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Abstract: 35 

Virus infections cause diseases of different severity ranged from mild infection e.g. common 36 

cold into life threating diseases e.g. Human Immunodeficiency virus (HIV), Hepatitis B. Virus 37 

infections represent 44% of newly emerging infections. Although there are many efficient 38 

antiviral agents, they still have drawbacks due to accumulation at off target organs and 39 

developing of virus resistance due to virus mutation. Therefore, developing a delivery system 40 

that can selectively target drug into affected organs and avoid off target accumulation would 41 

be a highly advantageous strategy to improve antiviral therapy. Nanoparticles (NP) can be 42 

effectively targeted to the liver, and therefore it could be used for improving therapy of hepatic 43 

virus infections including hepatitis B virus and hepatitis C virus (HCV). Many studies were 44 

performed to encapsulate antiviral agents into nano-delivery system to improve their 45 

pharmacokinetics parameters to have a better therapeutic efficacy with lower side effects. 46 

However, the effect of virus infection on the uptake of NP has not yet been studied in detail. 47 

The latter is a crucial area as modulation of endocytic uptake of nanoparticles could impact on 48 

reduce potential therapeutic usefulness of antiviral agents loaded into nano-delivery system. In 49 

this study, a fluorescently-labelled polymeric nanoparticle was prepared and used to track NP 50 

uptake into Huh7.5, human hepatoma cells transfected with replicating HCV genomes, 51 

compared with non-transfected cells as a model representing hepatocyte uptake. Confocal 52 

microscopy and flow cytometry of virus transfected Huh7.5 cells unexpectedly demonstrated 53 

two-fold increase in uptake of NP compared to non-transfected cells. Therefore, virus 54 

transfection enhanced NP uptake into Huh7.5 cells and NP could be considered as a promising 55 

delivery system for targeted treatment of  hepatitis viruses..  56 

 57 

Keywords: HCV infection, Polymer nanoparticles; Poly(glycerol adipate); Huh7.5 cells 58 
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Introduction:  59 

Emerging infectious diseases (EID) present a considerable threat to human life on earth. 60 

Viruses are the largest and most genetically diverse biomass on earth (Suttle, 2005) and account 61 

for 44% of EID (Taylor et al., 2001). Itaya virus, Iquitos virus, Ngari virus and Ilesha virus that 62 

are new emerging viruses in South America and East Africa (Wiwanitkit and Wiwanitkit, 63 

2015), chikungunya virus has spread worldwide (Rothan et al., 2016), and Zika virus is now a 64 

major global health threat (Lazear and Diamond, 2016); (Paixão et al., 2016). 65 

Emerging viruses therefore present a major public health and therapeutic challenge. 66 

Fortunately, it is known that viruses belonging to the same family, share similar characteristics 67 

(King et al., 2012). This allows many newly emerged viruses to be treated with established 68 

Food and Drug Administration (FDA) approved antiviral agents (Tan et al., 2017); (Yeo et al., 69 

2015). Currently, there are around 90 active antiviral drugs approved for the effective treatment 70 

of many types of virus infections (Clercq, 2016). However, their administration is accompanied 71 

by side effects that can limit their potential use. E.g. ribavirin causes haemolytic anaemia 72 

(Hutchison et al., 2002), while other agents, including zidovudine, zalcitabine, lamivudine, and 73 

abacavir may give rise to peripheral neuropathy, leukopenia, pancreatitis, gout and life-74 

threatening hypersensitivity reactions (Montessori et al., 2004). Development of antiviral 75 

resistance due to virus mutation is an additional problem (Lembo et al., 2018). Side effects are 76 

commonly due to accumulation of antiviral drug into off-target organs and therefore, finding a 77 

way that could selectively deliver antiviral agents into the target organ whilst avoiding, or 78 

reducing off-target accumulation is highly desirable and could improve the specificity and 79 

efficacy of antiviral therapy. Nano-delivery systems are known to modify the physicochemical 80 

properties e.g solubility and pharmacokinetics parameters (absorption, distribution, 81 

metabolism and elimination) of the encapsulated materials via controlled drug release.  They 82 

can also be tailored for passive (e.g. controlling particle size) or active (surface decoration with 83 
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ligands) targeting of the therapeutic agents. Consequently, using a nano-delivery system for 84 

antiviral therapy could result in a lower dose of antiviral agents and a reduced side effect profile  85 

