
AN AGENT BASED MODELLING APPROACH FOR THE OFFICE SPACE

ALLOCATION PROBLEM

Alexandra Dediu(a), Dario Landa Silva(b), Peer-Olaf Siebers(c)

(a),(b)ASAP Research Group, School of Computer Science, University of Nottingham, UK

(c)IMA Research Group, School of Computer Science, University of Nottingham, UK

(a)alexandra.dediu@nottingham.ac.uk, (b)dario.landasilva@nottingham.ac.uk

(c)peer-olaf.siebers@nottingham.ac.uk

ABSTRACT

This paper describes an agent based simulation model to

create solutions for the office space allocation (OSA)

problem. OSA is a combinatorial optimization problem

concerned with the allocation of available office space to

a set of entities such as people. The objective function in

the OSA problem involves the minimization of space

misuse and the minimization of soft constraints

violations. Several exact and heuristic algorithms have

been proposed to tackle this problem. This paper

proposes a rather different approach by decomposing the

problem into smaller goals, which are delegated to

individual agents each representing an entity in the

problem. Agents have an internal decision making

process which guides them throughout their search

process for a better allocation (room). That is, agents

seek to satisfy their individual requirements in terms of

room space and constraints. Computational experiments

show that the agent based model exhibits competitive

performance in terms of solution quality and diversity

when compared to neighborhood search heuristics.

Keywords: agent based modelling, office space

allocation, problem decomposition, distributed

optimization

1. INTRODUCTION

Office Space Allocation is a combinatorial optimization

problem concerned with the planning and distribution of

the available physical space (e.g. rooms) to a set of

entities such as people. When planning the distribution

of office space in buildings, administrators or managers

have to consider the practical issues involved in the

allocation process, such as the spatial needs, proximity

relations, facilities infrastructure, as well as occupancy

costs and effectiveness of the working environment. The

aim of OSA is to find an allocation (entities assigned to

rooms) such that the misuse of space is minimized, and

the satisfaction of constraints is maximized. The OSA

problem is faced by many organizations, both academic

institutions and businesses, where entities need to be

distributed over an often limited amount of room space.

Examples of such scenarios where OSA has been

investigated as an optimization problem are the NASA

Langley Research Center (Kincaid et al. 2007), the

European Space Research and Technology Center

(Lopes and Girimonte 2010), and dormitories in an

academic institution (Trung, Tuan and Anh 2009). So

far, this problem has been tackled using various heuristic

algorithms, such as asynchronous cooperative local

search (Landa-Silva and Burke 2007), nature-inspired

algorithms such as harmony search (Awadallah et al.

2012), evolutionary algorithms (Adewumi and Ali 2010;

Ülker and Landa-Silva 2012), as well as mathematical

programming (Ülker and Landa-Silva 2010). More

recent works include greedy algorithms with tabu search

(Castillo, Riff and Montero 2016) and artificial bee

colony algorithms (Bolaji, Michael and Shola 2017), that

reported competitive results with the integer

programming model from Ülker and Landa-Silva (2010).

The heuristic algorithms developed until now for OSA

tackle the problem as whole, and do not incorporate

problem decomposition mechanisms. Consequently, the

preferences of office occupants are not treated

individually, but rather globally by aggregating them into

the overall objective function of the problem.

Rather than developing more sophisticated heuristic

algorithms, this study proposes a novel approach to solve

the OSA problem by using the support of Agent Based

Modelling (ABM). This allows the consideration of

behavioral aspects and individual preferences of the

office occupants. The remainder of the paper provides

details about this approach to tackle the OSA problem

and evaluates its performance by means of computational

experiments on a set of benchmark instances from the

literature.

2. BACKGROUND

2.1. Agent Based Modelling (ABM)

Modelling and simulation can be used to reproduce a real

world environment with its features, forecast and explore

different scenarios, experiment with possible alternative

decisions, and set different values for decision variables.

In ABM, a system is modelled as a collection of

autonomous decision-making entities called agents

(Pourdehnad, Maani and Sedehi 2002). Each agent

individually assesses its situation and makes decisions on

the basis of a set of rules. Individual agents interact with

each other and their environment to produce complex

collective behavior patterns. ABM is well suited to

modelling systems with heterogeneous, autonomous and

proactive actors, such as human-centered systems

(Siebers et al. 2007).

ABM has a variety of applications from modelling the

behavior of stock market and supply chains to predicting

the spread of epidemics and understanding factors that

may be responsible for the fall of ancient civilizations.

All these make it possible to analyze the effects of

changes in a specific system or environment, without

affecting the real world during this process (Macal and

North 2010).

Within the operations research discipline, agent based

approaches have been used to solve problems like:

scheduling (Sabar, Montreuil and Frayret 2011),

knapsack (Polyakovskiy and M’Hallah 2007),

transportation and supply chain planning (Persson et al.

