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ABSTRACT 

This paper describes an agent based simulation model to 

create solutions for the office space allocation (OSA) 

problem. OSA is a combinatorial optimization problem 

concerned with the allocation of available office space to 

a set of entities such as people. The objective function in 

the OSA problem involves the minimization of space 

misuse and the minimization of soft constraints 

violations. Several exact and heuristic algorithms have 

been proposed to tackle this problem. This paper 

proposes a rather different approach by decomposing the 

problem into smaller goals, which are delegated to 

individual agents each representing an entity in the 

problem. Agents have an internal decision making 

process which guides them throughout their search 

process for a better allocation (room). That is, agents 

seek to satisfy their individual requirements in terms of 

room space and constraints. Computational experiments 

show that the agent based model exhibits competitive 

performance in terms of solution quality and diversity 

when compared to neighborhood search heuristics.  

 

Keywords: agent based modelling, office space 

allocation, problem decomposition, distributed 

optimization 

 

1. INTRODUCTION 

Office Space Allocation is a combinatorial optimization 

problem concerned with the planning and distribution of 

the available physical space (e.g. rooms) to a set of 

entities such as people. When planning the distribution 

of office space in buildings, administrators or managers 

have to consider the practical issues involved in the 

allocation process, such as the spatial needs, proximity 

relations, facilities infrastructure, as well as occupancy 

costs and effectiveness of the working environment. The 

aim of OSA is to find an allocation (entities assigned to 

rooms) such that the misuse of space is minimized, and 

the satisfaction of constraints is maximized. The OSA 

problem is faced by many organizations, both academic 

institutions and businesses, where entities need to be 

distributed over an often limited amount of room space. 

Examples of such scenarios where OSA has been 

investigated as an optimization problem are the NASA 

Langley Research Center (Kincaid et al. 2007), the 

European Space Research and Technology Center 

(Lopes and Girimonte 2010), and dormitories in an 

academic institution (Trung, Tuan  and Anh 2009). So 

far, this problem has been tackled using various heuristic 

algorithms, such as asynchronous cooperative local 

search (Landa-Silva and Burke 2007), nature-inspired 

algorithms such as harmony search (Awadallah et al. 

2012), evolutionary algorithms (Adewumi and Ali 2010; 

Ülker and Landa-Silva 2012), as well as mathematical 

programming (Ülker and Landa-Silva 2010). More 

recent works include greedy algorithms with tabu search 

(Castillo, Riff and Montero 2016) and artificial bee 

colony algorithms (Bolaji, Michael and Shola 2017), that 

reported competitive results with the integer 

programming model from Ülker and Landa-Silva (2010). 

The heuristic algorithms developed until now for OSA 

tackle the problem as whole, and do not incorporate 

problem decomposition mechanisms. Consequently, the 

preferences of office occupants are not treated 

individually, but rather globally by aggregating them into 

the overall objective function of the problem.  

Rather than developing more sophisticated heuristic 

algorithms, this study proposes a novel approach to solve 

the OSA problem by using the support of Agent Based 

Modelling (ABM). This allows the consideration of 

behavioral aspects and individual preferences of the 

office occupants. The remainder of the paper provides 

details about this approach to tackle the OSA problem 

and evaluates its performance by means of computational 

experiments on a set of benchmark instances from the 

literature. 

 

2. BACKGROUND 

2.1. Agent Based Modelling (ABM) 

Modelling and simulation can be used to reproduce a real 

world environment with its features, forecast and explore 

different scenarios, experiment with possible alternative 

decisions, and set different values for decision variables. 

In ABM, a system is modelled as a collection of 

autonomous decision-making entities called agents 

(Pourdehnad, Maani and Sedehi 2002). Each agent 

individually assesses its situation and makes decisions on 

the basis of a set of rules. Individual agents interact with 

each other and their environment to produce complex 

collective behavior patterns. ABM is well suited to 



modelling systems with heterogeneous, autonomous and 

proactive actors, such as human-centered systems 

(Siebers et al. 2007). 

ABM has a variety of applications from modelling the 

behavior of stock market and supply chains to predicting 

the spread of epidemics and understanding factors that 

may be responsible for the fall of ancient civilizations. 