(Lembo et al., 2018). Nowacek and colleagues (Nowacek et al., 2012) prepared nanocrystals 86 

(a nano-sized delivery system composed of 100% drug with no carrier) of antiretroviral agents 87 

(Indinavir, Ritonavir, Atazanavir, and Efavirenz) as a way to improve their antiviral potency 88 

against HIV. In vitro study showed that nanocrystals improved cellular uptake into monocyte-89 

derived macrophage (phagocytic cells) and reduced cytotoxicity compared to the free parent 90 

drug. All nanocrystals showed antiretroviral activity ranging from 20% to 100%, depending on 91 

the formulation and drug type (Nowacek et al., 2012). Although many studies have been 92 

concerned with improvement of antiviral potency and trying to reduce its side effects via 93 

encapsulation into nano-delivery system, the effect of virus infection on the uptake of NP into 94 

host cells has not been studied in detail.  A down-regulation of endocytosis by virus would 95 

make NP delivery of the appropriate antiviral agent(s) less effective, whereas upregulation of 96 

endocytosis in infected cells could facilitate targeted uptake of drug into infected cells and 97 

further reduce side effects.  98 

In order to address this important question, we used an established in vitro model of hepatitis 99 

C virus (HCV) replication to interrogate the capacity of virus infection to modulate uptake of 100 

NP. Therefore, in the current study, a fluorescently labelled polymer NP, Rhodamine B 101 

isothiocyanate (RBITC) labelled NP prepared with the bio-compatible polymer, poly(glycerol-102 

adipate) [PGA] have been used in combination with Huh7.5 cells (non-phagocytic cells) 103 

transfected with hepatitis C virus (J6/JFH1 chimera) to track how virus infection could 104 

modulate the endocytic uptake of NP. Huh7.5 cells and the J6/JFH1 chimera  have been used 105 

in the current study because it was reported that Huh7.5 cells are highly permissive to HCV 106 

infection (Lanford et al., 2003); (Sumpter et al., 2005)  and the J6/JFH1 chimera (HCV RNA) 107 
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is considered as the most efficient replicating chimera in Huh7.5 cells (Lindenbach et al., 108 

2005). 109 

2. Materials and Methods: 110 

2.1. Materials: 111 

All materials were purchased from Sigma-Aldrich and VWR and used as supplied except for 112 

divinyladipate purchased from Tokyo Chemical Industry UK Ltd. Huh7.5, hepatocellular 113 

carcinoma cells were supplied by Apath LLC. Phenol red free - Dulbecco's Modified Eagle 114 

Medium (DMEM), foetal bovine serum (FBS), non-essential amino acids (NEAA), penicillin, 115 

streptomycin, C7-50, mouse anti-HCV core protein antibody (primary antibody) and Alexa-116 

488, anti-mouse IgG antibody (secondary antibody) were supplied by Thermo Fisher.   117 

2.2. Methods: 118 

2.2.1. Synthesis and characterisation of Poly(Glycerol adipate): 119 

PGA is a functionalized linear polyester. It was synthesized and characterised as previously 120 

reported (Kallinteri et al., 2005); (Taresco et al., 2016). In brief, PGA was Enzymatically 121 

synthesized where equal amounts (250 mmol) of glycerol and DVA were dissolved in dry 122 

tetrahydrofuran (THF, 30 ml) in presence of a catalytic enzyme, Novozyme 435 (1.25 gm) and 123 

the reaction was stirred (overhead stirrer, 200 rpm) at constant temp (50 ̊ C) for 24h. This was 124 

followed by enzyme filtration and evaporation of THF to obtain a yellowish jelly-like polymer. 125 

 126 
2.2.2. Preparation of fluorescently labelled nanoparticles: 127 

RBITC PGA NP were prepared by an interfacial deposition method as reported (Meng et al., 128 

2006) with the following modifications; RBITC (200 µl, 1 mg/ml, methanol) was added into 129 

the aqueous phase (HEPES buffer, 10 mM, pH 7.4, 7ml). The polymer (20mg) dissolved in 130 

acetone (2ml) was added dropwise into the aqueous phase while stirring. The organic solvent 131 

was evaporated overnight. RBITC PGA NP were purified by loading the sample onto a 132 

Sepharose CL-4B gel column (C2.5 X 40, Pharmacia, bed volume 91ml). The column was 133 
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eluted by water using a peristaltic pump at a flow rate of 1 ml/min and collected in fractions, 134 