2005). It has been reported that the agent based

approaches proved to be competitive with heuristic

optimization techniques, one advantage being that the

problem can be divided into sub problems, and the work

delegated to agents. Thus, when the size of the problem

is large and the timescale is short, the decomposition

nature of ABM can help to reduce the computational time

needed to produce competitive solutions to the problem

in hand (Barbati, Bruno and Genovese 2012). However,

if the communication between agents has a high cost and

if the high quality of solutions is a priority, then classical

optimization techniques are preferred. According to

Persson et al. (2005), who applied both ABM and

classical optimization techniques to a production and

transportation supply chain problem, a hybrid approach

proved to be beneficial. They added optimization to

agents during the decision making process, and obtained

better results than having each method applied by its

own. The performance of a hybrid system was also

reported as highly satisfactory in a study by Daniels and

Parsons (2006). They used agents to improve the

population of candidate solutions in a genetic algorithm

used to solve the zone-deck allocation of space in a

preliminary ship general arrangements design.

According to Polyakovskiy and M’Hallah (2007), the

agent based model developed for a knapsack problem,

allows the investigation of a larger part of the solution

space, leading to high quality solutions. They propose an

agent based framework where the agent is characterized

by its fitness, behavioral rules and parameters. The

framework is then used in the decision making process to

assess the potential of each possible action, and choose

the one which optimizes the reward.

An interesting case of ABM is the Schelling Segregation

Model (Schelling 1971), where, based on a simple rule

of neighborhood satisfaction, people/entities of two types

are moving on a grid and in time they start to segregate.

Each entity is represented by an agent with an attached

happiness value. If the percentage of agents of the same

type among one’s neighbors is lower than a certain

threshold value, that agent changes the state to unhappy

and moves to a randomly chosen new location. If the

state remains happy, then the agent does not move. So,

following a rule for changing the state of an agent, after

several state changes, the agents exhibit patterns, order

and structure in their behavior.

Starting from the principles of the Schelling Segregation

Model and other examples of ABM for combinatorial

optimization problems, this paper proposes an ABM

approach for solving the OSA problem, where agents

have an internal decision making process based on

heuristics.

2.1.1. The Office Space Allocation Problem

The office space allocation problem used in this study

was defined initially by Landa-Silva (2003) and updated

later by Ülker (2013). This is a minimization

combinatorial optimization problem that is highly

constrained. In this problem there is a set of rooms –

representing the space available for the allocation

process, and a set of entities – representing people or

resources that must be allocated to the rooms. Each room

has a given size and each entity requires a given amount

of space. There is also a set of constraints, which

represent the requirements that should be met when

creating an allocation. The constraints establish hard or

soft restrictions on proximity and spatial relations among

the entities and rooms. There are 9 types of such

constraints: allocation, non-allocation, capacity, same-

room, not-same-room, not-sharing, adjacency, nearby,

away-from. The full definition and the penalty weights

associated to each in the case of non-satisfaction are

given in (Ülker 2013). A solution to the problem requires

that each entity is allocated to a room. The quality of a

solution is evaluated in terms of space misuse penalty

(SMP in equation 1) and soft constraints penalty (SCP in

equation 2). The aim is to minimize the total penalty (F

in equation 3) associated with a solution. The usage of

each room is calculated according to the entities allocated

to the room. Overuse of space is less desirable hence

penalized twice compared to underuse of space, as shown

in equation 1. The violation of each constraint

contributes with the associated weight towards the

overall penalty for that solution.

𝑆𝑀𝑃 = ∑ max (𝑐𝑎𝑝(𝑟𝑖) − 𝑢𝑠𝑔(𝑟𝑖), 2 × (𝑢𝑠𝑔(𝑟𝑖) − 𝑐𝑎𝑝(𝑟𝑖)))
|𝑅|
𝑖=1 (1)

𝑆𝐶𝑃 = ∑ (𝑤(𝑐𝑖) × 𝑣(𝑐𝑖))
|𝐶|
𝑖=1 (2)

𝐹 = 𝑆𝑀𝑃 + 𝑆𝐶𝑃 (3)

In equations (1)-(3), cap(ri) is the capacity of room ri,

usg(ri) is the actual usage of room ri, v(ci) is 1 if the

constraint ci is violated and 0 if it is satisfied, w(ci) is the

weight of the soft constraint ci, |R| is the number of rooms

in the problem, and |C| is the number of constraints in the

problem.