All these make it possible to analyze the effects of 

changes in a specific system or environment, without 

affecting the real world during this process (Macal and 

North 2010).  

Within the operations research discipline, agent based 

approaches have been used to solve problems like: 

scheduling (Sabar, Montreuil and Frayret 2011), 

knapsack (Polyakovskiy and M’Hallah 2007), 

transportation and supply chain planning (Persson et al. 

2005). It has been reported that the agent based 

approaches proved to be competitive with heuristic 

optimization techniques, one advantage being that the 

problem can be divided into sub problems, and the work 

delegated to agents. Thus, when the size of the problem 

is large and the timescale is short, the decomposition 

nature of ABM can help to reduce the computational time 

needed to produce competitive solutions to the problem 

in hand (Barbati, Bruno and Genovese 2012). However, 

if the communication between agents has a high cost and 

if the high quality of solutions is a priority, then classical 

optimization techniques are preferred. According to 

Persson et al. (2005), who applied both ABM and 

classical optimization techniques to a production and 

transportation supply chain problem, a hybrid approach 

proved to be beneficial. They added optimization to 

agents during the decision making process, and obtained 

better results than having each method applied by its 

own. The performance of a hybrid system was also 

reported as highly satisfactory in a study by Daniels and 

Parsons (2006). They used agents to improve the 

population of candidate solutions in a genetic algorithm 

used to solve the zone-deck allocation of space in a 

preliminary ship general arrangements design. 

According to Polyakovskiy and M’Hallah (2007), the 

agent based model developed for a knapsack problem, 

allows the investigation of a larger part of the solution 

space, leading to high quality solutions. They propose an 

agent based framework where the agent is characterized 

by its fitness, behavioral rules and parameters. The 

framework is then used in the decision making process to 

assess the potential of each possible action, and choose 

the one which optimizes the reward.  

An interesting case of ABM is the Schelling Segregation 

Model (Schelling 1971), where, based on a simple rule 

of neighborhood satisfaction, people/entities of two types 

are moving on a grid and in time they start to segregate. 

Each entity is represented by an agent with an attached 

happiness value. If the percentage of agents of the same 

type among one’s neighbors is lower than a certain 

threshold value, that agent changes the state to unhappy 

and moves to a randomly chosen new location. If the 

state remains happy, then the agent does not move. So, 

following a rule for changing the state of an agent, after 

several state changes, the agents exhibit patterns, order 

and structure in their behavior. 

Starting from the principles of the Schelling Segregation 

Model and other examples of ABM for combinatorial 

optimization problems, this paper proposes an ABM 

approach for solving the OSA problem, where agents 

have an internal decision making process based on 

heuristics. 

 

2.1.1. The Office Space Allocation Problem 

The office space allocation problem used in this study 

was defined initially by Landa-Silva (2003) and updated 

later by Ülker (2013). This is a minimization 

combinatorial optimization problem that is highly 

constrained. In this problem there is a set of rooms – 

representing the space available for the allocation 

process, and a set of entities – representing people or 

resources that must be allocated to the rooms. Each room 

has a given size and each entity requires a given amount 

of space. There is also a set of constraints, which 

represent the requirements that should be met when 

creating an allocation. The constraints establish hard or 

soft restrictions on proximity and spatial relations among 

the entities and rooms. There are 9 types of such 

constraints: allocation, non-allocation, capacity, same-

room, not-same-room, not-sharing, adjacency, nearby, 

away-from. The full definition and the penalty weights 

associated to each in the case of non-satisfaction are 

given in (Ülker 2013). A solution to the problem requires 

that each entity is allocated to a room. The quality of a 

solution is evaluated in terms of space misuse penalty 

(SMP in equation 1) and soft constraints penalty (SCP in 

equation 2). The aim is to minimize the total penalty (F 

in equation 3) associated with a solution. The usage of 

each room is calculated according to the entities allocated 

to the room. Overuse of space is less desirable hence 

penalized twice compared to underuse of space, as shown 

in equation 1. The violation of each constraint 

contributes with the associated weight towards the 

overall penalty for that solution. 