1.5ml/ tube. The peaks of dye labelled NP and free dye were detected using a Pharmacia 135 

chromatographic UV detector (206nm filter). The purified NP dispersion was collected and 136 

characterized using a Malvern Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, UK) at 137 

25 °C ± 0.1. Particle size and zeta potential were measured in HEPES buffer (1 mM, pH 7.4)  138 

The dye loading, and encapsulation percentages were determined by a direct method. A 139 

weighed amount of freeze dried RBITC PGA NP was extracted by acetone: methanol (1:1) and 140 

dye fluorescence was measured at λEx, 545 nm and λEm, 575 nm. Then the concentration of dye 141 

was determined from the calibration curve of known dye concentrations in acetone: methanol 142 

(1:1) using a spectrophotofluorometer (Hitachi F-4500 Hitachi, place), with slit widths adjusted 143 

to 5 nm.  144 

2.2.3. Stabilization of NP in physiological buffer: 145 

Either surfactants or human plasma were used to stabilize the RBITC PGA NP to physiological 146 

salt concentrations, (1) polysorbate surfactants (Tween 80/Tween 20) were either added to give 147 

a final concentrations 0.01% and 0.1% v/v to the pre-prepared NP (100 µl, 100 µg), or during 148 

NP preparation (in situ addition).  (2) Alternatively, freshly isolated human plasma (100 µl) 149 

was incubated with NP (100 µl, 100 µg) for 5 minutes or 24 h before addition of phosphate 150 

buffered saline (PBS).  151 

To investigate how PBS affects NP stability, RBITC PGA NP (100 µl, 100 µg) were diluted 152 

with PBS followed by particle size measurement in PBS. The final volume for all the previous 153 

samples was adjusted to 1 ml using PBS. For particle stability measurement, NP (100 µl) were 154 

diluted with HEPES buffer (1 mM, pH 7.4) to 1 ml and used as a control for NP size. Particle 155 

size measurements were performed using the Malvern Zetasizer Nano ZS.  156 

  157 
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2.2.4. Investigation of NP uptake by HCV virus transfected/non-transfected Huh7.5 cells:  158 

Huh7.5 cells (8 x 106) were electroporated in cytomix buffer (400 µl) [potassium chloride (120 159 

mM), calcium chloride (0.15 mM), di-potassium phosphate/ Mono-potassium phosphate (10 160 

mM, pH 7.6)] in the absence (non-transfected cells) or presence (transfected cells) of a 10 μg 161 

of J6/JFH1 HCV chimeric RNA at 220V/22ms. Cells were then incubated in phenol red free - 162 

DMEM containing 10% FBS, penicillin (100 U/ml), streptomycin (100 μg/ml), and 1% NEAA 163 

for 24 hours at 37 ̊ C and 5% CO2.  164 

For confocal microscopy, 5 x 104 of the previously electroporated cells (either virus transfected 165 

or non-transfected cells) were added to wells of a 24-well cluster (Nunclon; Nunc) containing 166 

glass cover slips. Cells were incubated for another 24 hours with phenol red free - DMEM (1 167 

ml) followed by washing with PBS (1ml X 3). Phenol red free - DMEM (0.8 ml) and NP 168 

stabilised with FBS (100 g, 200 l) were added to these cells followed by incubation at 37 ̊ C 169 

and 5% CO2 for different time intervals. Cells were washed with PBS, fixed using 170 

paraformaldehyde, and then permeabilized with 0.5% TritonX-100 (400 μl) for 5 minutes. 171 

Virus core protein staining was carried out by addition of mAb C7-50 (1 µg/ml; Thermo Fisher) 172 

in PBS containing 5% FBS and incubated at room temperature (RT) for 45 minutes, followed 173 

by PBS wash (400 μl X 3). Cells were then incubated with Alexa-488 anti-mouse IgG (2 µg/ml) 174 

in 5% FBS in PBS for 60 min at RT and washed three times with PBS. Cell nuclei were stained 175 

by incubation of 5 µM 4', 6-diamidino-2-phenylindole (DAPI) in PBS with cells for 2-3 176 

minutes at RT followed by three washes with PBS. To investigate the efficiency of virus core 177 

protein expression, a set of virus transfected /non-transfected Huh7.5 cells that were not treated 178 

with NP were prepared and processed under similar conditions, and imaged by fluorescence 179 

microscopy (Leica DMRB).   180 

 181 
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For flow cytometry quantitative studies, the previously electroporated cells (1 x 105/well) either 182 

transfected or non-transfected were loaded onto 6 wells plate and incubated for another 24h. 183 

