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c© 2018 The Author(s)
https://doi.org/10.1007/s00023-018-0687-1 Annales Henri Poincaré
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Abstract. We analyze quantum field theories on spacetimes M with time-
like boundary from a model-independent perspective. We construct an
adjunction which describes a universal extension to the whole spacetime
M of theories defined only on the interior intM . The unit of this adjunc-
tion is a natural isomorphism, which implies that our universal extension
satisfies Kay’s F-locality property. Our main result is the following char-
acterization theorem: Every quantum field theory on M that is additive
from the interior (i.e., generated by observables localized in the interior)
admits a presentation by a quantum field theory on the interior intM and
an ideal of its universal extension that is trivial on the interior. We shall
illustrate our constructions by applying them to the free Klein–Gordon
field.

1. Introduction and Summary

Algebraic quantum field theory is a powerful and far developed framework to
address model-independent aspects of quantum field theories on Minkowski
spacetime [18] and more generally on globally hyperbolic spacetimes [7]. In
addition to establishing the axiomatic foundations for quantum field theory,
the algebraic approach has provided a variety of mathematically rigorous con-
structions of non-interacting models, see e.g., the reviews [1,3,4], and more in-
terestingly also perturbatively interacting quantum field theories, see e.g., the
recent monograph [26]. It is worth emphasizing that many of the techniques
involved in such constructions, e.g., existence and uniqueness of Green’s opera-
tors and the singular structure of propagators, crucially rely on the hypothesis
that the spacetime is globally hyperbolic and has empty boundary.
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Even though globally hyperbolic spacetimes have plenty of applications
to physics, there exist also important and interesting situations which require
non-globally hyperbolic spacetimes, possibly with a non-trivial boundary. On
the one hand, recent developments in high energy physics and string theory are
strongly focused on anti-de Sitter spacetime, which is not globally hyperbolic
and has a (conformal) timelike boundary. On the other hand, experimental
setups for studying the Casimir effect confine quantum field theories between
several metal plates (or other shapes), which may be modeled theoretically by
introducing timelike boundaries to the system. This immediately prompts the
question whether the rigorous framework of algebraic quantum field theory
admits a generalization to cover such scenarios.

Most existing works on algebraic quantum field theory on spacetimes with
a timelike boundary focus on the construction of concrete examples, such as the
free Klein–Gordon field on simple classes of spacetimes. The basic strategy em-
ployed in such constructions is to analyze the initial value problem on a given
spacetime with timelike boundary, which has to be supplemented by suitable
boundary conditions. Different choices of boundary conditions lead to different
Green’s operators for the equation of motion, which is in sharp contrast to the
well-known existence and uniqueness results on globally hyperbolic spacetimes
with empty boundary. Recent works addressing this problem are [19,20,33],
the latter extending the analysis of [31]. For specific choices of boundary con-
ditions, there exist successful constructions of algebraic quantum field theories
on spacetimes with timelike boundary, see e.g., [8,10–12]. The main message
of these works is that the algebraic approach is versatile enough to account
also for these models, although some key structures, such as for example the
notion of Hadamard states [11,32], should be modified accordingly.

Unfortunately, model-independent results on algebraic quantum field the-
ory on spacetimes with timelike boundary are more scarce. There are, how-
ever, some notable and very interesting works in this direction: On the one
hand, Rehren’s proposal for algebraic holography [25] initiated the rigorous
study of quantum field theories on the anti-de Sitter spacetime. This has been
further elaborated in [13] and extended to asymptotically AdS spacetimes in
[27]. On the other hand, inspired by Fredenhagen’s universal algebra [15–17],
a very interesting construction and analysis of global algebras of observables
on spacetimes with timelike boundaries has been performed in [30]. The most
notable outcome is the existence of a relationship between maximal ideals of
this algebra and boundary conditions, a result which has been of inspiration
for this work.

In the present paper, we shall analyze quantum field theories on space-
times with timelike boundary from a model-independent perspective. We are
mainly interested in understanding and proving structural results for whole
categories of quantum field theories, in contrast to focusing on particular the-
ories. Such questions can be naturally addressed by using techniques from
the recently developed operadic approach to algebraic quantum field theory
[5]. Let us describe rather informally the basic idea of our construction and
its implications: Given a spacetime M with timelike boundary, an algebraic
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quantum field theory on M is a functor B : RM → Alg assigning algebras of
observables to suitable regions U ⊆ M (possibly intersecting the boundary),
which satisfies the causality and time-slice axioms. We denote by QFT(M)
the category of algebraic quantum field theories on M . Denoting the full sub-
category of regions in the interior of M by RintM ⊆ RM , we may restrict
any theory B ∈ QFT(M) to a theory resB ∈ QFT(int M) defined only on
the interior regions. Notice that it is in practice much easier to analyze and
construct theories on int M as opposed to theories on the whole spacetime M .
This is because the former are postulated to be insensitive to the boundary
by Kay’s F-locality principle [22]. As a first result, we shall construct a left
adjoint of the restriction functor res : QFT(M) → QFT(int M), which we call
the universal extension functor ext : QFT(int M) → QFT(M). This means
that given any theory A ∈ QFT(int M) that is defined only on the interior
regions in M , we obtain a universal extension extA ∈ QFT(M) to all regions
in M , including those that intersect the boundary. It is worth to emphasize
that the adjective universal above refers to the categorical concept of universal
properties. Below we explain in which sense ext is also “universal” in a more
physical meaning of the word.

It is crucial to emphasize that our universal extension extA ∈ QFT(M)
is always a bona fide algebraic quantum field theory in the sense that it satisfies
the causality and time-slice axioms. This is granted by the operadic approach
to algebraic quantum field theory of [5]. In particular, the ext � res adjunction
investigated in the present paper is one concrete instance of a whole fam-
ily of adjunctions between categories of algebraic quantum field theories that
naturally arise within the theory of colored operads and algebras over them.

A far reaching implication of the above mentioned ext � res adjunction is
a characterization theorem that we shall establish for quantum field theories
on spacetimes with timelike boundary. Given any theory B ∈ QFT(M) on a
spacetime M with timelike boundary, we can restrict and universally extend
to obtain another such theory ext resB ∈ QFT(M). The adjunction also
provides us with a natural comparison map between these theories, namely
the counit εB : ext resB → B of the adjunction. Our result in Theorem 5.6
and Corollary 5.7 is that εB induces an isomorphism ext resB/ ker εB ∼= B
of quantum field theories if and only if B is additive from the interior as
formalized in Definition 5.5. The latter condition axiomatises the heuristic idea
that the theory B has no degrees of freedom that are localized on the boundary
of M , i.e., all its observables may be generated by observables supported in
the interior of M . Notice that the results in Theorem 5.6 and Corollary 5.7
give the adjective universal also a physical meaning in the sense that the
extensions are sufficiently large such that any additive theory can be recovered
by a quotient. We strengthen this result in Theorem 5.10 by constructing an
equivalence between the category of additive quantum field theories on M
and a category of pairs (A,I) consisting of a theory A ∈ QFT(int M) on the
interior and an ideal I ⊆ extA of the universal extension that is trivial on the
interior. More concretely, this means that every additive theory B ∈ QFT(M)
may be naturally decomposed into two distinct pieces of data: (1) A theory
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A ∈ QFT(int M) on the interior, which is insensitive to the boundary as
postulated by F-locality, and (2) an ideal I ⊆ extA of its universal extension
that is trivial on the interior, i.e., that is only sensitive to the boundary. Specific
examples of such ideals arise from imposing boundary conditions. We shall
illustrate this fact by using the free Klein–Gordon theory as an example. Thus,
our results also provide a bridge between the ideas of [30] and the concrete
constructions in [8,10–12].

The remainder of this paper is structured as follows: In Sect. 2, we recall
some basic definitions and results about the causal structure of spacetimes with
timelike boundaries, see also [9,29]. In Sect. 3, we provide a precise definition
of the categories QFT(M) and QFT(int M) by using the ideas of [5]. Our
universal boundary extension is developed in Sect. 4, where we also provide
an explicit model in terms of left Kan extension. Our main results on the
characterization of additive quantum field theories on M are proven in Sect. 5.
Section 6 illustrates our construction by focusing on the simple example of the
free Klein–Gordon theory, where more explicit formulas can be developed. It
is in this context that we provide examples of ideals implementing boundary
conditions and relate to analytic results, e.g., [12]. We included “Appendix A”
to state some basic definitions and results of category theory which will be
used in our work.

2. Spacetimes with Timelike Boundary

We collect some basic facts about spacetimes with timelike boundary, following
[29, Section 3.1] and [9, Section 2.2]. For a general introduction to Lorentzian
geometry, we refer to [2,24], see also [1, Sections 1.3 and A.5] for a concise
presentation.

We use the term manifold with boundary to refer to a Hausdorff, second
countable, m-dimensional smooth manifold M with boundary, see e.g., [23].
This definition subsumes ordinary manifolds as manifolds with empty bound-
ary ∂M = ∅. We denote by int M ⊆ M the submanifold without the boundary.
Every open subset U ⊆ M carries the structure of a manifold with (possibly
empty) boundary and one has intU = U ∩ int M .

Definition 2.1. A Lorentzian manifold with boundary is a manifold with bound-
ary that is equipped with a Lorentzian metric.

Definition 2.2. Let M be a time-oriented Lorentzian manifold with boundary.
The Cauchy development D(S) ⊆ M of a subset S ⊆ M is the set of points
p ∈ M such that every inextensible (piecewise smooth) future directed causal
curve stemming from p meets S.

The following properties follow easily from the definition of Cauchy de-
velopment.