The data sets used in this paper were proposed by Ülker

and Landa-Silva (2011). These problem instances vary

on two dimensions: the number of constraints, and the

space misused expected, all having a constant number of

entities and rooms. One data set corresponds to a problem

instance and it contains a list of entities (with id, group

and space required), a list of rooms (with id, floor, and a

set of neighbors of the room) and a list of constraints

(with id, type, subject and target – defined depending on

the type of the constraint). These data sets are called

SVe150 and PNe150 and were generated based on four

parameters: S, V, P and N. For the parameters S, P and

N, variations are made to adjust the size of the rooms as

follows. S represents the slack space rate expected

(general misuse of space), P represents a positive slack

amount expected (underuse) and N represents a negative

slack amount expected (overuse). The V parameter

expresses the violation rate expected in regards to the

constraints. The data sets selected for conducting

experiments in this paper are: s000v000 - low space

misuse and low constraint violation, s100v000 - high

space misuse and low constraint violation, s000v100 -

low space misuse and high constraint violation,

s100v100 - high space misuse and high constraints

violation, p025n000 - expect high underuse, p000n025 -

expect high overuse.

3. METHODOLOGY

3.1. ABM for OSA

The agent based model developed here for OSA is a

synchronous simulation model, and has the following

components: entities, rooms, constraints and the

environment. The environment is the space where all the

agents are located and takes care of their coordination. It

also keeps track of the global objective value for the

current solution to the problem, using the information

received from the rooms (about space misused) and from

the constraints (about their violation). However, the

environment does not have a mechanism to minimize this

global objective, but rather it monitors the objective

value and the solution, making the calculations available

for agents on request. The responsibility for minimizing

the objective function value is distributed to the agents of

the system. The rooms and the constraints are

represented as passive agents (objects). Entities (people)

are represented as active agents (entities from OSA

problem definition). From this point onwards in this

paper, active agents are referred to as agents and passive

agents as objects.

Being a synchronous model, all agents move

simultaneously, evaluating possible rooms for

themselves. The system then gathers all the individual

allocations of agents to rooms and builds the overall

solution for the problem. Because of these mechanisms,

this approach can be seen as distributed optimization.

The overall evaluation function is split based on

constraints. Then, some components of that evaluation

function are delegated to each individual agent.

Figure 1 presents the conceptual model of the system,

showing the interaction between the different

components. Agents, through their behavior, search and

build a solution for the problem. They have two possible

states, satisfied and not satisfied and they move between

them based on an internal evaluation process. This will

be detailed in the next subsection. During their internal

evaluation process, the agents request information from

the rooms and from the constraints. From the constraints,

the agents get a list of those directly involving them and

in turn affect their satisfaction score. From the rooms, the

agents get information about occupancy of the rooms and

the neighborhood relationships between rooms defined

by the problem instance.

Figure 1: Agent Based Model for the Office Space

Allocation Problem.

3.2. Agents Structure

As mentioned in the previous section, the agents

proposed in this model represent the entities in an

instance of the OSA problem. During their search

process, agents move between rooms and analyze their

own satisfaction state, choosing ‘when’ and ‘where’ to

change their allocation. The state of an agent can be

either satisfied or not satisfied. Four strategies are

proposed for agents to decide ‘when to move’:

 Percentage Based (PB): The agent has a current

penalty given by the constraints which are associated

with it and are violated in the current position

(calculations of this penalty are detailed in Algorithm

1). If this penalty is more than 30% of the total

possible penalty, then the agent moves. The total

possible penalty is calculated as a pessimistic

scenario, when all the constraints associated with the

agent are violated, thus is the maximum penalty that

the agent can have.

 Always Move (AM): All the agents are moving at

every step of the simulation.

 Highest Penalised (HP): The agent with a current

penalty larger than the average penalty for all agents

in that particular moment, are moving to a different

location. This implies that every step approximately

half of the agents are moving to a different room.

 Random Chance (RC): Each agent has a chance of 1

in 6 to move to a different location. This chance is

based on the ‘dice rolling’ probability.

Depending on the outcome of the strategy applied, an

agent makes the first decision from its internal ‘thinking

process’, namely it defines its satisfaction state. If this

process results in being not satisfied and therefore having

to move to a different room, the agent goes to the second

stage, and it analyses ‘where to move’. This means that

the agent searches for a room which will fulfil its

Provide information

about current

occupancy and

relationship with

other rooms

Pass

information

about

constraints

violation

Get the set of

requirements which

guide the movement

Pass information

about space misused

Agents

 ‘when to move’

Found satisfying

room
Satisfied

Not Satisfied

‘where to move’

Rooms

Constraints

Environment

requirements and get back to a satisfied state. If a room

is not found, or it does not improve its current position,

then the agent stays in the current room returning to a not

satisfied state.

Algorithm 1 Penalty calculation for an agent

agent.penalty = 0

for (constraint c : agent.associatedConstraints)

 switch (c.type)

 if(c is violated) //defined based on c.type

 agent.penalty += c.weight

 end if

agent.penalty += agent.room.misusedPenalty /

 room.noOfAgentsInRoom

return agents.penalty

There are four strategies proposed for the ‘where to

move’ decision. These are heuristic based approaches,

and vary from random to greedier ones:

 Rnd: The choice of the new room for the agent is

picked at random.