Cells were washed three times with PBS. Then, phenol red free - DMEM (3.2ml) and NP/FBS 184 

mixture, (400µg, 800µl) were added into cells followed by incubation at 37 ̊ C and 5% CO2. A 185 

set of control cells was incubated with free RBITC (5 ng, equivalent to the dye amount that 186 

might leak from RBITC PGA NP). After incubation for periods up to 4h, cells were washed 187 

three times with PBS. Cells were detached and fixed with a mixture of 4% paraformaldehyde 188 

and trypsin/EDTA (1:1) and transferred to flow cytometry tubes. Virus transfected cells were 189 

washed twice with 1% FBS in PBS (2 ml, then 1 ml) followed by centrifugation (300 g, 5 min) 190 

to remove the washing solution. Then, cells were permeabilised with PBS containing 1% FBS 191 

and 0.04% saponin (1 ml) before removal of saponin solution by centrifugation (300 g, 5 min). 192 

Cells were stained for virus core protein by incubation with C7-50 (40µg/ml) for 45 minutes at 193 

RT, washed with the saponin mixture again and incubated with anti-mouse IgG Alexa-488 194 

(80µg/ml) for 1h at RT. Cells were washed again with the saponin mixture (1ml) and suspended 195 

in 4% paraformaldehyde. The mean fluorescence intensity (MFI) was determined using a 196 

Beckman Coulter Moflo XPD flow cytometer. Another set of virus transfected cells were 197 

incubated with NP for 4h without staining for virus to assess the possibility that 198 

permeabilization step using saponin may lead to NP release from cells. NP uptake into virus 199 

non-transfected cells was determined similarly to transfected cells but without addition of C7-200 

50 and Alexa-488-secondary antibody. All samples were analysed in triplicate. 201 

 202 

2.2.5. Statistical analysis: Statistical analysis (Two Way ANOVA) were carried out using 203 

SPSS version 21 at 95% confidence interval. 204 

 205 

  206 
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3. Results and Discussion: 207 

3.1. Synthesis and characterization of PGA: The identity of PGA polymer was confirmed 208 

by 1H-NMR (data not shown), and size exclusion chromatography analysis gave an estimated 209 

Mn,SEC = 11.6 KDa and molecular weight dispersity Ð of 1.4 and molecular weight (Mw) = 16 210 

KDa.  211 

3.2. Preparation and characterization of nanoparticles: 212 

RBITC PGA NP were prepared by a nanoprecipitation method. NP with a size around 110 nm 213 

were produced (Table 1) and had a good encapsulation efficiency percentage. Although zeta 214 

potential values indicated that particles should be stable in low ionic strength media, further 215 

investigations were carried out to ensure the particles did not aggregate under relevant 216 

physiological conditions in (see section 3.3).  217 

*PdI = polydispersity index, **% Load = [(Encapsulated dye weight/ NP weight) * 100]    218 

*** % Encapsulation = [(Encapsulated dye weight/ Initial dye weight) * 100].  219 

RBITC PGA NP was used in the current study to track the virus effect on the NP uptake into 220 

Huh7.5 cells for several reasons, (1) RBITC dye is more stable than fluorescein to quenching 221 

by light and fluorescence is improved in the acidic pH of the lysosomal compartment (Garnett 222 

and Baldwin, 1986). (2) RBITC labelled PGA NP retain their dye label for prolonged periods 223 

and so reduce possible artefacts in uptake studies as was demonstrated earlier in our group 224 

(Meng et al., 2006) (3) The initial RBITC released from NP in culture medium over 24h was 225 

very low (4.5%) (Meng et al., 2006) (4) Polymer biocompatibility and biodegradability is 226 

important to be considered for the future therapy of polymer based nano-delivery system. The 227 

Table 1: Physicochemical characterization of RBITC PGA NP: 

Name Particle Size 

(dnm ± SD) *[PdI] 

Zeta Potential 

(mv ± SD) 

**% Load % 

(w/w) ± SD 

***Encapsulation      

Efficiency % ± SD 

RBITC PGA NP 110 ± 30[0.01] - 53.7 ± 13.34 0.54 ± 0.13 54 ± 13 
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degradation by-products of PGA are adipic acid and glycerol which are safe compounds as 228 

approved by FDA (Zhang et al., 2014) (5) The cytotoxicity of PGA has been determined earlier 229 

in our group (Kallinteri et al., 2005), and it showed a very low cell toxicity against Human 230 