Proposition 2.3. Let S, S′ ⊆ M be subsets of a time-oriented Lorentzian man-
ifold M with boundary. Then, the following holds true:
(a) S ⊆ S′ implies D(S) ⊆ D(S′);
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(b) S ⊆ D(S) = D(D(S));
(c) D(D(S) ∩ D(S′)) = D(S) ∩ D(S′).

We denote by J±
M (S) ⊆ M the causal future/past of a subset S ⊆ M , i.e.,

the set of points that can be reached by a future/past directed causal curve
stemming from S. Furthermore, we denote by I±

M (S) ⊆ M the chronological
future/past of a subset S ⊆ M , i.e., the set of points that can be reached by a
future/past directed timelike curve stemming from S.

Definition 2.4. Let M be a time-oriented Lorentzian manifold with boundary.
We say that a subset S ⊆ M is causally convex in M if J+

M (S) ∩ J−
M (S) ⊆ S.

We say that two subsets S, S′ ⊆ M are causally disjoint in M if (J+
M (S) ∪

J−
M (S)) ∩ S′ = ∅.

The following properties are simple consequences of these definitions.

Proposition 2.5. Let S, S′ ⊆ M be two subsets of a time-oriented Lorentzian
manifold M with boundary. Then, the following holds true:

(a) D(S) and D(S′) are causally disjoint if and only if S and S′ are causally
disjoint;

(b) Suppose S and S′ are causally disjoint. Then, the disjoint union S 
S′ ⊆
M is causally convex if and only if both S and S′ are causally convex.

The following two definitions play an essential role in our work.

Definition 2.6. A spacetime with timelike boundary is an oriented and time-
oriented Lorentzian manifold M with boundary, such that the pullback of the
Lorentzian metric along the boundary inclusion ∂M ↪→ M defines a Lorentzian
metric on the boundary ∂M .

Definition 2.7. Let M be a spacetime with timelike boundary.

(i) RM denotes the category whose objects are causally convex open subsets
U ⊆ M and whose morphisms i : U → U ′ are inclusions U ⊆ U ′ ⊆ M .
We call it the category of regions in M .

(ii) CM ⊆ MorRM is the subset of Cauchy morphisms in RM , i.e., inclusions
i : U → U ′ such that D(U) = D(U ′).

(iii) RintM ⊆ RM is the full subcategory whose objects are contained in the
interior intM . We denote by CintM ⊆ CM the Cauchy morphisms between
objects of RintM .

Proposition 2.8. Let M be a spacetime with timelike boundary. For each subset
S ⊆ M and each object U ∈ RM , i.e., a causally convex open subset U ⊆ M ,
the following holds true:

(a) I±
M (S) is the largest open subset of J±

M (S);
(b) J±

M (I±
M (S)) = I±

M (S) = I±
M (J±

M (S));
(c) S ⊆ int M implies D(S) ⊆ int M ;
(d) D(U) ⊆ M is causally convex and open, i.e., D(U) ∈ RM .
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Proof. (a) and (b): These are standard results in the case of empty bound-
ary, see e.g., [1,2,24]. The extension to spacetimes with non-empty timelike
boundary can be found in [29, Section 3.1.1].

(c): We show that if D(S) contains a boundary point, so does S: Suppose
p ∈ D(S) belongs to the boundary of M . By Definition 2.6, the boundary
∂M of M can be regarded as a time-oriented Lorentzian manifold with empty
boundary; hence, we can consider a future directed inextensible causal curve
γ in ∂M stemming from p. Since ∂M is a closed subset of M , γ must be
inextensible also as a causal curve in M , hence γ meets S because it stems
from p ∈ D(S). Since γ lies in ∂M by construction, we conclude that S contains
a boundary point of M .

(d): D(U) ⊆ M is causally convex by the definition of Cauchy develop-
ment and by the causal convexity of U ⊆ M . To check that D(U) ⊆ M is open,
we use quasi-limits as in [24, Definition 14.7 and Proposition 14.8]: First, ob-
serve that I±

M (U) ⊆ M is open by (a). Hence, it is the same to check whether
a subset of I := I+M (U) ∪ I−

M (U) is open in M or in I (with the induced topol-
ogy). Indeed, U ⊆ D(U) ⊆ I because U is open in M . From now on, in place of
M , let us therefore consider I, equipped with the induced metric, orientation
and time-orientation. By contradiction, assume that there exists p ∈ D(U)\U
such that all of its neighborhoods intersect the complement of D(U). Then,
there exists a sequence {αn} of inextensible causal curves in I never meeting U
such that {αn(0)} converges to p. We fix a convex cover of I refining the open
cover {I+M (U), I−

M (U)}. Relative to the fixed convex cover, the construction
of quasi-limits allows us to obtain from {αn} an inextensible causal curve λ
through p ∈ D(U). Hence, λ meets U , say in q. By the construction of a quasi-
limit, q lies on a causal geodesic segment between pk and pk+1, two successive
limit points for {αn} contained in some element of the fixed convex cover. It
follows that either pk or pk+1 belongs to J+

I (U) ∩ J−
I (U), which is contained

in U by causal convexity. Hence, we found a subsequence {αnj
} of {αn} and

a sequence of parameters {sj} such that {αnj
(sj)} converges to a point of U

(either pk or pk+1). By construction the sequence {αnj
(sj)} is contained in

I\U ; however, its limit lies in U . This contradicts the hypothesis that U is
open in I. �

The causal structure of a spacetime M with timelike boundary can be
affected by several pathologies, such as the presence of closed future directed
causal curves. It is crucial to avoid these issues in order to obtain concrete
examples of our constructions in Sect. 6. The following definition is due to [9,
Section 2.2] and [29, Section 3.1.2].

Definition 2.9. A spacetime M with timelike boundary is called globally hy-
perbolic if the following two properties hold true:

(i) Strong causality Every open neighborhood of each point p ∈ M contains
a causally convex open neighborhood of p.

(ii) Compact double-cones J+
M (p) ∩ J−

M (q) is compact for all p, q ∈ M .
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Remark 2.10. In the case of empty boundary, this definition agrees with the
usual one in [1,2,24]. Simple examples of globally hyperbolic spacetimes with
non-empty timelike boundary are the half space {xm−1 ≥ 0} ⊆ R

m, the spatial
slab {0 ≤ xm−1 ≤ 1} ⊆ R

m and the cylinder {(x1)2+· · ·+(xm−1)2 ≤ 1} ⊆ R
m

in Minkowski spacetime R
m, for m ≥ 2, as well as all causally convex open

subsets thereof.

The following results follow immediately from Definition 2.9 and Propo-
sition 2.8.

Proposition 2.11. Let M be a globally hyperbolic spacetime with timelike bound-
ary.
(a) M admits a cover by causally convex open subsets.
(b) For each U ∈ RM , i.e., a causally convex open subset U ⊆ M , both U and

D(U) are globally hyperbolic spacetimes with (possibly empty) boundary
when equipped with the metric, orientation and time-orientation induced
by M . If moreover U ⊆ intM is contained in the interior, then both U
and D(U) have empty boundary.

3. Categories of Algebraic Quantum Field Theories

Let M be a spacetime with timelike boundary. (In this section we do not have
to assume that M is globally hyperbolic in the sense of Definition 2.9). Recall
the category RM of open and causally convex regions in M and the subset CM

of Cauchy morphisms (cf. Definition 2.7). Together with our notion of causal
disjointness from Definition 2.4, these data provide the geometrical input for
the traditional definition of algebraic quantum field theories on M .

Definition 3.1. An algebraic quantum field theory on M is a functor

A : RM −→ Alg (3.1)

with values in the category Alg of associative and unital ∗-algebras over C,
which satisfies the following properties:

(i) Causality axiom For all causally disjoint inclusions i1 : U1 → U ← U2 : i2,
the induced commutator

[
A(i1)(−),A(i2)(−)

]
A(U)

: A(U1) ⊗ A(U2) −→ A(U) (3.2)

is zero.
(ii) Time-slice axiom For all Cauchy morphisms (i : U → U ′) ∈ CM , the map

A(i) : A(U) −→ A(U ′) (3.3)

is an Alg-isomorphism.

We denote by qft(M) ⊆ AlgRM the full subcategory of the category of func-
tors from RM to Alg whose objects are all algebraic quantum field theories
on M , i.e., functors fulfilling the causality and time-slice axioms. (Morphisms
in this category are all natural transformations).
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We shall now show that there exists an alternative, but equivalent, de-
scription of the category qft(M) which will be more convenient for the tech-
nical constructions in our paper. Following [5, Section 4.1], we observe that
the time-slice axiom in Definition 3.1(ii) is equivalent to considering functors
B : RM

[C−1
M

] → Alg that are defined on the localization of the category
RM at the set of Cauchy morphisms CM . See Definition A.4 for the defini-
tion of localizations of categories. By abstract arguments as in [5, Section 4.6],
one observes that the universal property of localizations implies that the cat-
egory qft(M) is equivalent to the full subcategory of the functor category
AlgRM [C−1

M ] whose objects are all functors B : RM

[C−1
M

] → Alg that satisfy
the causality axiom for the pushforward orthogonality relation on RM

[C−1
M

]
.