 BestPotential: The agent evaluates the potential of

each available room and selects the one which returns

the smallest penalty in the scenario of moving there.

The potential of a penalty is relative to other agents

moving in the same time, thus the evaluation may not

be the same before and after the move is done.

 AllConstr: The agent is trying to find a room which

will not violate its associated constraints. Instead of

analysing all the rooms and calculating a penalty, this

approach is narrowing down the list of rooms based

on the constraints. If there is no room satisfying all

constraints, the agent goes back and tries to satisfy

most of the constraints.

 OneByOne: At every simulation step, the agent picks

at random currently violated constraint and finds a

room which will satisfy it in the scenario of moving

there.

The simulation based ABM executes the search process

in steps. At each step, all the agents act simultaneously.

Before the step, agents calculate their satisfaction, based

on one of the four strategies mentioned. Then, they

choose the room where to move, again using one of the

strategies mentioned. On the actual step, the agents are

essentially executing the move, so they change their

allocation to a new room. The entire process is

represented in Algorithm 2.

Algorithm 2 ABM simulation process

On start-up:

 initialize the agents from external database

 build the neighborhood links between rooms

 assign the constraints to the agents (entities)

On before step:

agents.satisfied = agents.decide(‘when to move’)

 if (agents.satisfied = false)

 newRoom = agents.choose(‘where to move’)

On step:

 if (agents.satisfied = false)

 agents.room = newRoom

On after step:

rooms.misusedPenalty -> update (with new

occupancy)

 agents.totalPenalty -> update (in the new allocation)

environment.fitnessFunction ->update (from agents)

The ABM for OSA described above is relatively simple

but is it designed to serve as a baseline methodology to

investigate the suitability of tackling OSA through a

distributed optimization paradigm instead of a typical

centralized optimization or heuristic approach. This

investigation will hopefully inform the development of

more elaborate behavior in the agents and conditions in

the environment.

4. EXPERIMENTAL RESULTS

There are 16 behaviors which can be exhibited by an

agent, combining the two decision mechanisms of

‘when’ and ‘where’ to move. This resulted in 16 different

neighborhood exploration strategies that are evaluated.

The simulation was run with each algorithm for 5000

steps, and 50 replications on each data set. The number

of steps was set to 5000, because preliminary

experiments showed that after this point all the agents’

strategies did not continue to improve the overall

solution for the problem. The results presented in Table

1 correspond to the s000v000 problem instance. The

same rankings of the algorithms was also observed in the

other problem instances mentioned in section 2.1.1

above. For this reason, details of the experimental results

for those other instances are omitted here but are

available for further analysis.

Table 1: Neighbourhood exploration strategies built in

the ABM for OSA on the s000v000 problem instance

ABM Strategy Diversity Min Mean Max

PB-Rnd 50.08 2878.00 3181.68 3553.50

PB-BestPotential 0 3971.50 3971.50 3971.50

PB-AllConstr 30.96 1969.00 2432.36 2808.00

PB-OneByOne 33.36 1691.50 2247.53 2710.00

AM-Rnd 70.78 2890.00 3591.48 4076.00

AM-BestPotential 0 8238.50 8238.50 8238.50

AM-AllConstr 34.69 1853.50 2602.69 3150.00

AM-OneByOne 32.94 1835.00 2499.79 3083.50

HP-Rnd 52.25 2942.50 3444.55 3871.50

HP-BestPotential 0 4210.00 4210.00 4210.00

HP-AllConstr 27.33 1889.50 2465.24 2991.00

HP-OneByOne 31.24 1751.00 2279.42 2761.50

RC-Rnd 66.31 2347.50 2599.97 2952.50

RC-BestPotential 41.54 3053.00 3502.37 4265.50

RC-AllConstr 21.29 1536.00 1899.82 2318.00

RC-OneByOne 21.40 1346.00 1751.50 2069.00

Table 1 contains the min (best), mean and max (worst)

evaluation function values for the best solutions

produced by each combination of agents’ strategies. The

diversity value represents the degree of difference in the

actual structure of best solutions produced. A detailed

description of how the diversity is calculated can be

found in the next section.

Figure 2: Boxplots of ‘where to move’ strategies in all

the ‘when to move’ cases.

The results presented in Table 1 show that, in general, the

RC strategy performs best amongst ‘when to move’

strategies, and OneByOne approach performs best

amongst ‘where to move’ strategies. This can also be

seen in the boxplots from Figure 2. The rankings of the

‘where to move’ strategies are maintained throughout all

the 4 ‘when to move’ cases. From best to worse, the

ranking of the algorithms is: OneByOne, AllConstr, Rnd

and BestPotential. Contrary to what it name suggests, the

BestPotential approach performs very poor, because it is

heavily relying on the penalty evaluation done ‘on before

step’, which does not correspond with the actual penalty

seen ‘on after step’. RC, although being of a random

nature, it is the ‘when to move’ strategy that makes the

least amount of agents to move simultaneously, thus the

least disruption in the environment from one step to

another. Therefore, RC is the best performing strategy

because the penalty evaluations made by an agent are less

likely to change from ‘on before step’ to ‘on after step’.

