation using T and v as the

independent variables

ds =
cv
T
dT +

(
∂p

∂T

)
v

dv (4)

where v is the specific volume, we can derive the entropy based temperature equation Eq. (1).

The derivation of Eq. (1) all seems correct, however, the origin of the entropy local balance

law is neglected in this process. The well known macroscopic energy equation in terms of internal

energy can be written as (viscous heat dissipation neglected) [15]

ρ (∂te+ v · ∇e) = −p∇ · v +∇ · (λ∇T ) (5)

where e = cvT is the internal energy. According to the continuity equation, the compression work

term can be transformed

p∇ · v = −p
ρ

dρ

dt
= pρ

dv

dt
(6)

When combined with the ideal gas equation of state p = ρRT , the thermodynamic relation can be

simplified as

ds =
cv
T
dT +

p

T
dv (7)

From Eq. (5), (6), and (7), the entropy local balance law Eq. (3) can be obtained. It should be

noted that the specific heat cv is treated as a constant.

The derivation process of Eq. (1) from the basic energy transport equation Eq. (5) is given in

detail, where we can easily find that the ideal gas equation of state p = ρRT is indispensable in the

whole process. However, in the liquid-vapour phase change pseudopotential LB models, non-ideal
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equation of state should be used to realize phase change, which is inconsistent with the ideal gas

equation of state. Therefore, following reference [15], the energy transport equation in terms of

internal energy neglecting viscous heat dissipation is employed in our model, which can be written

as

∂tT + v · ∇T =
1

ρcv
∇ · (λ∇T )− p

ρcv
∇ · v (8)

3. Numerical Simulation

3.1. Numerical model

Li et al. [32] presented an improved forcing scheme for pseudopotential LB models to eliminate

the thermodynamic inconsistency which exists in original pseudopotential LB models by adjusting

the mechanical stability condition. In our work, this Li Qing model is adopted for fluid flow

simulation.

Many previous works have shown that Multi-Relaxation-Time (MRT) collision operator per-

forms much better than the Bhatnagar-Gross-Krook (BGK) scheme as far as numerical stability

is concerned [4, 25, 33, 34]. The following equation shows the LB equation with MRT collision

operator

fα (x + eαδt, t+ δt) = fα (x, t)−
(
M−1ΛM

)
αβ

(
fβ − feqβ

)
+ δtF

′
α (9)

where fα is the density distribution function, the superscript eq means the equilibrium state, x is

the spacial location, eα is the discrete velocity, δt is the time step, M is an orthogonal transforma-

tion matrix, Λ =
(
τ−1ρ , τ−1e , τ−1ζ , τ−1j , τ−1q , τ−1j , τ−1q , τ−1ν , τ−1ν

)
is a diagonal matrix containing the

relaxation times, and F ′α is the forcing added to the particles. Eq. (9) can also be written in the

following form

m∗ = m−Λ (m−meq) + δt

(
I− Λ

2

)
S (10)
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where m = Mf , meq = Mfeq, I is the unit tenser, and S is the forcing term. meq can be calculated

by

meq = ρ
(
1,−2 + 3|v|2, 1− 3|v|2, vx,−vx, vy,−vy, v2x − v2y, vxvy

)T
(11)

The macroscopic density and velocity can be obtained via

ρ =
∑
α

fα, ρv =
∑
α

eαfα +
δt
2

F (12)

where F is the total force including the buoyancy force Fb and particle interaction force Fm, which

are respectively given by

Fb = (ρ− ρave) g (13)

Fm = −Gψ (x)
∑
α

wαψ (x + eα) eα (14)

where g is gravity acceleration, ρave is the average density in the computational area, G is the par-

ticle interaction strength, ψ (x) is the pseudopotential, and wα is the weight. The pseudopotential

can be calculated with

ψ (x) =

√
2
(
pEOS − ρc2s

)
Gc2

(15)

where c is the lattice speed, c2s is the lattice sound speed and pEOS is the non-ideal equation of

state, for which the Peng-Robinson (P-R) equation of state [35] is adopted

pEOS =
ρRT

1− bρ
− aϕ (T ) ρ2

1 + 2bρ− b2ρ2
(16)

where ϕ (T ) =
[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1−

√
T/Tc

)]2
, a = 0.45724R2T 2

c /pc, b =

0.0778RTc/pc and ω = 0.344. The subscript c denotes critical state. In this work, a = 3/49,
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b = 2/21 and R = 1 are utilized, and then Tc = 0.1094 can be obtained via calculation. The

improved forcing term is given by

S =



0

6v · F +
σ|Fm|2

ψ2δt (τe − 0.5)

−6v · F− σ|Fm|2

ψ2δt (τζ − 0.5)

Fx

−Fx

Fy

−Fy

2 (vxFx − vyFy)

(vxFy + vyFx)



(17)

where σ = 1.2 is employed in the present work for tuning the mechanical stability condition.