Loosely speaking, this means that the time-slice axiom in Definition 3.1(ii)
can be hard-coded by working on the localized category RM

[C−1
M

]
instead of

using the usual category RM of regions in M .
The aim of the remainder of this section is to provide an explicit model

for the localization functor RM → RM

[C−1
M

]
. With this model, it will be-

come particularly easy to verify the equivalence between the two alternative
descriptions of the category qft(M). Let us denote by

RM

[C−1
M

] ⊆ RM (3.4a)

the full subcategory of RM whose objects V ⊆ M are stable under Cauchy de-
velopment, i.e., D(V ) = V where D(V ) ⊆ M denotes the Cauchy development
(cf. Definition 2.2). In the following, we shall always use letters like U ⊆ M for
generic regions in RM and V ⊆ M for regions that are stable under Cauchy
development, i.e., objects in RM

[C−1
M

]
. Recall from Definition 2.7 that each

object U ∈ RM is a causally convex open subset U ⊆ M , hence the Cauchy de-
velopment D(U) ⊆ M is a causally convex open subset by Proposition 2.8(d),
which is stable under Cauchy development by Proposition 2.3(b). This shows
that D(U) is an object of RM

[C−1
M

]
. Furthermore, a morphism i : U → U ′

in RM is an inclusion U ⊆ U ′, which induces an inclusion D(U) ⊆ D(U ′) by
Proposition 2.3(a) and hence a morphism D(i) : D(U) → D(U ′) in RM

[C−1
M

]
.

We define a functor

D : RM −→ RM

[C−1
M

]
(3.4b)

by setting on objects and morphisms

U �−→ D(U), (i : U → U ′) �−→ (
D(i) : D(U) → D(U ′)

)
. (3.4c)

Furthermore, let us write

I : RM

[C−1
M

] −→ RM (3.5)

for the full subcategory embedding.

Lemma 3.2. D and I form an adjunction (cf. Definition A.1)

D : RM
�� RM

[C−1
M

]
: I�� (3.6)
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whose counit is a natural isomorphism (in fact, the identity), hence RM

[C−1
M

]

is a full reflective subcategory of RM . Furthermore, the components of the unit
are Cauchy morphisms.

Proof. For U ∈ RM , the U -component of the unit

η : idRM
−→ I D (3.7)

is given by the inclusion U ⊆ D(U) of U into its Cauchy development, which
is a Cauchy morphism, see Proposition 2.3(b) and Definition 2.7(ii). For V ∈
RM

[C−1
M

]
, the V -component of the counit

ε : D I −→ idRM [C−1
M ] (3.8)

is given by the identity of the object D(V ) = V . The triangle identities hold
trivially. �

Proposition 3.3. The category RM

[C−1
M

]
and the functor D : RM → RM

[C−1
M

]

defined in (3.4) provide a model for the localization of RM at CM .

Proof. We have to check all the requirements listed in Definition A.4.

(a) By Definition 2.7, for each Cauchy morphism i : U → U ′ one has D(U) =
D(U ′) and hence D(i) = idD(U) is an isomorphism in RM

[C−1
M

]
.

(b) Let F : RM → D be any functor to a category D that sends morphisms
in CM to D-isomorphisms. Using Lemma 3.2, we define FW := F I :
RM

[C−1
M

] → D and consider the natural transformation Fη : F →
F I D = FW D obtained by the unit of the adjunction D � I. Because all
components of η are Cauchy morphisms (cf. Lemma 3.2), Fη is a natural
isomorphism.

(c) Let G,H : RM

[C−1
M

] → D be two functors. We have to show that the
map

Hom
D

RM [C−1
M ]

(
G,H

) −→ HomDRM

(
GD,HD

)
(3.9)

is a bijection. Let us first prove injectivity: Let ξ, ξ̃ : G → H be two
natural transformations such that ξD = ξ̃D. Using Lemma 3.2, we obtain
commutative diagrams

GDI

Gε

��

ξDI
�� HDI

Hε

��

G
ξ

�� H

GDI

Gε

��

ξ̃DI
�� HDI

Hε

��

G
ξ̃

�� H

(3.10)

where the vertical arrows are natural isomorphisms because the counit ε

is an isomorphism. Recalling that by hypothesis ξD = ξ̃D, it follows that
ξ = ξ̃. Hence, the map (3.9) is injective.
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It remains to prove that (3.9) is also surjective. Let χ : GD → HD be any
natural transformation. Using Lemma 3.2, we obtain a commutative diagram

GD

GDη

��

χ
�� HD

HDη

��

GDID
χID

�� HDID

(3.11)

where the vertical arrows are natural isomorphisms because the components
of the unit η are Cauchy morphisms and D assigns isomorphisms to them. Let
us define a natural transformation ξ : G → H by the commutative diagram

G

Gε−1

��

ξ
�� H

GDI
χI

�� HDI

Hε

�� (3.12)

where we use that ε is a natural isomorphism (cf. Lemma 3.2). Combining the
last two diagrams, one easily computes that ξD = χ by using also the triangle
identities of the adjunction D � I. Hence, the map (3.9) is surjective. �

We note that there exist two (a priori different) options to define an
orthogonality relation on the localized category RM

[C−1
M

]
, both of which are

provided by [5, Lemma 4.29]: (1) The pullback orthogonality relation along
the full subcategory embedding I : RM

[C−1
M

] → RM and (2) the pushforward
orthogonality relation along the localization functor D : RM → RM

[C−1
M

]
.

In our present scenario, both constructions coincide and one concludes that
two RM

[C−1
M

]
-morphisms are orthogonal precisely when they are orthogonal

in RM . Summing up, we obtain

Lemma 3.4. We say that two morphisms in the full subcategory RM

[C−1
M

] ⊆
RM are orthogonal precisely when they are orthogonal in RM (i.e., causally
disjoint, cf. Definition 2.4). Then, both functors D : RM → RM

[C−1
M

]
and

I : RM

[C−1
M

] → RM preserve (and also detect) the orthogonality relations.

Proof. For I this holds trivially, while for D see Proposition 2.5(a). �

With these preparations, we may now define our alternative description
of the category of algebraic quantum field theories.

Definition 3.5. We denote by QFT(M) ⊆ AlgRM [C−1
M ] the full subcategory

whose objects are all functors B : RM

[C−1
M

] → Alg that satisfy the following
version of the causality axiom: For all causally disjoint inclusions i1 : V1 →
V ← V2 : i2 in RM

[C−1
M

]
, i.e., V , V1 and V2 are stable under Cauchy develop-

ment, the induced commutator
[
B(i1)(−),B(i2)(−)

]
B(V )

: B(V1) ⊗ B(V2) −→ B(V ) (3.13)

is zero.
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Theorem 3.6. By pullback, the adjunction D � I of Lemma 3.2 induces an
adjoint equivalence (cf. Definition A.2)

I∗ : qft(M) ∼ �� QFT(M) : D∗
�� . (3.14)

In particular, the two categories qft(M) of Definition 3.1 and QFT(M) of
Definition 3.5 are equivalent.

Proof. It is trivial to check that the adjunction D : RM � RM

[C−1
M

]
: I

induces an adjunction

I∗ : AlgRM �� AlgRM [C−1
M ] : D∗�� (3.15)

between functor categories. Explicitly, the unit η̃ : idAlgRM → D∗ I∗ has
components

η̃A := Aη : A −→ D∗(I∗(A)) = AID, (3.16)

where A : RM → Alg is any functor and η : idRM
→ I D denotes the unit of

D � I. The counit ε̃ : I∗ D∗ → id
Alg

RM [C−1
M ] has components

ε̃B := Bε : I∗(D∗(B)) = BDI −→ B, (3.17)

where B : RM

[C−1
M

] → Alg is any functor and ε : D I → idRM [C−1
M ] denotes

the counit of D � I. The triangle identities for I∗ � D∗ follow directly from
those of D � I.

Next, we have to prove that this adjunction restricts to the claimed source
and target categories in (3.14). Given A ∈ qft(M) ⊆ AlgRM , the functor
I∗(A) = A I : RM

[C−1
M

] → Alg satisfies the causality axiom of Definition 3.5
because of Lemma 3.4. Hence, I∗(A) ∈ QFT(M). Vice versa, given B ∈
QFT(M) ⊆ AlgRM [C−1

M ], the functor D∗(B) = BD : RM → Alg satisfies
the causality axiom of Definition 3.5 because of Lemma 3.4 and the time-slice
axiom of Definition 3.5 because D sends by construction morphisms in CM to
isomorphisms. Hence, D∗(B) ∈ qft(M).

Using Lemma 3.2, we obtain that the counit ε̃ of the restricted adjunc-
tion (3.14) is an isomorphism. Furthermore, all components of η are Cauchy
morphisms, hence η̃A = Aη is an isomorphism for all A ∈ qft(M), i.e., the
unit η̃ is an isomorphism. This completes the proof that (3.14) is an adjoint
equivalence. �

Remark 3.7. Theorem 3.6 provides us with a constructive prescription of
how to change between the two equivalent formulations of algebraic quan-
tum field theories given in Definitions 3.1 and 3.5. Concretely, given any
A ∈ qft(M), i.e., a functor A : RM → Alg satisfying the causality and
time-slice axioms as in Definition 3.1, the corresponding quantum field the-
ory I∗(A) ∈ QFT(M) in the sense of Definition 3.5 reads as follows: It
is the functor I∗(A) = A I : RM

[C−1
M

] → Alg on the category of regions
V ⊆ M that are stable under Cauchy development, which assigns to V ⊆ M
the algebra A(V ) ∈ Alg and to an inclusion i : V → V ′ the algebra map
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A(i) : A(V ) → A(V ′). More interestingly, given B ∈ QFT(M), i.e., a func-
tor B : RM

[C−1
M

] → Alg satisfying the causality axiom as in Definition 3.5,
the corresponding quantum field theory D∗(B) ∈ qft(M) in the sense of Def-
inition 3.1 reads as follows: It is the functor D∗(B) = BD : RM → Alg
defined on the category of (not necessarily Cauchy development stable) re-
gions U ⊆ M , which assigns to U ⊆ M the algebra B(D(U)) corresponding
to the Cauchy development of U and to an inclusion i : U → U ′ the al-
gebra map B(D(i)) : B(D(U)) → B(D(U ′)) associated with the inclusion
D(i) : D(U) → D(U ′) of Cauchy developments.