 

𝑆𝑀𝑃 =  ∑ max (𝑐𝑎𝑝(𝑟𝑖) − 𝑢𝑠𝑔(𝑟𝑖), 2 × (𝑢𝑠𝑔(𝑟𝑖) − 𝑐𝑎𝑝(𝑟𝑖)))
|𝑅|
𝑖=1  (1) 

 

𝑆𝐶𝑃 =  ∑ (𝑤(𝑐𝑖) × 𝑣(𝑐𝑖))
|𝐶|
𝑖=1   (2) 

 

𝐹 = 𝑆𝑀𝑃 + 𝑆𝐶𝑃   (3) 

 

In equations (1)-(3), cap(ri) is the capacity of room ri, 

usg(ri) is the actual usage of room ri, v(ci) is 1 if the 

constraint ci is violated and 0 if it is satisfied, w(ci) is the 

weight of the soft constraint ci, |R| is the number of rooms 

in the problem, and |C| is the number of constraints in the 

problem.  

The data sets used in this paper were proposed by Ülker 

and Landa-Silva (2011). These problem instances vary 

on two dimensions: the number of constraints, and the 

space misused expected, all having a constant number of 

entities and rooms. One data set corresponds to a problem 

instance and it contains a list of entities (with id, group 

and space required), a list of rooms (with id, floor, and a 



set of neighbors of the room) and a list of constraints 

(with id, type, subject and target – defined depending on 

the type of the constraint). These data sets are called 

SVe150 and PNe150 and were generated based on four 

parameters: S, V, P and N. For the parameters S, P and 

N, variations are made to adjust the size of the rooms as 

follows. S represents the slack space rate expected 

(general misuse of space), P represents a positive slack 

amount expected (underuse) and N represents a negative 

slack amount expected (overuse). The V parameter 

expresses the violation rate expected in regards to the 

constraints. The data sets selected for conducting 

experiments in this paper are: s000v000 - low space 

misuse and low constraint violation, s100v000 - high 

space misuse and low constraint violation, s000v100 - 

low space misuse and high constraint violation, 

s100v100 - high space misuse and high constraints 

violation, p025n000 - expect high underuse, p000n025 - 

expect high overuse. 

 

3. METHODOLOGY 

3.1. ABM for OSA 

The agent based model developed here for OSA is a 

synchronous simulation model, and has the following 

components: entities, rooms, constraints and the 

environment. The environment is the space where all the 

agents are located and takes care of their coordination. It 

also keeps track of the global objective value for the 

current solution to the problem, using the information 

received from the rooms (about space misused) and from 

the constraints (about their violation). However, the 

environment does not have a mechanism to minimize this 

global objective, but rather it monitors the objective 

value and the solution, making the calculations available 

for agents on request. The responsibility for minimizing 

the objective function value is distributed to the agents of 

the system. The rooms and the constraints are 

represented as passive agents (objects). Entities (people) 

are represented as active agents (entities from OSA 

problem definition). From this point onwards in this 

paper, active agents are referred to as agents and passive 

agents as objects. 

Being a synchronous model, all agents move 

simultaneously, evaluating possible rooms for 

themselves. The system then gathers all the individual 

allocations of agents to rooms and builds the overall 

solution for the problem. Because of these mechanisms, 

this approach can be seen as distributed optimization. 

The overall evaluation function is split based on 

constraints. Then, some components of that evaluation 

function are delegated to each individual agent.  

Figure 1 presents the conceptual model of the system, 

showing the interaction between the different 

components. Agents, through their behavior, search and 

build a solution for the problem. They have two possible 

states, satisfied and not satisfied and they move between 

them based on an internal evaluation process. This will 

be detailed in the next subsection. During their internal 

evaluation process, the agents request information from 

the rooms and from the constraints. From the constraints, 

the agents get a list of those directly involving them and 

in turn affect their satisfaction score. From the rooms, the 

agents get information about occupancy of the rooms and 

the neighborhood relationships between rooms defined 

by the problem instance.  

 

 
Figure 1: Agent Based Model for the Office Space 

Allocation Problem. 

 

3.2. Agents Structure 

As mentioned in the previous section, the agents 

proposed in this model represent the entities in an 

instance of the OSA problem. During their search 

process, agents move between rooms and analyze their 

own satisfaction state, choosing ‘when’ and ‘where’ to 

change their allocation. The state of an agent can be 

either satisfied or not satisfied. Four strategies are 

proposed for agents to decide ‘when to move’: 

 

 Percentage Based (PB): The agent has a current 

penalty given by the constraints which are associated 

with it and are violated in the current position 

(calculations of this penalty are detailed in Algorithm 

1). If this penalty is more than 30% of the total 

possible penalty, then the agent moves. The total 

possible penalty is calculated as a pessimistic 

scenario, when all the constraints associated with the 

agent are violated, thus is the maximum penalty that 

the agent can have. 