For the temperature equation, Eq. (8) is solved using the classical fourth-order Runge-Kutta

scheme [36]. The temperature equation is rewritten as

∂tT = −v · ∇T +
1

ρcv
∇ · (λ∇T )− p

ρcv
∇ · v (18)

and the right-hand of this equation is labelled by K (T ). The time discretization is

T t+δt = T t +
δt
6

(h1 + 2h2 + 2h3 + h4) (19)
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where h1, h2, h3, and h4 are in the following forms, respectively

h1 = K
(
T t
)
, h2 = K

(
T t +

δt
2
h1

)
, h3 = K

(
T t +

δt
2
h2

)
, h4 = K

(
T t + δth3

)
(20)

3.2. Results and discussion

3.2.1. Liquid-vapour coexistent densities

In thermodynamic equilibrium, one basic consistency is that pressure cannot increase with

volume, however, this is always violated in analytic models for ideal gases, for example, in the Peng-

Robinson equation of state used in our thermal LB model as shown in Fig. 1. Then the Maxwell

construction was utilized to correct this deficiency [19]. Fig. 1 gives the Maxwell construction

for a steady droplet (diameter 60) with vapour surrounded in a 200 × 200 computational domain

at saturated temperature Ts = 0.86Tc. Following the work from Li et al. [25], the kinematic

viscosities for liquid and vapour two phases are set as νL = 0.1 and νV = 0.5/3, the specific heat is

taken as a constant cv = 6, and the conductivity is λ = ρcvχ with cvχ = 0.028. All the parameters

are given in the lattice unit. With the definition of the relations between lattice units and the

physical units, lattice mass M = 4.1× 10−10kg, lattice length L = 1.675× 10−6m and lattice time

Tt = 2.264×10−6s, the physical values can be obtained as ρL = 950kg/m3, νL = 1.239×10−7m2/s.

All the other physical values can also be obtained via simple calculations. In Fig. 1, the curve for

ideal equation of state and the straight line for Maxwell construction enclose two regions which have

the same area A1 = A2, and the two intersections in the left side and in the right side correspond

to the coexistent liquid density and vapour density respectively under the same pressure. The

asterisks are the coexistent liquid-vapour densities obtained by simulation. The results show that

the simulation agrees well with the theoretical analysis for liquid-vapour coexistent densities and

the coexistent densities are about ρL ≈ 6.50 and ρV ≈ 0.38, respectively.
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Figure 1: Liquid-vapour coexistent densities and Maxwell construction at Ts = 0.86Tc.

3.2.2. D2 law for droplet evaporation

D2 law is a well known principle for droplet evaporation and combustion, which describes that

the change of droplet diameter over time is linear [37]. The droplet evaporation is implemented in

this section for numerical model validation via the D2 law. The simulation setting is almost the

same as those in the previous section, except that the saturated temperature Ts = 0.86Tc is given

to the droplet but a higher temperature Tv = Ts+ 0.0137 is loaded on the vapour region and the

boundaries are kept at the temperature Tv. In addition, for D2 law the thermalphysical parameters

should be constant thus thermal conductivity is chosen to be constant with λ = 2/3.

Fig. 2 gives the transient droplet states with initial diameter D0 = 80 during the evaporation

process. It can be clearly seen the diameter of the droplet decreases over time, and the vapour

concentration increases around the droplet. The simulated variations of (D/D0)2 with respect to

time for droplets with different initial diameters are shown in Fig. 3(a). It can be concluded from

the figure that after a short period of initial time, the square of diameters vary linearly over time,

which is consistent with the experimental result from Nishiwaki [38] (see Fig. 3(b)).
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(a) (b) (c) (d)

Figure 2: Snapshots of droplet evaporation, density distribution for D0 = 80 at (a) t = 10, 000 (b) t = 60, 000 (c)
t = 110, 000 (d) t = 160, 000.

(a)

(b)

Figure 3: (a) Simulation of droplets evaporation with different initial diameters (b) Experimental data from Nishiwaki
[38], with permission from Elsevier, Copyright 1955.
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3.2.3. Three boiling stages

It is well known that there are three distinct boiling stages for pool boiling, i.e. nucleate boiling,

transition boiling and film boiling [39]. Study of the three boiling stages is of great significance.