Remark 3.8. It is straightforward to check that the results of this section still
hold true when one replaces RM with its full subcategory RintM of regions
contained in the interior of M and CM with CintM (cf. Definition 2.7). This
follows from the observation that the Cauchy development of a subset of the
interior of M is also contained in intM , as shown in Proposition 2.8(c). We
denote by

QFT(int M) ⊆ AlgRint M [C−1
int M ] (3.18)

the category of algebraic quantum field theories in the sense of Definition 3.5 on
the interior regions of M . Concretely, an object A ∈ QFT(int M) is a functor
A : RintM [C−1

intM ] → Alg that satisfies the causality axiom of Definition 3.5
for causally disjoint interior regions.

4. Universal Boundary Extension

The goal of this section is to develop a universal construction to extend quan-
tum field theories from the interior of a spacetime M with timelike boundary
to the whole spacetime. (Again, we do not have to assume that M is globally
hyperbolic in the sense of Definition 2.9). Loosely speaking, our extended quan-
tum field theory will have the following pleasant properties: (1) It describes
precisely those observables that are generated from the original theory on the
interior, (2) it does not require a choice of boundary conditions, (3) specific
choices of boundary conditions correspond to ideals of our extended quantum
field theory. We also refer to Sect. 5 for more details on the properties (1)
and (3).

The starting point for this construction is the full subcategory inclusion
RintM ⊆ RM defined by selecting only the regions of RM that lie in the
interior of M (cf. Definition 2.7). We denote the corresponding embedding
functor by

j : RintM −→ RM (4.1)

and notice that j preserves (and also detects) causally disjoint inclusions, i.e.,
j is a full orthogonal subcategory embedding in the terminology of [5]. Making
use of Proposition 3.3, Lemma 3.2 and Remark 3.8, we define a functor J :
RintM [C−1

intM ] → RM

[C−1
M

]
on the localized categories via the commutative
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diagram

RintM [C−1
intM ]

I

��

J �� RM [C−1
M ]

RintM
j

�� RM

D

��
(4.2a)

Notice that J is simply an embedding functor, which acts on objects and
morphisms as

V ⊆ int M �−→ V ⊆ M, (i : V → V ′) �−→ (i : V → V ′). (4.2b)

From this explicit description, it is clear that J preserves (and also detects)
causally disjoint inclusions, i.e., it is a full orthogonal subcategory embedding.
The constructions in [5, Section 5.3] (see also [6] for details how to treat ∗-
algebras) then imply that J induces an adjunction

ext : QFT(int M) �� QFT(M) : res�� (4.3)

between the category of quantum field theories on the interior intM (cf. Re-
mark 3.8) and the category of quantum field theories on the whole spacetime
M . The right adjoint res := J∗ : QFT(M) → QFT(int M) is the pullback
along J : RintM [C−1

intM ] → RM

[C−1
M

]
, i.e., it restricts quantum field theories

defined on M to the interior intM . The left adjoint ext : QFT(int M) →
QFT(M) should be regarded as a universal extension functor which extends
quantum field theories on the interior intM to the whole spacetime M . The
goal of this section is to analyze the properties of this extension functor and
to develop an explicit model that allows us to do computations in the sections
below.

An important structural result, whose physical relevance is explained in
Remark 4.2 below, is the following proposition.

Proposition 4.1. The unit

η : idQFT(intM) −→ res ext (4.4)

of the adjunction (4.3) is a natural isomorphism.

Proof. This is a direct consequence of the fact that the functor J given in
(4.2) is a full orthogonal subcategory embedding and the general result in [5,
Proposition 5.6]. �

Remark 4.2. The physical interpretation of this result is as follows: Let A ∈
QFT(int M) be a quantum field theory defined only on the interior intM of
M and let B := ext A ∈ QFT(M) denote its universal extension to the whole
spacetime M . The A-component

ηA : A −→ res ext A (4.5)

of the unit of the adjunction (4.3) allows us to compare A with the restriction
res B of its extension B = ext A. Since ηA is an isomorphism by Propo-
sition 4.1, restricting the extension B recovers our original theory A up to
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isomorphism. This allows us to interpret the left adjoint ext : QFT(int M) →
QFT(M) as a genuine extension prescription. Notice that this also proves that
the universal extension ext A ∈ QFT(M) of any theory A ∈ QFT(int M) on
the interior satisfies F-locality [22].

We next address the question how to compute the extension functor ext :
QFT(int M) → QFT(M) explicitly. A crucial step toward reaching this goal
is to notice that ext may be computed by a left Kan extension.

Proposition 4.3. Consider the adjunction

LanJ : AlgRint M [C−1
int M ] �� AlgRM [C−1

M ] : J∗�� , (4.6)

corresponding to left Kan extension along the functor J : RintM [C−1
intM ] →

RM

[C−1
M

]
. Then, the restriction of LanJ to QFT(int M) induces a functor

LanJ : QFT(int M) −→ QFT(M) (4.7)

that is left adjoint to the restriction functor res : QFT(M) → QFT(int M)
in (4.3). Due to uniqueness (up to unique natural isomorphism) of adjoint
functors (cf. Proposition A.3), it follows that ext ∼= LanJ , i.e., (4.7) is a model
for the extension functor ext in (4.3).

Proof. A general version of this problem has been addressed in [5, Section 6].
Using in particular [5, Corollary 6.5], we observe that we can prove this propo-
sition by showing that every object V ∈ RM

[C−1
M

]
is J-closed in the sense of

[5, Definition 6.3]. In our present scenario, this amounts to proving that for all
causally disjoint inclusions i1 : V1 → V ← V2 : i2 with V1, V2 ∈ RintM [C−1

intM ]
in the interior and V ∈ RM

[C−1
M

]
not necessarily in the interior, there ex-

ists a factorization of both i1 and i2 through a common interior region. Let
us consider the Cauchy development D(V1 
 V2) of the disjoint union and
the canonical inclusions j1 : V1 → D(V1 
 V2) ← V2 : j2. As we explain be-
low, D(V1 
 V2) ∈ RintM [C−1

intM ] is an interior region and j1, j2 provide the
desired factorization: Since the open set V1 
 V2 ⊆ intM is causally con-
vex by Proposition 2.5(b), D(V1 
 V2) is causally convex, open and contained
in the interior intM by Proposition 2.8(c–d). It is, moreover, stable under
Cauchy development by Proposition 2.3(b), which also provides the inclusion
Vk ⊆ V1 
 V2 ⊆ D(V1 
 V2) inducing jk, for k = 1, 2. Consider now the chain
of inclusions Vk ⊆ V1 
 V2 ⊆ V corresponding to ik, for k = 1, 2. From the
stability under Cauchy development of V1, V2 and V , we obtain also the chain
of inclusions Vk ⊆ D(V1 
 V2) ⊆ V , for k = 1, 2, that exhibits the desired
factorization

V

V1

i1
��

j1
����� D(V1 
 V2)

D(i1�i2)

���
�
�

V2
j2

��� � �

i2
�� (4.8)

which completes the proof. �
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We shall now briefly review a concrete model for left Kan extension along
full subcategory embeddings that was developed in [5, Section 6]. This model is
obtained by means of abstract operadic techniques, but it admits an intuitive
graphical interpretation that we explain in Remark 4.4 below. It allows us
to compute quite explicitly the extension extA = LanJ A ∈ QFT(M) of a
quantum field theory A ∈ QFT(int M) defined on the interior intM to the
whole spacetime M . The functor extA : RM

[C−1
M

] → Alg describing the
extended quantum field theory reads as follows: To V ∈ RM

[C−1
M

]
it assigns

a quotient algebra

extA(V ) =
⊕

i:V →V

A(V )
/

∼ (4.9)

that we will describe now in detail. The direct sum (of vector spaces) in (4.9)
runs over all tuples i : V → V of morphisms in RM

[C−1
M

]
, i.e., i = (i1 : V1 →

V, . . . , in : Vn → V ) for some n ∈ Z≥0, with the requirement that all sources
Vk ∈ RintM [C−1

intM ] are interior regions. (Notice that the regions Vk are not
assumed to be causally disjoint and that the empty tuple, i.e., n = 0, is also
allowed). The vector space A(V ) is defined by the tensor product of vector
spaces

A(V ) :=
|V |⊗

k=1

A(Vk), (4.10)

where |V | is the length of the tuple. (For the empty tuple, we set A(∅) = C).
This means that the (homogeneous) elements

(i, a) ∈
⊕

i:V →V

A(V ) (4.11)

are given by pairs consisting of a tuple of morphisms i : V → V (with all Vk

in the interior) and an element a ∈ A(V ) of the corresponding tensor product
vector space (4.10). The product on (4.11) is given on homogeneous elements
by

(i, a) (i′, a′) :=
(
(i, i′), a ⊗ a′), (4.12)

where (i, i′) = (i1, . . . , in, i′1, . . . , i
′
m) is the concatenation of tuples. The unit

element in (4.11) is 1 := (∅, 1), where ∅ is the empty tuple and 1 ∈ C, and the
∗-involution is defined by

(
(i1, . . . , in), a1 ⊗ · · · ⊗ an

)∗ :=
(
(in, . . . , i1), a∗

n ⊗ · · · ⊗ a∗
1

)
(4.13)

and C-antilinear extension. Finally, the quotient in (4.9) is by the two-sided
∗-ideal of the algebra (4.11) that is generated by
(
i
(
i1, . . . , in

)
, a1 ⊗ · · · ⊗ an

)
−

(
i,A(i1)

(
a1

) ⊗ · · · ⊗ A(in)
(
an

)) ∈
⊕

i:V →V

A(V ) ,

(4.14)

for all tuples i : V → V of length |V | = n ≥ 1 (with all Vk in the interior), all
tuples ik : V k → Vk of RintM [C−1

intM ]-morphisms (possibly of length zero), for
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k = 1, . . . , n, and all ak ∈ A(V k), for k = 1, . . . , n. The tuple in the first term
of (4.14) is defined by composition

i
(
i1, . . . , in

)
:=

(
i1 i11, . . . , i1 i1|V 1|, . . . , in in1, . . . , in in|V n|

)
(4.15a)

and the expressions A(i)
(
a
)

in the second term are determined by

A(i) : A(V ) −→ A(V ), a1 ⊗ · · · ⊗ an �−→ A(i1)
(
a1

) · · · A(in)
(
an

)
, (4.15b)

where multiplication in A(V ) is denoted by juxtaposition. To a morphism
i′ : V → V ′ in RM

[C−1
M

]
, the functor extA : RM

[C−1
M

] → Alg assigns the
algebra map

extA(i′) : extA(V ) −→ extA(V ′), [i, a] �−→ [
i′(i), a

]
, (4.16)

where we used square brackets to indicate equivalence classes in (4.9).