4.1. Diversity in the solutions

The diversity in the solutions produced by one algorithm

is represented in this paper as the degree of differences

in the structure of the best solutions returned throughout

all the repetitions of the experiments. This is calculated

using equation (4) taken from (Landa-Silva 2003). The

diversity ranges from 0 to 100, 0 meaning that all the

solutions compared are exactly the same and 100

meaning that all the solutions compared do not have any

one element in common. A solution of the office space

allocation problem is represented as an array, where the

index represents the entity (agent) id and the value in the

array represents the room id to which that agent is

allocated (see Figure 3). Having 50 such arrays

(solutions), from the 50 replications of an experiment, the

diversity is represented by the agent being allocated to

different rooms in those solutions. So, if the value in the

solution array corresponding to and agent is different

from the value in the same position in another solution

array, then the two solutions have a difference between

them in that position. D(j) is the number of unique values

in the jth position of the solution, p is the number of

solutions compared, and n is the length of the solution.

Figure 4 illustrates the use of this equation for p = 5

solutions and n = 7 agents.

𝑉(𝑝) =
∑

𝐷(𝑗)−1

𝑝−1
𝑛
𝑗=1

𝑛
× 100 (4)

Figure 3: Representation of a solution for OSA.

Figure 4: Example of calculation of the diversity in

solutions.

Looking at the diversity column in the results presented

in the previous section, it can be observed that the Rnd

strategy scores the highest. It is expected to have a higher

diversity in the solutions, when rooms are chosen at

random, and therefore the agents explore more. On the

other hand, BestPotential strategy, being a greedy one,

almost in all cases chooses the exact same rooms, and

therefore producing the same solutions regardless of the

number of the experimental repetitions. In general, the

RC strategy also scores lower in terms of diversity,

because a smaller number of agents move at a time, thus

creating a smaller disturbance in the solutions.

5. COMPARISON

5.1. Heuristics for Neighborhood Exploration

For comparison purposes, the ABM strategies for

neighborhood exploration are evaluated against known

heuristic algorithms used for neighborhood exploration

on the OSA problem. They were originally proposed by

Landa-Silva (2003) and applied to the OSA data sets

from three UK universities. This paper presents a

replication of those heuristics and two additional ones,

implemented for this study, all tested on the new

generated data sets by Ülker and Landa-Silva (2013).

These heuristics are based on the main idea of the

relocation of an entity to a different room. The methods

of selecting the entity to relocate vary from completely

random to greedier ones:

 RelocateRndRnd: Selects an entity at random and

relocates it to another random room;

 RelocateRndBestRnd: Selects an entity at random

and relocates it to the best room, in terms of

evaluation function value, out of a randomly selected

subset of rooms;

 RelocateRndBestAll: Selects an entity at random and

relocates it to the best room out of all the available

rooms;

 RelocatePntyBestRnd: Selects the entity with the

highest current penalty associated with it and

relocates it to the best room out of a randomly

selected subset of rooms;

 RelocatePntyBestAll: Selects the entity with the

highest current penalty and relocates it to the best

room out of all the available rooms.

These heuristics are tested separately using an ‘only

improving’ local search algorithm (see Algorithm 3).

The reason for applying each neighborhood exploration

strategy separately, and using a simple algorithm, is to

analyze the individual behavior and identify the strengths

and weaknesses, without having external influencing

factors.

Algorithm 3 Local search

generate initial solution X

repeat

 apply neighborhood heuristic (select entity and room

for the move)

 apply the relocation move to X to produce X’

 perform acceptance test of X’

 if (X’ is better than X)

 X = X’

until termination criteria

Each neighborhood exploration heuristic was run until no

improvement was found for a number of iterations. Each

experiment was replicated 50 times as it was the case for

the ABM simulation. The results are included in Table 2.

Table 2: Heuristic neighborhood exploration algorithms

for OSA on the s000v000 problem instance

Heuristic Diversity Min Mean Max

RndRnd 52.34 1558.00 1983.27 2439.00

RndBestRnd 52.67 1446.00 1930.56 2361.00

RndBestAll 50.89 1364.50 1861.27 2383.00

PntyBestRnd 51.77 1785.50 2348.92 2818.00

PntyBestAll 52.60 1493.00 2304.80 2800.50

The differences between the heuristic neighborhood

exploration algorithms seen in the boxplots (Figure 5) are

not major. However, they do show that RndRnd,

RndBestRnd and RndBestAll are overall better than the

PntyBestRnd and PntyBestAll. Performing ANOVA

statistical analysis confirmed that the RndBestAll is the

best performing algorithm when compared with the rest

of the heuristics, having a significance difference p value

of less than 0.005.