Nucleate boiling has been recognized as one of the most effective heat transfer approaches and the

critical heat flux for nucleate boiling has long been concerned for heat transfer enhancement. In this

work, modelling of the three boiling stages is accomplished using our modified liquid-vapour phase

change thermal LB model by controlling the temperature of heating surface. The computational

domain is set as 400 × 180 with upper half domain for vapour and lower half domain for liquid

as initial conditions. The top and bottom boundaries are set as non-slip solid, and periodical

boundaries are applied in the x direction. The saturated temperature Ts = 0.86Tc is adopted to all

the computational domain except that a higher temperature with superheat ∆T is applied to the

bottom solid boundary to heat the saturated liquid. The equilibrium contact angle for a droplet on

the solid surface is approximately 44.5◦. Differing from the previous settings, the buoyancy force

is considered in this part and the gravity acceleration is taken as g = 3× 10−5.

Fig. 4-6 display the nucleate boiling, transition boiling and film boiling respectively. Fig. 7

shows the corresponding transient heat fluxes for the three boiling stages calculated by q(t) =∫ Lx

0
qw(x)dx/Lx where Lx is the length in x direction and qw(x) = −λ(∂T/∂y)|y=0. All the

displayed pictures are after 20,000 time steps once the boiling stages are steady. And for transition

boiling and film boiling, the superheat values are enhanced on the basis of a steady nucleate boiling

stage. The nucleate boiling is simulated under the superheat ∆T = 0.0137. It can be seen that

owing to the heating loaded on the bottom solid surface, some nucleation sites are formed. Following

that the vapour bubbles are formed, grow, coalesce with each other, depart from the heating surface,

rise and break at the liquid-vapour interface. Whilst during the whole process the nucleation sites
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are clearly separated. The transient heat flux in Fig. 7 for this boiling stage is relatively steady and

high. However, when the superheat is increased to ∆T = 0.02, the phase change on the heating

surface is more complex as many nucleation sites merge into larger vapour films and there are no

apparent individual nucleation sites as shown in Fig. 5, and also its transient heat flux becomes

unsteady. Finally the superheat ∆T = 0.025 is loaded on the heating surface and when it runs

to steady the whole heating solid surface is covered by a large portion of continuous vapour film.

The only heat transfer between the heating solid surface and the bulk liquid are conduction and

convection in the vapour phase, which leads to a relatively low heat transfer compared to the other

two boiling stages as shown in Fig. 7.

4. Conclusions

In this paper we firstly point out that the derivation of the term
T

ρcv

(
∂pEOS
∂T

)
ρ

∇ · v existing

in the recovered macroscopic energy equation in most of the normally used pseudopotential thermal

LB models for liquid-vapour phase change, is paradoxical because the equations of state for both

ideal gas and non-ideal gas are adopted simultaneously in the derivation process. Then a modified

thermal pseudopotential LB model for liquid-vapour phase change is proposed in this work. The

MRT collision operator with an improved forcing scheme from Li et al. and a modified energy

transport equation are coupled. The multiphase model is solved in LB scheme while the classical

fourth-order Runge-Kutta scheme is employed for the energy equation therefore the modified model

is in a hybrid way.

The multiphase model is validated by Maxwell construction for liquid-vapour coexistent densities

at the saturated temperature. Then the droplet evaporation process is simulated and the D2 law is

considered. The droplets are in different initial diameters, and the squares of diameter vary linearly
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(a) (b)

(c) (d)

(e)

Figure 4: Snapshots of nucleate boiling, density distribution at ∆T = 0.0137 (a) t = 20, 000 (b) t = 25, 000 (c)
t = 30, 000 (d) t = 35, 000 (e) t = 40, 000.
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(a) (b)

(c) (d)

(e)

Figure 5: Snapshots of transition boiling, density distribution at ∆T = 0.02 (a) t = 20, 000 (b) t = 25, 000 (c)
t = 30, 000 (d) t = 35, 000 (e) t = 40, 000.
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(a) (b)

(c) (d)

(e)

Figure 6: Snapshots of transition boiling, density distribution at ∆T = 0.025 (a) t = 25, 000 (b) t = 50, 000 (c)
t = 70, 000 (d) t = 72, 500 (e) t = 75, 000.
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Figure 7: Transient heat fluxes with different superheat conditions.

over time, which is also in good agreement with experimental results from the previously published

paper. Finally, the three boiling stages, i.e. nucleate boiling, transition boiling and film boiling are

accomplished with different superheat values acting on the bottom solid heating surface using the

present model. The transient heat fluxes are given to show the heat transfer features for the three

boiling stages. Overall, the modified thermal model, which is based on correct governing equations

can be used to capture the basic liquid-vapour phase change features.
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