Remark 4.4. The construction of the algebra extA(V ) above admits an intu-
itive graphical interpretation: We shall visualize the (homogeneous) elements
(i, a) in (4.11) by decorated trees

V

a1 an

· · ·
(4.17)

where ak ∈ A(Vk) is an element of the algebra A(Vk) associated to the interior
region Vk ⊆ V , for all k = 1, . . . , n. We interpret such a decorated tree as a
formal product of the formal pushforward along i : V → V of the family of
observables ak ∈ A(Vk). The product (4.12) is given by concatenation of the
inputs of the individual decorated trees, i.e.,

V

a1 an

· · ·

V

a′
1 a′

m

· · ·

V

a1 a′
m

· · ·
=·

(4.18)

where the decorated tree on the right-hand side has n + m inputs. The ∗-
involution (4.13) may be visualized by reversing the input profile and applying
∗ to each element ak ∈ A(Vk). Finally, the ∗-ideal in (4.14) implements the fol-
lowing relations: Assume that (i, a) is such that the sub-family of embeddings
(ik, ik+1, . . . , il) : (Vk, Vk+1, . . . , Vl) → V factorizes through some common in-
terior region, say V ′ ⊆ V . Using the original functor A ∈ QFT(int M), we
may form the product A(ik)(ak) · · · A(il)(al) in the algebra A(V ′), which we
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denote for simplicity by ak · · · al ∈ A(V ′). We then have the relation

V

a1 ak al an

· · · · · · · · ·

V

a1 ak · · · al an

· · · · · ·

∼

(4.19)

which we interpret as follows: Whenever (ik, ik+1, . . . , il) : (Vk, Vk+1, . . . , Vl) →
V is a sub-family of embeddings that factorizes through a common interior re-
gion V ′ ⊆ V , then the formal product of the formal pushforward of observables
is identified with the formal pushforward of the actual product of observables
on V ′.

5. Characterization of Boundary Quantum Field Theories

In the previous section, we established a universal construction that allows
us to extend quantum field theories A ∈ QFT(int M) that are defined only
on the interior intM of a spacetime M with timelike boundary to the whole
spacetime. The extension extA ∈ QFT(M) is characterized abstractly by the
ext � res adjunction in (4.3). We now shall reverse the question and ask which
quantum field theories B ∈ QFT(M) on M admit a description in terms of
(quotients of) our universal extensions.

Given any quantum field theory B ∈ QFT(M) on the whole spacetime
M , we can use the right adjoint in (4.3) in order to restrict it to a theory
resB ∈ QFT(int M) on the interior of M . Applying now the extension func-
tor, we obtain another quantum field theory ext resB ∈ QFT(M) on the
whole spacetime M , which we would like to compare to our original theory
B ∈ QFT(M). A natural comparison map is given by the B-component of
the counit ε : ext res → idQFT(M) of the adjunction (4.3), i.e., the canonical
QFT(M)-morphism

εB : ext resB −→ B. (5.1a)

Using our model for the extension functor given in (4.9) (and the formulas
following this equation), the RM

[C−1
M

] � V -component of εB explicitly reads
as

(εB)V :
⊕

i:V →V

B(V )
/

∼ −→ B(V ), [i, b] �−→ B(i)
(
b
)
. (5.1b)

In order to establish positive comparison results, we have to introduce the
concept of ideals of quantum field theories.

Definition 5.1. An ideal I ⊆ B of a quantum field theory B ∈ QFT(M) is a
functor I : RM

[C−1
M

] → Vec to the category of complex vector spaces, which
satisfies the following properties:
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(i) For all V ∈ RM

[C−1
M

]
, I(V ) ⊆ B(V ) is a two-sided ∗-ideal of the unital

∗-algebra B(V ).
(ii) For all RM

[C−1
M

]
-morphisms i : V → V ′, the linear map I(i) : I(V ) →

I(V ′) is the restriction of B(i) : B(V ) → B(V ′) to the two-sided ∗-ideals
I(V (′)) ⊆ B(V (′)).

Lemma 5.2. Let B ∈ QFT(M) and I ⊆ B any ideal. Let us define B/I(V ) :=
B(V )/I(V ) to be the quotient algebra, for all V ∈ RM

[C−1
M

]
, and B/I(i) :

B/I(V ) → B/I(V ′) to be the Alg-morphism induced by B(i) : B(V ) →
B(V ′), for all RM

[C−1
M

]
-morphisms i : V → V ′. Then B/I ∈ QFT(M) is a

quantum field theory on M which we call the quotient of B by I.

Proof. The requirements listed in Definition 5.1 ensure that B/I : RM

[C−1
M

] →
Alg is an Alg-valued functor. It satisfies the causality axiom of Definition 3.5
because this property is inherited from B ∈ QFT(M) by taking quotients. �
Lemma 5.3. Let κ : B → B′ be any QFT(M)-morphism. Define the vec-
tor space ker κ(V ) := ker

(
κV : B(V ) → B′(V )

) ⊆ B(V ), for all V ∈
RM

[C−1
M

]
, and ker κ(i) : kerκ(V ) → ker κ(V ′) to be the linear map induced

by B(i) : B(V ) → B(V ′), for all RM

[C−1
M

]
-morphisms i : V → V ′. Then

ker κ : RM

[C−1
M

] → Vec is an ideal of B ∈ QFT(M), which we call the
kernel of κ.

Proof. The fact that kerκ defines a functor follows from naturality of κ. Prop-
erty (ii) in Definition 5.1 holds true by construction. Property (i) is a conse-
quence of the fact that kernels of unital ∗-algebra morphisms κV : B(V ) →
B(V ′) are two-sided ∗-ideals. �
Remark 5.4. Using the concept of ideals, we may canonically factorize (5.1)
according to the diagram

ext resB

πB
����

���
���

���
��

εB �� B

ext resB
/

ker εB

λB

		�����������

(5.2)

where both the projection πB and the inclusion λB are QFT(M)-morphi-
sms. �

As a last ingredient for our comparison result, we have to introduce a
suitable notion of additivity for quantum field theories on spacetimes with
timelike boundary. We refer to [14, Definition 2.3] for a notion of additivity on
globally hyperbolic spacetimes.

Definition 5.5. A quantum field theory B ∈ QFT(M) on a spacetime M
with timelike boundary is called additive (from the interior) at the object
V ∈ RM

[C−1
M

]
if the algebra B(V ) is generated by the images of the Alg-

morphisms B(iint) : B(Vint) → B(V ), for all RM

[C−1
M

]
-morphism iint : Vint →

V whose source Vint ∈ RintM [C−1
intM ] is in the interior intM of M . We call

B ∈ QFT(M) additive (from the interior) if it is additive at every object
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V ∈ RM

[C−1
M

]
. The full subcategory of additive quantum field theories on M

is denoted by QFTadd(M) ⊆ QFT(M).

We can now prove our first characterization theorem for boundary quan-
tum field theories.

Theorem 5.6. Let B ∈ QFT(M) be any quantum field theory on a (not
necessarily globally hyperbolic) spacetime M with timelike boundary and let
V ∈ RM

[C−1
M

]
. Then the following are equivalent:

(1) The V -component

(λB)V : ext resB(V )
/

ker εB(V ) −→ B(V ) (5.3)

of the canonical inclusion in (5.2) is an Alg-isomorphism.
(2) B is additive at the object V ∈ RM

[C−1
M

]
.

Proof. Let iint : Vint → V be any RM

[C−1
M

]
-morphism whose source Vint ∈

RintM [C−1
intM ] is in the interior intM of M . Using our model for the extension

functor given in (4.9) (and the formulas following this equation), we obtain an
Alg-morphism

[iint,−] : B(Vint) −→ ext resB(V ), b �−→ [iint, b]. (5.4)

Composing this morphism with the V -component of εB given in (5.1), we
obtain a commutative diagram

ext resB(V )
(εB)V �� B(V )

B(Vint)
[iint,−]



���������� B(iint)

�����������

(5.5)

for all iint : Vint → V with Vint in the interior.
Next we observe that the images of the Alg-morphisms (5.4), for all

iint : Vint → V with Vint in the interior, generate ext resB(V ). Combining
this property with (5.5), we conclude that (εB)V is a surjective map if and
only if B is additive at V . Hence, (λB)V given by (5.2), which is injective by
construction, is an Alg-isomorphism if and only if B is additive at V . �

Corollary 5.7. λB : ext resB
/

ker εB → B given by (5.2) is a QFT(M)-
isomorphism if and only if B ∈ QFTadd(M) ⊆ QFT(M) is additive in the
sense of Definition 5.5.