Figure 5: Boxplots for all the heuristic neighborhood

exploration algorithms on s000v000.

5.2. Comparison of the results

The two winning neighborhood exploration strategies,

namely the heuristic RndBestAll and the ABM CR-

OneByOne, are compared with each other on all the 6

problem instances selected: s000v000, s000,v100,

s100v000, s100v100, p025n000, and p000n025. The

results are included in Table 3. For all the instances

except p025n000, there is statistical significance between

the two methods. CR-OneByOne is the one which

produces better results for almost all the instances in

terms of evaluation function value of a solution for OSA.

The exceptions are for the s100v100 and p025n000

instances. For p025n000 the statistical analysis does not

show significant difference between the two algorithms.

However, for s100v100 the difference is statistically

significant, RndBestAll being the better one. The

s100v100 problem instance is expected to have high

space misuse and high constraints violation. This might

suggest that the current ABM simulation for OSA is not

coping well with high expected penalty, both from

constraints and from space misused. However, this

cannot be generalized by looking at only one instance of

this type for the problem. Further analysis has to be made

in order to confirm this conclusion.

In terms of the diversity of the solutions produced by the

two algorithms, RndBestAll has a higher score (50-55%),

while CR-OneByOne has a lower one (20-30%). The

ABM CR-OneByOne produces less diversity in the

solutions because the agents have the option of not

moving if they do not find a promising better room than

the one they already are allocated to, hence not exploring

more rooms.

Table 3: Comparison of RndBestAll and CR-OneByOne

algorithms for OSA on the s000v000, s000_v100,

s100v000, s100v100, p025n000 and p000n025 problem

instances

The performance of the neighborhood exploration

strategies is given by the overall value of the objective

function. However, for a better understanding of the

strengths and weaknesses of the approaches used to solve

the OSA problem, the objective function values obtained

were split by constraints and space misuse penalty. As it

can be seen in Figure 6 and Figure 7, the ABM CR-

OneByOne strategy is optimizing better the satisfaction

of constraints, having less violation than the RndBestAll

heuristic. On the other hand, the RndBestAll strategy is

coping better with the space misuse, reporting lower

values for this component of the objective function. The

agents built in the simulation model do not have

mechanisms to cope with space misuse, so there is

potential for improvement in this direction.

Figure 6: Constraints penalty obtained by the ABM and

heuristic neighbourhood strategies for all the instances.

Figure 7: Space misuse penalty obtained by the ABM

and heuristic neighbourhood strategies for all the

instances.

Going further and splitting the total constraint penalty by

each of the individual constraints, it is observed that CR-

OneByOne get the highest penalty from ‘nearby’, ‘not

sharing’ and ‘same room’ constraints (see Figure 8). The

heuristic for neighbourhood exploration, RndBestAll,

gets the highest penalty from ‘nearby’, ‘allocation’ and

‘same room’ (see Figure 9).

From the analysis, the overall performance of the

strategies compared in this paper does not seem to

depend much on the problem instance. The constraint

penalty (total or split by individual constraints) and space

misuse penalty keep their proportions across all the

instances.

0
200
400
600
800

1000
1200
1400
1600
1800

Total Constraint Penalty

CR-OneByOne RndBestAll

0
200
400
600
800

1000
1200
1400
1600

Space Misuse Penalty

CR-OneByOne RndBestAll

Algorithm Diversity Min Mean Max

p000n025

CR-OneByOne 21.43 1541.80 1901.66 2291.20

RndBestAll 52.15 1698.00 2107.18 2662.20

p025n000

CR-OneByOne 23.95 1496.00 1938.04 2359.10

RndBestAll 51.54 1418.60 1889.23 2339.30

s000v000

CR-OneByOne 21.40 1346.00 1751.50 2069.00

RndBestAll 50.89 1364.50 1861.27 2383.00

s000v100

CR-OneByOne 25.42 1539.00 2035.58 2522.50

RndBestAll 51.21 1723.50 2103.48 2503.00

s100v000

CR-OneByOne 17.61 1536.80 1913.06 2314.60

RndBestAll 54.32 1560.90 2023.64 2498.20

s100v100

CR-OneByOne 27.31 1810.70 2282.53 2564.40

RndBestAll 54.11 1653.10 2162.81 2606.90

Figure 8: Individual constraint penalty obtained by CR-

OneByOne for all the instances.

Figure 9: Individual constraint penalty obtained by

RndBestAll for all the instances.

6. CONCLUSION

6.1. Discussion

A key factor which influences the performance of the

behaviors in the proposed ABM is the fact that the model

is implemented synchronously. This means that agents

move in steps, and at the same time with others, as

described in this paper. So the environment constantly

changes, and the calculations that an agent does when

deciding ‘where to move’, might be completely wrong,

because they depend on other agents and their locations

too. Thus, when one moves, it can negatively influence

the decisions which were already taken by another agent.