 Always Move (AM): All the agents are moving at 

every step of the simulation. 

 Highest Penalised (HP): The agent with a current 

penalty larger than the average penalty for all agents 

in that particular moment, are moving to a different 

location. This implies that every step approximately 

half of the agents are moving to a different room. 

 Random Chance (RC): Each agent has a chance of 1 

in 6 to move to a different location. This chance is 

based on the ‘dice rolling’ probability. 

 

Depending on the outcome of the strategy applied, an 

agent makes the first decision from its internal ‘thinking 

process’, namely it defines its satisfaction state. If this 

process results in being not satisfied and therefore having 

to move to a different room, the agent goes to the second 

stage, and it analyses ‘where to move’. This means that 

the agent searches for a room which will fulfil its 

Provide information 
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occupancy and 

relationship with 

other rooms 

Pass 

information 

about 

constraints 

violation 

Get the set of 

requirements which 

guide the movement 

Pass information 
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requirements and get back to a satisfied state. If a room 

is not found, or it does not improve its current position, 

then the agent stays in the current room returning to a not 

satisfied state.  

 

Algorithm 1 Penalty calculation for an agent 

agent.penalty = 0 

for (constraint c : agent.associatedConstraints) 

 switch (c.type) 

  if(c is violated) //defined based on c.type 

   agent.penalty += c.weight  

  end if 

agent.penalty += agent.room.misusedPenalty /  

    room.noOfAgentsInRoom 

return agents.penalty 

 

 

There are four strategies proposed for the ‘where to 

move’ decision. These are heuristic based approaches, 

and vary from random to greedier ones: 

 

 Rnd: The choice of the new room for the agent is 

picked at random. 

 BestPotential: The agent evaluates the potential of 

each available room and selects the one which returns 

the smallest penalty in the scenario of moving there. 

The potential of a penalty is relative to other agents 

moving in the same time, thus the evaluation may not 

be the same before and after the move is done. 

 AllConstr: The agent is trying to find a room which 

will not violate its associated constraints. Instead of 

analysing all the rooms and calculating a penalty, this 

approach is narrowing down the list of rooms based 

on the constraints. If there is no room satisfying all 

constraints, the agent goes back and tries to satisfy 

most of the constraints. 

 OneByOne: At every simulation step, the agent picks 

at random currently violated constraint and finds a 

room which will satisfy it in the scenario of moving 

there. 

 

The simulation based ABM executes the search process 

in steps. At each step, all the agents act simultaneously. 

Before the step, agents calculate their satisfaction, based 

on one of the four strategies mentioned. Then, they 

choose the room where to move, again using one of the 

strategies mentioned. On the actual step, the agents are 

essentially executing the move, so they change their 

allocation to a new room. The entire process is 

represented in Algorithm 2. 

 

Algorithm 2 ABM simulation process 

On start-up:  

 initialize the agents from external database 

 build the neighborhood links between rooms 

 assign the constraints to the agents (entities) 

On before step: 

agents.satisfied = agents.decide(‘when to move’) 

 if (agents.satisfied = false) 

  newRoom = agents.choose(‘where to move’) 

On step: 

 if (agents.satisfied = false) 

  agents.room = newRoom 

On after step: 

rooms.misusedPenalty -> update (with new 

occupancy)  

 agents.totalPenalty -> update (in the new allocation) 

environment.fitnessFunction ->update (from agents) 

 

 

The ABM for OSA described above is relatively simple 

but is it designed to serve as a baseline methodology to 

investigate the suitability of tackling OSA through a 

distributed optimization paradigm instead of a typical 

centralized optimization or heuristic approach. This 

investigation will hopefully inform the development of 

more elaborate behavior in the agents and conditions in 

the environment.  

 

4. EXPERIMENTAL RESULTS  

There are 16 behaviors which can be exhibited by an 

agent, combining the two decision mechanisms of 

‘when’ and ‘where’ to move. This resulted in 16 different 

neighborhood exploration strategies that are evaluated. 