Leukaemia cell line, HL60 cell and Human liver cell lines, HepG2 cells at the top dose of 231 

polymer NP, 100 times more of polymer amount required for a therapeutic nano-delivery 232 

system. Also, Navarro and his colleagues (Navarro et al., 2017) have used PGA elastomer and 233 

it was demonstrated to be non-cytotoxic to embryonic mouse fibroblasts (NIH/3T3) after 234 

seeding cells for 6 hours over PGA discs .  235 

3.3. Particle stabilization in physiological buffer: 236 

Particles incubated with PBS showed a high level of aggregation, (Figure 1). Although different 237 

concentrations of polysorbate surfactants were used as potential stabilisers, they were not 238 

accompanied by any improvement of particle stability (data not shown). However, 24h 239 

incubation with human plasma stabilized particles successfully in PBS, resulting in particle 240 

sizes ranging from 237 to 300 nm in diameter (Figure 1). A small peak of higher particle size 241 

in DLS (data not shown) was noted indicating some aggregate formation (representing 14% of 242 

low particle size peak by intensity). 243 

The stability of NP in biological systems is an important consideration, as particles in solutions 244 

with physiological salt concentrations and pH values can form micrometer-sized coarse 245 

agglomerates (Deguchi et al., 2007); (Murdock et al., 2008). Coarse agglomerates of NP will 246 

behave differently in a biological system compared to well-dispersed NP, especially with 247 

respect to endocytic uptake of particles (Buford et al., 2007).  The effectiveness of human 248 

plasma in preventing aggregation could be explained by adsorption of protein molecules onto 249 

the NP surface forming a protein corona (Lynch and Dawson, 2008) that is able to prevent 250 

particle aggregation (Gebauer et al., 2012). The improvement of NP stabilization after 24h 251 

incubation with human plasma might be due to a better and more efficient coating of NP by 252 
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plasma protein that was not achieved by a short incubation. This suggested a relatively slow 253 

adsorption or slow equilibration process of plasma protein adsorption onto the surface of NP 254 

(Casals et al., 2010). This is consistent with the study of Bihari et al, who demonstrated that 255 

human, bovine and mouse serum albumins offered a better stability than Tween 80 for different 256 

types of NP, TiO2 (rutile), ZnO, Ag (silver), and carbon nanotubes in PBS. In addition, mouse 257 

serum achieved a similar stabilizing effect to that achieved by pure mouse serum albumin 258 

(Bihari et al., 2008). Therefore, incubation of particles with plasma for 24h was the method 259 

used to stabilize the particles for subsequent studies.  260 

3.4.  Investigation of virus core protein expression after Huh7.5 cells transfection with 261 

J6/JFH1 HCV chimera:  262 

Fluorescence Microscopy was used to assess active replication in Huh7.5 cells transfected with 263 

HCV genomes. Expression of virus core protein was detected 48h after transfection of Huh7.5 264 

cells with J6/JFH1 and staining of the core protein using the primary antibody, C7-50 and 265 

secondary antibody- Alexa488 (Figure 2). The green fluorescence observed in Figure 2B 266 

represents expression of HCV core protein. Different cells were observed to have varying 267 

levels of Core expression (Figure 2B). A flow cytometry study (Figure 3) was also performed 268 

to assess virus transfection of Huh7.5 cells. Figure (3A) is the flow cytometry histogram, where 269 

X–axis represents Alexa-488 fluorescence intensity and it is indicative of labelled virus core 270 

protein and therefore it reflects the efficiency of virus transfection while Y-axis represents the 271 

number of events (number of cells).  272 

The red, black and blue histograms are blank1 (electroporated non-transfected Huh7.5 cells), 273 

blank2 (electroporated non-transfected Huh7.5 cells, treated with primary and secondary 274 

antibodies, to investigate if there a possibility of non-specific binding) and experimental 275 