The BestPotential strategy is the most appropriate

example in this case, when the synchronous nature of the

system influences a moving strategy to the point where it

makes it become the worst performing strategy.

OneByOne mechanism is the least affected by the

synchronous nature of the system, and in consequence is

the best performing algorithm from ABM.

From the ‘when to move’ strategies, the RC performs

better because it is less influenced by the fact that the

environment changes. On the other and, the AM strategy

is among the worst in terms of performance, because the

calculation of potential penalty does not match the actual

penalty once the move is made.

A solution to this problem would be to create an

asynchronous system or to include communication

mechanisms between agents. This way agents can still

follow their individual goal, but also collaborate with

each other in taking decisions and coordinate their

movement when they are involved in the same

constraints. The results in the previous section about the

individual contribution of the different types of

constraints to the overall penalty from the objective

function, indicate that the ABM can be further improved

to better cope with the ‘nearby’, ‘not sharing’ and ‘same

room’ constraints. This is a promising direction to further

develop the ABM in the future.

Regarding the heuristics, it was seen that PntyBestRnd

and PntyBestAll are not performing better than the rest

of the methods, although they are always trying to movre

the highest penalized entity and find a better allocation

for it. This is because these heuristics do not explore too

much the search space and get very easily trapped in a

local optima. The heuristics considered here move from

a solution to another by changing only one entity from a

current allocation to another, limiting the neighborhood

exploration, which also influences the performance of

the algorithms.

A future direction for this study is to analyze all the other

available instances for the problem, and see if the

performance of the agent based model is still comparable

to the neighborhood search heuristics. A couple of

improvements to the existing agent based model can also

be made. For example, adding a learning mechanism to

the agents, and including communication between agents

as mentioned previously. Although the agents in this

model are working and following an individual goal, they

have the potential of improving their movement

strategies by collaborating with each other. The

constraints, due to their nature, usually involve more than

one entity (agent) in their formulation. Therefore,

negotiation mechanisms between the agents involved in

the same constraint will make them work towards the

same goal, and possibly improving on the results

presented in this paper.

6.2. Summary

This paper presented an agent based simulation model

(ABM) for the OSA problem that overall performs better

than or as good as the heuristics used as neighborhood

exploration in the literature. The model is based on the

0% 50% 100%

p000_n025

p025_n000

s000_v000

s000_v100

s100_v000

s100_v100

CR-OneByOne

Alloc NonAlloc

Capacity SameRoom

NotSameRoom NotSharing

Adjacency Nearby

AwayFrom

0% 50% 100%

p000_n025

p025_n000

s000_v000

s000_v100

s100_v000

s100_v100

RndBestAll

Alloc NonAlloc

Capacity SameRoom

NotSameRoom NotSharing

Adjacency Nearby

AwayFrom

individual agents’ behavior and strategies, which aim to

improve their current position. This approach allowed for

problem decomposition to be achieved, which is also the

first time this was done for the OSA problem.

There is room for improvement in the model presented,

and the fact that it already produces results comparable

with existing methods, suggests that it is a promising

direction for future research in this problem.

OSA can be associated with a general assignment

problem, it has similarities with bin packing, container

loading and general resource allocation. It has many

more types of constraints than these well-known

problems, which is making it more difficult to solve.

However, the model used for solving OSA can be also

applied to these other similar assignment problems.

ABM simulation proves to be a good methodology for

solving the office space allocation problem, thus making

this a valuable contribution to the field, because the same

principles are easy to adapt to other real world

assignment problems.

REFERENCES

Adewumi, A. O., and Ali, M. M., 2010. A multi-level

genetic algorithm for a multi-stage space allocation

problem. Mathematical and Computer Modelling,

51(1-2), 109-126.

Awadallah, M. A., Khader, A. T., Al-Betar, M. A., and

Woon, P. C., 2012. Office-space-allocation

problem using harmony search algorithm. In

International Conference on Neural Information

Processing (pp. 365-374). Springer, Berlin,

Heidelberg.

Barbati, M., Bruno, G., and Genovese, A., 2012.

Applications of agent-based models for

optimization problems: A literature review. Expert

Systems with Applications, 39(5), 6020-6028.

Bolaji, A. L. A., Michael, I., and Shola, P. B., 2017.

Optimization of Office-Space Allocation Problem

Using Artificial Bee Colony Algorithm. In

International Conference in Swarm Intelligence

(pp. 337-346). Springer, Cham.

Castillo, F., Riff, M. C., and Montero, E., 2016. New

Bounds for Office Space Allocation using Tabu

Search. In Proceedings of the 2016 on Genetic and

Evolutionary Computation Conference (pp. 869-

876). ACM.

Daniels, A., and Parsons, M. G., 2006. An agent based

approach to space allocation in general

arrangements. Proceedings of the 9th IMDC, Ann

Arbor, MI.