The simulation was run with each algorithm for 5000 

steps, and 50 replications on each data set. The number 

of steps was set to 5000, because preliminary 

experiments showed that after this point all the agents’ 

strategies did not continue to improve the overall 

solution for the problem. The results presented in Table 

1 correspond to the s000v000 problem instance. The 

same rankings of the algorithms was also observed in the 

other problem instances mentioned in section 2.1.1 

above. For this reason, details of the experimental results 

for those other instances are omitted here but are 

available for further analysis. 

 

Table 1: Neighbourhood exploration strategies built in 

the ABM for OSA on the s000v000 problem instance 

ABM Strategy Diversity Min Mean Max 

PB-Rnd 50.08 2878.00 3181.68 3553.50 

PB-BestPotential 0 3971.50 3971.50 3971.50 

PB-AllConstr 30.96 1969.00 2432.36 2808.00 

PB-OneByOne 33.36 1691.50 2247.53 2710.00 

AM-Rnd 70.78 2890.00 3591.48 4076.00 

AM-BestPotential 0 8238.50 8238.50 8238.50 

AM-AllConstr 34.69 1853.50 2602.69 3150.00 

AM-OneByOne 32.94 1835.00 2499.79 3083.50 

HP-Rnd 52.25 2942.50 3444.55 3871.50 

HP-BestPotential 0 4210.00 4210.00 4210.00 

HP-AllConstr 27.33 1889.50 2465.24 2991.00 

HP-OneByOne 31.24 1751.00 2279.42 2761.50 

RC-Rnd 66.31 2347.50 2599.97 2952.50 

RC-BestPotential 41.54 3053.00 3502.37 4265.50 

RC-AllConstr 21.29 1536.00 1899.82 2318.00 

RC-OneByOne 21.40 1346.00 1751.50 2069.00 

 



Table 1 contains the min (best), mean and max (worst) 

evaluation function values for the best solutions 

produced by each combination of agents’ strategies. The 

diversity value represents the degree of difference in the 

actual structure of best solutions produced. A detailed 

description of how the diversity is calculated can be 

found in the next section.  

Figure 2: Boxplots of ‘where to move’ strategies in all 

the ‘when to move’ cases. 

 

The results presented in Table 1 show that, in general, the 

RC strategy performs best amongst ‘when to move’ 

strategies, and OneByOne approach performs best 

amongst ‘where to move’ strategies. This can also be 

seen in the boxplots from Figure 2. The rankings of the 

‘where to move’ strategies are maintained throughout all 

the 4 ‘when to move’ cases. From best to worse, the 

ranking of the algorithms is: OneByOne, AllConstr, Rnd 

and BestPotential. Contrary to what it name suggests, the 

BestPotential approach performs very poor, because it is 

heavily relying on the penalty evaluation done ‘on before 

step’, which does not correspond with the actual penalty 

seen ‘on after step’. RC, although being of a random 

nature, it is the ‘when to move’ strategy that makes the 

least amount of agents to move simultaneously, thus the 

least disruption in the environment from one step to 

another. Therefore, RC is the best performing strategy 

because the penalty evaluations made by an agent are less 

likely to change from ‘on before step’ to ‘on after step’. 

 

4.1. Diversity in the solutions 

The diversity in the solutions produced by one algorithm 

is represented in this paper as the degree of differences 

in the structure of the best solutions returned throughout 

all the repetitions of the experiments. This is calculated 

using equation (4) taken from (Landa-Silva 2003). The 

diversity ranges from 0 to 100, 0 meaning that all the 

solutions compared are exactly the same and 100 

meaning that all the solutions compared do not have any 

one element in common. A solution of the office space 

allocation problem is represented as an array, where the 

index represents the entity (agent) id and the value in the 

array represents the room id to which that agent is 

allocated (see Figure 3). Having 50 such arrays 

(solutions), from the 50 replications of an experiment, the 

diversity is represented by the agent being allocated to 

different rooms in those solutions. So, if the value in the 

solution array corresponding to and agent is different 

from the value in the same position in another solution 

array, then the two solutions have a difference between 

them in that position. D(j) is the number of unique values 

in the jth position of the solution, p is the number of 

solutions compared, and n is the length of the solution. 