We shall now refine this characterization theorem by showing that
QFTadd(M) is equivalent, as a category, to a category describing quantum
field theories on the interior of M together with suitable ideals of their uni-
versal extensions. The precise definitions are as follows.

Definition 5.8. Let B ∈ QFT(M). An ideal I ⊆ B is called trivial on the
interior if its restriction to RintM [C−1

intM ] is the functor assigning zero vector
spaces, i.e., I(Vint) = 0 for all Vint ∈ RintM [C−1

intM ] in the interior intM of M .
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Definition 5.9. Let M be a spacetime with timelike boundary. We define the
category IQFT(M) as follows:

• Objects are pairs (A,I) consisting of a quantum field theory
A ∈ QFT(int M) on the interior intM of M and an ideal I ⊆ extA
of its universal extension extA ∈ QFT(M) that is trivial on the interior.

• Morphisms κ : (A,I) → (A′,I′) are QFT(M)-morphisms κ : extA →
extA′ between the universal extensions that preserve the ideals, i.e., κ
restricts to a natural transformation from I ⊆ extA to I′ ⊆ extA′.

There exists an obvious functor

Q : IQFT(M) −→ QFTadd(M), (5.6a)

which assigns to (A,I) ∈ IQFT(M) the quotient

Q(A,I) := extA
/
I ∈ QFTadd(M). (5.6b)

Notice that additivity of extA
/
I follows from that of the universal exten-

sion extA (cf. the arguments in the proof of Theorem 5.6) and the fact that
quotients preserve the additivity property. There exists also a functor

S : QFTadd(M) −→ IQFT(M), (5.7a)

which ‘extracts’ from a quantum field theory on M the relevant ideal. Explic-
itly, it assigns to B ∈ QFTadd(M) the pair

SB :=
(
resB, ker εB

)
. (5.7b)

Notice that the ideal ker εB ⊆ ext resB is trivial on the interior: Applying the
restriction functor (4.3) to εB, we obtain a QFT(int M)-morphism

res εB : res ext resB −→ resB. (5.8)

Proposition 4.1 together with the triangle identities for the adjunction ext �
res in (4.3) then imply that (5.8) is an isomorphism with inverse given by
ηresB : resB → res ext resB. In particular, res εB has a trivial kernel and
hence ker εB ⊆ ext resB is trivial on the interior (cf. Definition 5.8). Our
refined characterization theorem for boundary quantum field theories is as
follows.

Theorem 5.10. The functors Q and S defined in (5.6) and (5.7) exhibit an
equivalence of categories

QFTadd(M) ∼= IQFT(M). (5.9)

Proof. We first consider the composition of functors QS : QFTadd(M) →
QFTadd(M). To B ∈ QFTadd(M), it assigns

QSB = ext resB
/

ker εB. (5.10)

The QFT(M)-morphisms λB : ext resB/ ker εB → B given by (5.2) define a
natural transformation λ : QS → idQFTadd(M), which is a natural isomorphism
due to Corollary 5.7.
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Let us now consider the composition of functors S Q : IQFT(M) →
IQFT(M). To (A,I) ∈ IQFT(M), it assigns

SQ(A,I) =
(

res
(
extA

/
I
)
, ker εextA/I

)
=

(
res extA, ker εextA/I

)
, (5.11)

where we also used that res
(
extA

/
I
)

= res extA because I is by hypothesis
trivial on the interior. Using further the QFT(int M)-isomorphism ηA : A →
res extA from Proposition 4.1, we define a QFT(M)-morphism q(A,I) via the
diagram

extA

∼=ext ηA

��

q(A,I)
�� extA

/
I

ext res extA ext res
(
extA

/
I
)

εextA/I

��
(5.12)

Using the explicit expression for εextA/I given in (5.1) and the explicit expres-
sion for ηA given by

(ηA)Vint
: A(Vint) −→ res extA(Vint) =

⊕

i:V →Vint

A(V )
/

∼,

a �−→ [idVint , a], (5.13)

for all Vint ∈ RintM [C−1
intM ], one computes from the diagram (5.12) that q(A,I) is

the canonical projection π : extA → extA/I. Hence, the QFT(M)-
isomorphisms ext ηA : extA → ext res extA induce IQFT(M)-isomorphisms

ext ηA : (A,I) −→ SQ(A,I), (5.14)

which are natural in (A,I), i.e., they define a natural isomorphism ext η :
idIQFT(M) → S Q. �
Remark 5.11. The physical interpretation of this result is as follows: Every
additive quantum field theory B ∈ QFTadd(M) on a (not necessarily glob-
ally hyperbolic) spacetime M with timelike boundary admits an equivalent
description in terms of a pair (A,I) ∈ IQFT(M). Notice that the roles of
A and I are completely different: On the one hand, A ∈ QFT(int M) is a
quantum field theory on the interior intM of M and as such it is independent
of the detailed aspects of the boundary. On the other hand, I ⊆ extA is an
ideal of the universal extension of A that is trivial on the interior, i.e., it only
captures the physics that happens directly at the boundary. Examples of such
ideals I arise by imposing specific boundary conditions on the universal ex-
tension extA ∈ QFT(M), i.e., the quotient extA/I describes a quantum field
theory on M that satisfies specific boundary conditions encoded in I. We shall
illustrate this assertion in Sect. 6 below using the explicit example given by
the free Klein–Gordon field.

Let us also note that there is a reason why our universal extension cap-
tures only the class of additive quantum field theories on M . Recall that
extA ∈ QFT(M) takes as an input a quantum field theory A ∈ QFT(int M)
on the interior intM of M . As a consequence, the extension extA can only
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have knowledge of the ‘degrees of freedom’ that are generated in some way
out of the interior regions. Additive theories in the sense of Definition 5.5 are
precisely the theories whose ‘degrees of freedom’ are generated out of those
localized in the interior regions. �

6. Example: Free Klein–Gordon Theory

In order to illustrate and make more explicit our abstract constructions de-
veloped in the previous sections, we shall consider the simple example given
by the free Klein–Gordon field. From now on M will be a globally hyperbolic
spacetime with timelike boundary, see Definition 2.9. This assumption implies
that all interior regions RintM are globally hyperbolic spacetimes with empty
boundary, see Proposition 2.11. This allows us to use the standard techniques
of [1, Section 3] on such regions.

6.1. Definition on RintM [C−1
intM ]:

Let M be a globally hyperbolic spacetime with timelike boundary, see Def-
inition 2.9. The free Klein–Gordon theory on RintM [C−1

intM ] is given by the
following standard construction, see e.g., [3,4] for expository reviews. On the
interior intM , we consider the Klein–Gordon operator

P := � + m2 : C∞(int M) −→ C∞(int M) , (6.1)

where � is the d’Alembert operator and m ≥ 0 is a mass parameter. When
restricting P to regions V ∈ RintM [C−1

intM ], we shall write

PV : C∞(V ) −→ C∞(V ). (6.2)

It follows from [1] that there exists a unique retarded/advanced Green’s oper-
ator

G±
V : C∞

c (V ) −→ C∞(V ) (6.3)

for PV because every V ∈ RintM [C−1
intM ] is a globally hyperbolic spacetime

with empty boundary, cf. Proposition 2.11.
The Klein–Gordon theory K ∈ QFT(int M) is the functor

K : RintM [C−1
intM ] → Alg given by the following assignment: To any V ∈

RintM [C−1
intM ] it assigns the associative and unital ∗-algebra K(V ) that is freely

generated by ΦV (f), for all f ∈ C∞
c (V ), modulo the two-sided ∗-ideal gener-

ated by the following relations:
• Linearity ΦV (α f + β g) = α ΦV (f) + β ΦV (g), for all α, β ∈ R and

f, g ∈ C∞
c (V );

• Hermiticity ΦV (f)∗ = ΦV (f), for all f ∈ C∞
c (V );

• Equation of motion ΦV (PV f) = 0, for all f ∈ C∞
c (V );

• Canonical commutation relations (CCR) ΦV (f)ΦV (g) − ΦV (g)ΦV (f)
= i τV (f, g) 1, for all f, g ∈ C∞

c (V ), where

τV (f, g) :=
∫

V

f GV (g) volV (6.4)
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with GV := G+
V − G−

V the causal propagator and volV the canonical vol-
ume form on V . (Note that τV is antisymmetric, see e.g., [1, Lemma 4.3.5]).

To a morphism i : V → V ′ in RintM [C−1
intM ], the functor K : RintM [C−1

intM ] →
Alg assigns the algebra map that is specified on the generators by pushforward
along i (which we shall suppress)

K(i) : K(V ) −→ K(V ′), ΦV (f) �−→ ΦV ′(f). (6.5)

The naturality of τ (i.e., naturality of the causal propagator, cf. e.g., [1, Sec-
tion 4.3]) entails that the assignment K defines a quantum field theory in the
sense of Definition 3.5.

6.2. Universal Extension

Using the techniques developed in Sect. 4, we may now extend the Klein–
Gordon theory K ∈ QFT(int M) from the interior intM to the whole space-
time M . In particular, using (4.9) (and the formulas following this equa-
tion), one could directly compute the universal extension extK ∈ QFT(M).
The resulting expressions, however, can be considerably simplified. We there-
fore prefer to provide a more convenient model for the universal extension
extK ∈ QFT(M) by adopting the following strategy: We first make an ‘ed-
ucated guess’ for a theory Kext ∈ QFT(M) which we expect to be the uni-
versal extension of K ∈ QFT(int M). (This was inspired by partially simpli-
fying the direct computation of the universal extension). After this, we shall
prove that Kext ∈ QFT(M) satisfies the universal property that characterizes
extK ∈ QFT(M). Hence, there exists a (unique) isomorphism extK ∼= Kext in
QFT(M), which means that our Kext ∈ QFT(M) is a model for the universal
extension extK.