Kincaid, R., Gates, R., and Gage, R., 2007. Space

allocation optimization at nasa langley research

center. In Proceedings of the Seventh

Metaheuristics International Conference, Montreal,

Canada.

Landa Silva, J. D., 2003. Metaheuristic and

multiobjective approaches for space allocation.

Thesis (PhD). The University of Nottingham.

Landa-Silva, D., and Burke, E. K., 2007. Asynchronous

cooperative local search for the office-space-

allocation problem. INFORMS Journal on

Computing, 19(4), 575-587.

Lopes, R., and Girimonte, D., 2010. The office-space-

allocation problem in strongly hierarchized

organizations. In European Conference on

Evolutionary Computation in Combinatorial

Optimization (pp. 143-153). Springer, Berlin,

Heidelberg.

Macal, C. M., and North, M. J., 2010. Tutorial on agent-

based modelling and simulation. Journal of

simulation, 4(3), 151-162.

Persson, J. A., Davidsson, P., Johansson, S. J., and

Wernstedt, F., 2005. Combining agent-based

approaches and classical optimization techniques.

In Third European Workshop on Multi-Agent

Systems.

Polyakovsky, S., and M’Hallah, R., 2007. An agent-

based approach to knapsack optimization problems.

In International Conference on Industrial,

Engineering and Other Applications of Applied

Intelligent Systems (pp. 1098-1107). Springer,

Berlin, Heidelberg.

Pourdehnad, J., Maani, K. and Sedehi, H., 2002. System

dynamics and intelligent agent-based simulation:

where is the synergy. In Proceedings of the 20

International Conference of the System Dynamics

Society.

Sabar, M., Montreuil, B., & Frayret, J. M., 2009. A multi-

agent-based approach for personnel scheduling in

assembly centers. Engineering Applications of

Artificial Intelligence, 22(7), 1080-1088.

Schelling, T. C., 1971. Dynamic models of segregation.

Journal of mathematical sociology, 1(2), 143-186.

Siebers PO, Aickelin U, Celia H and and Clegg C, 2007.

A Multi-Agent Simulation of Retail Management

Practices. In: Proceedings of the 2007 Summer

Computer Simulation Conference (pp. 959-966),

San Diego, CA, USA.

Trung, N. T., Tuan, T. N., and Anh, D. T., 2009.

Informed simulated annealing for optimizing dorm

room assignments. In Intelligent Information and

Database Systems, 2009. ACIIDS 2009. First Asian

Conference on (pp. 265-270). IEEE.

Ülker, Ö., and Landa-Silva, D., 2010. A 0/1 integer

programming model for the office space allocation

problem. Electronic Notes in Discrete

Mathematics, 36, 575-582.

Ülker, Ö., and Landa-Silva, D., 2011. Designing difficult

office space allocation problem instances with

mathematical programming. In International

Symposium on Experimental Algorithms (pp. 280-

291). Springer, Berlin, Heidelberg.

Ülker, Ö., and Landa-Silva, D., 2012. Evolutionary local

search for solving the office space allocation

problem. In Evolutionary Computation (CEC),

2012 IEEE Congress on (pp. 1-8). IEEE.

Ülker, Ö., 2013. Office space allocation by using

mathematical programming and meta-heuristics.

Thesis (PhD). The University of Nottingham.

AUTHORS BIOGRAPHY

Alexandra Cristina Dediu is a PhD student from the

Automated Research Optimization and Planning (ASAP)

Research Group, in the School of Computer Science,

University of Nottingham, UK. Her main research

interests are in the optimization of problems related to

resource allocation, especially when solutions can

improve the businesses processes and facilitate

management operations.

Dr Dario Landa-Silva is an Associate Professor in the

School of Computer Science at the University of

Nottingham in the UK. His research interests are in the

interface between computer science, operations research

and artificial intelligence for the application of modeling,

search and optimization techniques to underpin the

development of intelligent decision support systems

across a range of real-world applications, particularly in

logistic and operational scenarios. More recently, he is

also conducting research on the interplay between

optimization and other methodologies such as machine

learning, computer simulation, data science and human

computation. He has over 95 scientific publications in

refereed journals, edited books, and proceedings of

international conferences and workshops.

Dr Peer-Olaf Siebers is an Assistant Professor at the

School of Computer Science, University of Nottingham,

UK. His main research interest is the application of

computer simulation to study human-centric complex

adaptive systems. He is a strong advocate of Object

Oriented Agent-Based Social Simulation. This is a novel

and highly interdisciplinary research field, involving

disciplines like Social Science, Economics, Psychology,

Operations Research, Geography, and Computer

Science. His current research focusses on Urban

Sustainability and he is a co-investigator in several

related projects and a member of the university's

"Sustainable and Resilient Cities" Research Priority Area

management team.