Figure 4 illustrates the use of this equation for p = 5 

solutions and n = 7 agents. 

 

𝑉(𝑝) =  
∑

𝐷(𝑗)−1

𝑝−1
𝑛
𝑗=1

𝑛
× 100  (4) 

 

Figure 3: Representation of a solution for OSA. 

 

Figure 4: Example of calculation of the diversity in 

solutions. 

 

Looking at the diversity column in the results presented 

in the previous section, it can be observed that the Rnd 

strategy scores the highest. It is expected to have a higher 

diversity in the solutions, when rooms are chosen at 

random, and therefore the agents explore more. On the 

other hand, BestPotential strategy, being a greedy one, 

almost in all cases chooses the exact same rooms, and 



therefore producing the same solutions regardless of the 

number of the experimental repetitions. In general, the 

RC strategy also scores lower in terms of diversity, 

because a smaller number of agents move at a time, thus 

creating a smaller disturbance in the solutions. 

 

 

5. COMPARISON  

5.1. Heuristics for Neighborhood Exploration 

For comparison purposes, the ABM strategies for 

neighborhood exploration are evaluated against known 

heuristic algorithms used for neighborhood exploration 

on the OSA problem. They were originally proposed by 

Landa-Silva (2003) and applied to the OSA data sets 

from three UK universities. This paper presents a 

replication of those heuristics and two additional ones, 

implemented for this study, all tested on the new 

generated data sets by Ülker and Landa-Silva (2013). 

These heuristics are based on the main idea of the 

relocation of an entity to a different room. The methods 

of selecting the entity to relocate vary from completely 

random to greedier ones: 

 

 RelocateRndRnd: Selects an entity at random and 

relocates it to another random room; 

 RelocateRndBestRnd: Selects an entity at random 

and relocates it to the best room, in terms of 

evaluation function value, out of a randomly selected 

subset of rooms; 

 RelocateRndBestAll: Selects an entity at random and 

relocates it to the best room out of all the available 

rooms; 

 RelocatePntyBestRnd: Selects the entity with the 

highest current penalty associated with it and 

relocates it to the best room out of a randomly 

selected subset of rooms; 

 RelocatePntyBestAll: Selects the entity with the 

highest current penalty and relocates it to the best 

room out of all the available rooms. 

 

These heuristics are tested separately using an ‘only 

improving’ local search algorithm (see Algorithm 3). 

The reason for applying each neighborhood exploration 

strategy separately, and using a simple algorithm, is to 

analyze the individual behavior and identify the strengths 

and weaknesses, without having external influencing 

factors.  

 

Algorithm 3 Local search 

generate initial solution X 

repeat 

 apply neighborhood heuristic (select entity and room 

for the move) 

 apply the relocation move to X to produce X’ 

 perform acceptance test of X’ 

 if (X’ is better than X) 

   X = X’ 

until termination criteria 

 

Each neighborhood exploration heuristic was run until no 

improvement was found for a number of iterations. Each 

experiment was replicated 50 times as it was the case for 

the ABM simulation. The results are included in Table 2. 

 

Table 2: Heuristic neighborhood exploration algorithms 

for OSA on the s000v000 problem instance 

Heuristic Diversity Min Mean Max 

RndRnd 52.34 1558.00 1983.27 2439.00 

RndBestRnd 52.67 1446.00 1930.56 2361.00 

RndBestAll 50.89 1364.50 1861.27 2383.00 

PntyBestRnd 51.77 1785.50 2348.92 2818.00 

PntyBestAll 52.60 1493.00 2304.80 2800.50 

 

The differences between the heuristic neighborhood 

exploration algorithms seen in the boxplots (Figure 5) are 

not major. However, they do show that RndRnd, 

RndBestRnd and RndBestAll are overall better than the 

PntyBestRnd and PntyBestAll. Performing ANOVA 

statistical analysis confirmed that the RndBestAll is the 

best performing algorithm when compared with the rest 

of the heuristics, having a significance difference p value 

of less than 0.005. 

 

Figure 5: Boxplots for all the heuristic neighborhood 

exploration algorithms on s000v000. 