Let us define the functor Kext : RM

[C−1
M

] → Alg by the following assign-
ment: To any region V ∈ RM

[C−1
M

]
, which may intersect the boundary, we

assign the associative and unital ∗-algebra Kext(V ) that is freely generated by
ΦV (f), for all f ∈ C∞

c (int V ) in the interior intV of V , modulo the two-sided
ideal generated by the following relations:

• Linearity ΦV (α f + β g) = α ΦV (f) + β ΦV (g), for all α, β ∈ R and
f, g ∈ C∞

c (int V );
• Hermiticity ΦV (f)∗ = ΦV (f), for all f ∈ C∞

c (int V );
• Equation of motion ΦV (PintV f) = 0, for all f ∈ C∞

c (int V );
• Partially-defined CCR ΦV (f)ΦV (g) − ΦV (g)ΦV (f) = i τVint(f, g) 1, for

all interior regions Vint ∈ RintM [C−1
intM ] with Vint ⊆ intV and f, g ∈

C∞
c (int V ) with supp(f) ∪ supp(g) ⊆ Vint.

Remark 6.1. We note that our partially-defined CCR are consistent in the
following sense: Consider Vint, V

′
int ∈ RintM [C−1

intM ] with V
(′)
int ⊆ intV and

f, g ∈ C∞
c (int V ) with the property that supp(f) ∪ supp(g) ⊆ V

(′)
int . Us-

ing the partially-defined CCR for both Vint and V ′
int, we obtain the equality

i τVint(f, g) 1 = i τV ′
int

(f, g) 1 in Kext(V ). To ensure that Kext(V ) is not the
zero-algebra, we have to show that τVint(f, g) = τV ′

int
(f, g). This holds true

due to the following argument: Consider the subset Vint ∩ V ′
int ⊆ int M . This
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is open, causally convex and by Proposition 2.3(c) also stable under Cauchy
development, hence Vint ∩ V ′

int ∈ RintM [C−1
intM ]. Furthermore, the inclusions

Vint ∩ V ′
int → V

(′)
int are morphisms in RintM [C−1

intM ]. It follows by construction
that supp(f) ∪ supp(g) ⊆ Vint ∩ V ′

int and hence due to naturality of the τ ’s we
obtain

τVint(f, g) = τVint∩V ′
int

(f, g) = τV ′
int

(f, g). (6.6)

Hence, for any fixed pair f, g ∈ C∞
c (int V ), the partially-defined CCR are

independent of the choice of Vint (if one exists).

To a morphism i : V → V ′ in RM [C−1
M ], the functor Kext : RM

[C−1
M

] →
Alg assigns the algebra map that is specified on the generators by the push-
forward along i (which we shall suppress)

Kext(i) : Kext(V ) −→ Kext(V ′), ΦV (f) �−→ ΦV ′(f). (6.7)

Compatibility of the map (6.7) with the relations in Kext is a straightforward
check.

Recalling the embedding functor J : RintM [C−1
intM ] → RM

[C−1
M

]
given in

(4.2), we observe that the diagram of functors

RintM [C−1
intM ]

J
����

���
���

���
K ��

γ

��

Alg

RM [C−1
M ]

Kext

�����������

(6.8)

commutes via the natural transformation γ : K → Kext J with components
specified on the generators by the identity maps

γVint
: K(Vint) −→ Kext(Vint), ΦVint(f) �−→ ΦVint(f), (6.9)

for all Vint ∈ RintM [C−1
intM ]. Notice that γ is a natural isomorphism because

int Vint = Vint and the partially-defined CCR on any interior region Vint coin-
cides with the CCR.

Theorem 6.2. (6.8) is a left Kan extension of K : RintM [C−1
intM ] → Alg along

J : RintM [C−1
intM ] → RM

[C−1
M

]
. As a consequence of uniqueness (up to unique

natural isomorphism) of left Kan extensions and Proposition 4.3, it follows
that Kext ∼= extK, i.e., Kext ∈ QFT(M) is a model for our universal extension
extK ∈ QFT(M) of the Klein–Gordon theory K ∈ QFT(int M).

Proof. We have to prove that (6.8) satisfies the universal property of left Kan
extensions: Given any functor B : RM

[C−1
M

] → Alg and natural transfor-
mation ρ : K → BJ , we have to show that there exists a unique natural
transformation ζ : Kext → B such that the diagram

K

γ
	

		
		

		
	

ρ
�� BJ

Kext J

ζJ

����������

(6.10)
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commutes. Because γ is a natural isomorphism, it immediately follows that ζJ
is uniquely fixed by this diagram. Concretely, this means that the components
ζVint corresponding to interior regions Vint ∈ RintM [C−1

intM ] are uniquely fixed
by

ζVint
:= ρVint

γ−1
Vint

: Kext(Vint) −→ B(Vint). (6.11)

It remains to determine the components

ζV : Kext(V ) −→ B(V ) (6.12)

for generic regions V ∈ RM

[C−1
M

]
. Consider any generator ΦV (f) of Kext(V ),

where f ∈ C∞
c (int V ), and choose a finite cover {Vα ⊆ int V } of supp(f) by

interior regions Vα ∈ RintM [C−1
intM ], together with a partition of unity {χα}

subordinate to this cover. (The existence of such a cover is guaranteed by the
assumption that M is a globally hyperbolic spacetime with timelike boundary,
see Proposition 2.11). We define

ζV

(
ΦV (f)

)
:=

∑

α

B(iα)
(
ζVα

(
ΦVα

(χαf)
))

, (6.13)

where iα : Vα → V is the inclusion. Our definition (6.13) is independent of the
choice of cover and partition of unity: For any other {V ′

β ⊆ int V } and {χ′
β},

we obtain
∑

β

B(iβ)
(
ζV ′

β

(
ΦV ′

β
(χ′

βf)
))

=
∑

α,β

B(iαβ)
(
ζVα∩V ′

β

(
ΦVα∩V ′

β
(χαχ′

βf)
))

=
∑

α

B(iα)
(
ζVα

(
ΦVα

(χαf)
))

, (6.14)

where iβ : V ′
β → V and iαβ : Vα ∩V ′

β → V are the inclusions. In particular, this
implies that (6.13) coincides with (6.11) on interior regions V = Vint. (Hint:
Choose the cover given by the single region Vint together with its partition of
unity).

We have to check that (6.13) preserves the relations in Kext(V ). Preserva-
tion of linearity and Hermiticity is obvious. The equation of motion relations
are preserved because

ζV

(
ΦV (PintV f)

)
=

∑

α

B(iα)
(
ζVα

(
ΦVα

(χαPVα
f)

))

=
∑

α,β

B(iαβ)
(
ζVα∩Vβ

(
ΦVα∩Vβ

(χαPVα∩Vβ
χβf)

))

=
∑

β

B(iβ)
(
ζVβ

(
ΦVβ

(PVβ
χβf)

))
= 0. (6.15)

Regarding the partially-defined CCR, let Vint ∈ RintM [C−1
intM ] with Vint ⊆

int V and f, g ∈ C∞
c (int V ) with supp(f) ∪ supp(g) ⊆ Vint. We may choose

the cover given by the single region i : Vint → V together with its partition of
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unity. We obtain for the commutator
[
ζV

(
ΦV (f)

)
, ζV

(
ΦV (g)

)]
=

[
B(i)

(
ζVint

(
ΦVint(f)

))
,B(i)

(
ζVint

(
ΦVint(g)

))]

= i τVint(f, g)1, (6.16)

which implies that the partially-defined CCR are preserved.
Naturality of the components (6.13) is easily verified. Uniqueness of the

resulting natural transformation ζ : Kext → B is a consequence of uniqueness of
ζJ and of the fact that the Alg-morphisms Kext(iint) : Kext(Vint) ∼= K(Vint) →
Kext(V ), for all interior regions iint : Vint → V , generate Kext(V ), for all V ∈
RM

[C−1
M

]
. This completes the proof. �

6.3. Ideals from Green’s Operator Extensions

The Klein–Gordon theory K ∈ QFT(int M) on the interior intM of the glob-
ally hyperbolic spacetime M with timelike boundary and its universal exten-
sion Kext ∈ QFT(M) depend on the local retarded and advanced Green’s oper-
ators G±

Vint
: C∞

c (Vint) → C∞(Vint) on all interior regions Vint ∈ RintM [C−1
intM ]

in M . For constructing concrete examples of quantum field theories on globally
hyperbolic spacetimes with timelike boundary as in [12], one typically imposes
suitable boundary conditions for the field equation in order to obtain also global
retarded and advanced Green’s operators on M . Inspired by such examples, we
shall now show that any choice of an adjoint-related pair (G+, G−) consisting
of a retarded and an advanced Green’s operator for P on M (see Definition 6.3
below) defines an ideal IG± ⊆ Kext ∈ QFT(M) that is trivial on the interior
(cf. Definition 5.8). The corresponding quotient Kext

/
IG± ∈ QFT(M) then

may be interpreted as the Klein–Gordon theory on M , subject to a specific
choice of boundary conditions that is encoded in G±.

Definition 6.3. A retarded/advanced Green’s operator for the Klein–Gordon
operator P on M is a linear map G± : C∞

c (int M) → C∞(int M) which satisfies
the following properties, for all f ∈ C∞

c (int M):

(i) P G±(f) = f ,
(ii) G±(Pf) = f , and
(iii) supp(G±(f)) ⊆ J±

M (supp(f)).