 

5.2. Comparison of the results 

The two winning neighborhood exploration strategies, 

namely the heuristic RndBestAll and the ABM CR-

OneByOne, are compared with each other on all the 6 

problem instances selected: s000v000, s000,v100, 

s100v000, s100v100, p025n000, and p000n025. The 

results are included in Table 3. For all the instances 

except p025n000, there is statistical significance between 

the two methods. CR-OneByOne is the one which 

produces better results for almost all the instances in 

terms of evaluation function value of a solution for OSA. 

The exceptions are for the s100v100 and p025n000 

instances. For p025n000 the statistical analysis does not 

show significant difference between the two algorithms. 

However, for s100v100 the difference is statistically 

significant, RndBestAll being the better one. The 

s100v100 problem instance is expected to have high 

space misuse and high constraints violation. This might 



suggest that the current ABM simulation for OSA is not 

coping well with high expected penalty, both from 

constraints and from space misused. However, this 

cannot be generalized by looking at only one instance of 

this type for the problem. Further analysis has to be made 

in order to confirm this conclusion. 

In terms of the diversity of the solutions produced by the 

two algorithms, RndBestAll has a higher score (50-55%), 

while CR-OneByOne has a lower one (20-30%). The 

ABM CR-OneByOne produces less diversity in the 

solutions because the agents have the option of not 

moving if they do not find a promising better room than 

the one they already are allocated to, hence not exploring 

more rooms. 

 

Table 3: Comparison of RndBestAll and CR-OneByOne 

algorithms for OSA on the s000v000, s000_v100, 

s100v000, s100v100, p025n000 and p000n025 problem 

instances 

 

The performance of the neighborhood exploration 

strategies is given by the overall value of the objective 

function. However, for a better understanding of the 

strengths and weaknesses of the approaches used to solve 

the OSA problem, the objective function values obtained 

were split by constraints and space misuse penalty. As it 

can be seen in Figure 6 and Figure 7, the ABM CR-

OneByOne strategy is optimizing better the satisfaction 

of constraints, having less violation than the RndBestAll 

heuristic. On the other hand, the RndBestAll strategy is 

coping better with the space misuse, reporting lower 

values for this component of the objective function. The 

agents built in the simulation model do not have 

mechanisms to cope with space misuse, so there is 

potential for improvement in this direction. 

 

 
Figure 6: Constraints penalty obtained by the ABM and 

heuristic neighbourhood strategies for all the instances. 

 

 
Figure 7: Space misuse penalty obtained by the ABM 

and heuristic neighbourhood strategies for all the 

instances. 

 

Going further and splitting the total constraint penalty by 

each of the individual constraints, it is observed that CR-

OneByOne get the highest penalty from ‘nearby’, ‘not 

sharing’ and ‘same room’ constraints (see Figure 8). The 

heuristic for neighbourhood exploration, RndBestAll, 

gets the highest penalty from ‘nearby’, ‘allocation’ and 

‘same room’ (see Figure 9).  

From the analysis, the overall performance of the 

strategies compared in this paper does not seem to 

depend much on the problem instance. The constraint 

penalty (total or split by individual constraints) and space 

misuse penalty keep their proportions across all the 

instances.  
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Algorithm Diversity Min Mean Max 

p000n025 

CR-OneByOne 21.43 1541.80 1901.66 2291.20 

RndBestAll 52.15 1698.00 2107.18 2662.20 

p025n000 

CR-OneByOne 23.95 1496.00 1938.04 2359.10 

RndBestAll 51.54 1418.60 1889.23 2339.30 

s000v000 

CR-OneByOne 21.40 1346.00 1751.50 2069.00 

RndBestAll 50.89 1364.50 1861.27 2383.00 

s000v100 

CR-OneByOne 25.42 1539.00 2035.58 2522.50 

RndBestAll 51.21 1723.50 2103.48 2503.00 

s100v000 

CR-OneByOne 17.61 1536.80 1913.06 2314.60 

RndBestAll 54.32 1560.90 2023.64 2498.20 

s100v100 

CR-OneByOne 27.31 1810.70 2282.53 2564.40 

RndBestAll 54.11 1653.10 2162.81 2606.90 



 
Figure 8: Individual constraint penalty obtained by CR-

OneByOne for all the instances. 

 

 
Figure 9: Individual constraint penalty obtained by 

RndBestAll for all the instances. 

 

 

6. CONCLUSION 

6.1. Discussion 

A key factor which influences the performance of the 

behaviors in the proposed ABM is the fact that the model 

is implemented synchronously. This means that agents 

move in steps, and at the same time with others, as 

described in this paper. So the environment constantly 

changes, and the calculations that an agent does when 

deciding ‘where to move’, might be completely wrong, 

because they depend on other agents and their locations 

too. Thus, when one moves, it can negatively influence 

the decisions which were already taken by another agent. 

The BestPotential strategy is the most appropriate 

example in this case, when the synchronous nature of the 

system influences a moving strategy to the point where it 

makes it become the worst performing strategy. 

OneByOne mechanism is the least affected by the 

synchronous nature of the system, and in consequence is 

the best performing algorithm from ABM. 

From the ‘when to move’ strategies, the RC performs 

better because it is less influenced by the fact that the 

environment changes. On the other and, the AM strategy 

is among the worst in terms of performance, because the 

calculation of potential penalty does not match the actual 

penalty once the move is made.  

A solution to this problem would be to create an 

asynchronous system or to include communication 

mechanisms between agents. This way agents can still 

follow their individual goal, but also collaborate with 

each other in taking decisions and coordinate their 

movement when they are involved in the same 

constraints. The results in the previous section about the 

individual contribution of the different types of 

constraints to the overall penalty from the objective 

function, indicate that the ABM can be further improved 

to better cope with the ‘nearby’, ‘not sharing’ and ‘same 

room’ constraints. This is a promising direction to further 

develop the ABM in the future. 

Regarding the heuristics, it was seen that PntyBestRnd 

and PntyBestAll are not performing better than the rest 

of the methods, although they are always trying to movre 

the highest penalized entity and find a better allocation 

for it. This is because these heuristics do not explore too 

much the search space and get very easily trapped in a 

local optima. The heuristics considered here move from 

a solution to another by changing only one entity from a 

current allocation to another, limiting the neighborhood 

exploration, which also influences the performance of 

the algorithms. 

A future direction for this study is to analyze all the other 

available instances for the problem, and see if the 

performance of the agent based model is still comparable 

to the neighborhood search heuristics. A couple of 

improvements to the existing agent based model can also 

be made. For example, adding a learning mechanism to 

the agents, and including communication between agents 

as mentioned previously. Although the agents in this 

model are working and following an individual goal, they 

have the potential of improving their movement 

strategies by collaborating with each other. The 

constraints, due to their nature, usually involve more than 

one entity (agent) in their formulation. Therefore, 

negotiation mechanisms between the agents involved in 

the same constraint will make them work towards the 

same goal, and possibly improving on the results 

presented in this paper. 

 

6.2. Summary 

This paper presented an agent based simulation model 

(ABM) for the OSA problem that overall performs better 

than or as good as the heuristics used as neighborhood 

exploration in the literature. The model is based on the 

0% 50% 100%

p000_n025

p025_n000

s000_v000

s000_v100

s100_v000

s100_v100

CR-OneByOne

Alloc NonAlloc

Capacity SameRoom

NotSameRoom NotSharing

Adjacency Nearby

AwayFrom

0% 50% 100%

p000_n025

p025_n000

s000_v000

s000_v100

s100_v000

s100_v100

RndBestAll

Alloc NonAlloc

Capacity SameRoom

NotSameRoom NotSharing

Adjacency Nearby

AwayFrom



individual agents’ behavior and strategies, which aim to 

improve their current position. This approach allowed for 

problem decomposition to be achieved, which is also the 

first time this was done for the OSA problem. 

There is room for improvement in the model presented, 

and the fact that it already produces results comparable 

with existing methods, suggests that it is a promising 

direction for future research in this problem.  

OSA can be associated with a general assignment 

problem, it has similarities with bin packing, container 

loading and general resource allocation. It has many 

more types of constraints than these well-known 

problems, which is making it more difficult to solve. 

However, the model used for solving OSA can be also 

applied to these other similar assignment problems. 

ABM simulation proves to be a good methodology for 

solving the office space allocation problem, thus making 

this a valuable contribution to the field, because the same 

principles are easy to adapt to other real world 

assignment problems. 
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