A pair (G+, G−) consisting of a retarded and an advanced Green’s operator
for P on M is called adjoint-related if G+ is the formal adjoint of G−, i.e.,

∫

M

G+(f) g volM =
∫

M

f G−(g) volM , (6.17)

for all f, g ∈ C∞
c (int M).

Remark 6.4. In contrast to the situation where M is a globally hyperbolic
spacetime with empty boundary [1], existence, uniqueness and adjoint-
relatedness of retarded/advanced Green’s operators for the Klein–Gordon op-
erator P is in general not to be expected on spacetimes with timelike boundary.
Positive results seem to be more likely on globally hyperbolic spacetimes with
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non-empty timelike boundary, although the general theory has not been de-
veloped yet to the best of our knowledge. Simple examples of adjoint-related
pairs of Green’s operators were constructed, e.g., in [12].

Given any region V ∈ RM

[C−1
M

]
in M , which may intersect the boundary,

we use the canonical inclusion i : V → M to define local retarded/advanced
Green’s operators

C∞
c (int V )

i∗
��

G±
V �� C∞(int V )

C∞
c (int M)

G±
�� C∞(int M)

i∗

��
(6.18)

where i∗ denotes the pushforward of compactly supported functions (i.e., ex-
tension by zero) and i∗ the pullback of functions (i.e., restriction). Since V ⊆ M
is causally convex, it follows that J±

M (p) ∩ V = J±
V (p) for all p ∈ V . Therefore

G±
V satisfies the axioms of a retarded/advanced Green’s operator for PV on V .

(Here, we regard V as a globally hyperbolic spacetime with timelike bound-
ary, see Proposition 2.11. J±

V (p) denotes the causal future/past of p in the
spacetime V ). In particular, for all interior regions Vint ∈ RintM [C−1

intM ] in M ,
by combining Proposition 2.11 and [1, Corollary 3.4.3] we obtain that G±

Vint

as defined in (6.18) is the unique retarded/advanced Green’s operator for the
restricted Klein–Gordon operator PVint

on the globally hyperbolic spacetime
Vint with empty boundary.

Consider any adjoint-related pair (G+, G−) of Green’s operator for P on
M . For all V ∈ RM

[C−1
M

]
, we set IG±(V ) ⊆ Kext(V ) to be the two-sided

∗-ideal generated by the following relations:
• G±-CCR ΦV (f)ΦV (g) − ΦV (g)ΦV (f) = i τV (f, g) 1, for all f, g ∈ C∞

c

(int V ), where

τV (f, g) :=
∫

V

f GV (g) volV (6.19)

with GV := G+
V − G−

V the causal propagator and volV the canonical
volume form on V .

The fact that the pair (G+, G−) is adjoint-related (cf. Definition 6.3) implies
that for all V ∈ RM

[C−1
M

]
the causal propagator GV is formally skew-adjoint,

hence τV is antisymmetric.

Proposition 6.5. IG± ⊆ Kext is an ideal that is trivial on the interior (cf.
Definition 5.8).

Proof. Functoriality of IG± : RM

[C−1
M

] → Vec is a consequence of (6.18),
hence IG± ⊆ Kext is an ideal in the sense of Definition 5.1. It is trivial on the
interior because for all interior regions Vint ∈ RintM [C−1

intM ], the Green’s op-
erators defined by (6.18) are the unique retarded/advanced Green’s operators
for PVint

and hence the relations imposed by IG±(Vint) automatically hold true
in Kext(Vint) on account of the (partially-defined) CCR. �
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Remark 6.6. We note that the results of this section still hold true if we slightly
weaken the hypotheses of Definition 2.9 by assuming the strong causality and
the compact double-cones property only for points in the interior intM of M .
In fact, intM can still be covered by causally convex open subsets and any
causally convex open subset U ⊆ int M becomes a globally hyperbolic space-
time with empty boundary once equipped with the induced metric, orientation
and time-orientation.

Example 6.7. Consider the sub-spacetime M := R
m−1 × [0, π] ⊆ R

m of m-
dimensional Minkowski spacetime, which has a timelike boundary ∂M =
R

m−1×{0, π}. The constructions in [12] define an adjoint-related pair (G+, G−)
of Green’s operators for P on M that corresponds to Dirichlet boundary
conditions. Using this as an input for our construction above, we obtain a
quantum field theory Kext

/
IG± ∈ QFT(M) that may be interpreted as the

Klein–Gordon theory on M with Dirichlet boundary conditions. It is worth
to emphasize that our theory in general does not coincide with the one con-
structed in [12]. To provide a simple argument, let us focus on the case of
m = 2 dimensions, i.e., M = R × [0, π], and compare our global algebra
ABDS(M) := Kext

/
IG±(M) with the global algebra ADNP(M) constructed

in [12]. Both algebras are CCR-algebras, however the underlying symplec-
tic vector spaces differ: The symplectic vector space underlying our global
algebra ABDS(M) is C∞

c (int M)
/
PC∞

c (int M) with the symplectic structure
(6.19). Using that the spatial slices of M = R× [0, π] are compact, we observe
that the symplectic vector space underlying ADNP(M) is given by the space
SolDir(M) of all solutions with Dirichlet boundary condition on M (equipped
with the usual symplectic structure). The causal propagator defines a sym-
plectic map G : C∞

c (int M)
/
PC∞

c (int M) → SolDir(M), which however is not
surjective for the following reason: Any ϕ ∈ C∞

c (int M) has by definition com-
pact support in the interior of M , hence the support of Gϕ ∈ SolDir(M) is
schematically as follows

x = 0 x = π

supp ϕ

supp Gϕ

(6.20)

The usual mode functions Φk(t, x) = cos(
√

k2 + m2 t) sin(kx) ∈ SolDir(M),
for k ≥ 1, are clearly not of this form, hence G : C∞

c (int M)
/
PC∞

c (int M) →
SolDir(M) cannot be surjective. As a consequence, the models constructed in
[12] are in general not additive from the interior and our construction Kext

/
IG±

should be interpreted as the maximal additive subtheory of these examples.
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It is interesting to note that there exists a case where both constructions
coincide: Consider the sub-spacetime M := R

m−1× [0,∞) ⊆ R
m of Minkowski

spacetime with m ≥ 4 even and take a massless real scalar field with Dirichlet
boundary conditions. Using Huygens’ principle and the support properties of
the Green’s operators, one may show that our algebra ABDS(M) is isomorphic
to the construction in [12].
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Appendix A: Some Concepts from Category Theory

Adjunctions

This is a standard concept, which is treated in any category theory textbook,
e.g., [28].

Definition A.1. An adjunction consists of a pair of functors

F : C �� D : G�� (A.1)
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together with natural transformations η : idC → GF (called unit) and ε :
FG → idD (called counit) that satisfy the triangle identities

F

idF
	

		
		

		
		
Fη

�� FGF

εF

��

F

G

idG
	

		
		

		
		
ηG

�� GFG

Gε

��

G

(A.2)

We call F the left adjoint of G and G the right adjoint of F , and write F � G.

Definition A.2. An adjoint equivalence is an adjunction

F : C ∼ �� D : G�� (A.3)

for which both the unit η and the counit ε are natural isomorphisms. Existence
of an adjoint equivalence in particular implies that C ∼= D are equivalent as
categories.

Proposition A.3. If a functor G : D → C admits a left adjoint F : C → D,
then F is unique up to a unique natural isomorphism. Vice versa, if a functor
F : C → D admits a right adjoint G : D → C, then G is unique up to a
unique natural isomorphism.

Localizations

Localizations of categories are treated for example in [21, Section 7.1]. In our
paper we restrict ourselves to small categories.

Definition A.4. Let C be a small category and W ⊆ MorC a subset of the set
of morphisms. A localization of C at W is a small category C[W−1] together
with a functor L : C → C[W−1] satisfying the following properties:

(a) For all (f : c → c′) ∈ W , L(f) : L(c) → L(c′) is an isomorphism in
C[W−1].

(b) For any category D and any functor F : C → D that sends morphisms
in W to isomorphisms in D, there exists a functor FW : C[W−1] → D
and a natural isomorphism F ∼= FW L.

(c) For all objects G,H ∈ DC[W −1] in the functor category, the map

HomDC[W −1]

(
G,H

) −→ HomDC

(
GL,H L

)
(A.4)

is a bijection of Hom-sets.

Proposition A.5. If C[W−1] exists, it is unique up to equivalence of categories.
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[2] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. Marcel
Dekker, New York (1996)



AQFT on Spacetimes with Timelike Boundary

[3] Benini, M., Dappiaggi, C.: Models of free quantum field theories on curved back-
grounds. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.)
Advances in Algebraic Quantum Field Theory, pp. 75–124. Springer, Heidelberg
(2015). arXiv:1505.04298 [math-ph]

[4] Benini, M., Dappiaggi, C., Hack, T.-P.: Quantum field theory on curved
backgrounds—a primer. Int. J. Mod. Phys. A 28, 1330023 (2013).
arXiv:1306.0527 [gr-qc]

[5] Benini, M., Schenkel, A., Woike, L.: Operads for algebraic quantum field theory.
arXiv:1709.08657 [math-ph]

[6] Benini, M., Schenkel, A., Woike, L.: Involutive categories, colored ∗-operads and
quantum field theory. arXiv:1802.09555 [math.CT]

[7] Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality prin-
ciple: A new paradigm for local quantum field theory. Commun. Math. Phys.
237, 31 (2003). arxiv:math-ph/0112041

[8] Bussola, F., Dappiaggi, C., Ferreira, H.R.C., Khavkine, I.: Ground state for
a massive scalar field in the BTZ spacetime with Robin boundary conditions.
Phys. Rev. D 96(10), 105016 (2017). arXiv:1708.00271 [gr-qc]

[9] Chruściel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza–
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