(electroporated transfected Huh7.5 cells, treated with primary and secondary antibodies) 276 

respectively. As seen from the histogram, the red peak (Blank 1) represents the background 277 
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fluorescence of cells. It was found that there is a limited non-specific binding of antibodies as 278 

revealed by slight shift of red peak to a black peak (Blank 2) of higher fluorescence intensity 279 

along the Alexa-488 axis. Blue peak (Experimental sample to demonstrate virus replication) 280 

has the highest fluorescence signal of Alexa-488 and this is indicative of virus transfection 281 

success.  However, not all cells in the blue peak replicated virus equally and this could be 282 

demonstrated by division of blue peak into 3 sub-peaks: two small sub-peaks and a larger sub-283 

peak. A small sub-peak with a very low fluorescence signal ranging from 1 to 10 represents a 284 

cell population that did not replicate virus. The second small sub-peak and the larger sub-peak 285 

represent cell populations that replicated virus but with unequal efficiency, where the small 286 

sub-peak with signal fluorescence ranging from 150 to 10,000 along Alexa-488 axis represents 287 

the cell population with the highest efficiency of virus replication while the larger peak had a 288 

lower fluorescence intensity with signal intensity ranging from 10 to 150. 289 

 290 

Moving to flow cytometry graphs Figure 3 (B), (C), (D) representing Blank1, Blank2, and 291 

Experimental respectively. X-axis represent the Alexa-488 fluorescence intensity which is 292 

indicative of labelled virus core protein while Y-axis represent RBITC fluorescence intensity 293 

that is indicative of NP uptake. Each graph is subdivided into 4 quadrants where the lower left 294 

(LL) quadrant represents cells with a low fluorescence signal for both RBITC and labelled 295 

virus core protein. Moving from LL quadrant to the lower right (LR) quadrant indicates an 296 

increase of Alexa-488 fluorescence intensity that is indicative of virus transfection. As shown 297 

in Figure 3 (B), for blank1, almost all cells in the population occupied the LL quadrant with a 298 

very limited number of cells (0.26%) appearing in the LR quadrant. Figure 3 (C) represents 299 

blank2 cells where cells occupied the same quadrants as blank1 but more cells occupied LR 300 

(0.58) and this is indicative of slightly more cells with higher fluorescence intensity for Alexa-301 

488. This might reflect a non-specific binding due to treatment with primary and secondary 302 
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antibodies. Figure 3 (D), represents Experimental (transfected cells) where cells occupy both 303 

LL and LR quadrants but LR quadrant has a higher population of cells (13.9%) than both blank 304 

1 and blank 2. This demonstrated that virus transfection of Huh7.5 cells was successful due to 305 

higher number of cells with higher fluorescence intensity along Alexa-488 axis. However, as 306 

previously described in the flow cytometry histogram Figure 3 (A) that most cells are 307 

transfected with (J6/JFH1) but not all cells equally replicated the virus. The latter means that 308 

cells located in LL quadrant in graph (D) might contain some cells that are infected by Huh7.5 309 

cells but do not replicate efficiently enough to be detected in LR quadrant. Although, not all 310 

cells replicate virus equally, the transfected cells could be used to investigate the effect of virus 311 

transfection on the uptake of RBITC PGA NP.   312 

3.5. Confocal microscopy investigation of NP uptake by virus transfected Huh7.5 cells 313 

versus non-transfected cells:  314 

The time course of NP uptake into transfected cells was initially investigated by confocal 315 

microscopy (Figure 4). A, B, C and D images represent blue, green, red fluorescence channels 316 

and overlay of all channels respectively of a single plane image of transfected cells incubated 317 

with NP. The red fluorescence shows RBITC PGA NP. After 0.5 h incubation, red fluorescence 318 

was seen as fine dots distributed across the cells. With increasing incubation time, the number 319 

of fine dots first increased, and then larger bright patches of red fluorescence were seen after 320 

2h. By 4 h, there was a high level of both fine dots and patches.  Some red fluorescence patches 321 

of aggregated particles that were not associated with cells could also be seen (green arrows). 322 

A closer examination of the fluorescence distribution in the cells at different depth through the 323 

cells (different Z-stacks) by confocal microscopy is presented (Figure 5). The presence of red 324 

fluorescence in the plane of the section through the nucleus demonstrated an intracellular 325 

localisation of the particles. The appearance of these dots close to the peri-nuclear region 326 

together with an increase of the fluorescence intensity over incubation time suggested that 327 
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uptake of NP by cells was a continuous endocytic process where endosomes fused together to 328 

form late endosomes that are further fused to form lysosomes. It is generally accepted that most 329 

nano-particulates are taken up into cells by a variety of endocytic routes (Garnett and Kallinteri, 330 

2006). The physicochemical properties of NP and culture medium have a role on the interaction 331 

of NP with cells. PGA polymer has COOH group that should be in the anion form at the pH 332 

(7.4) of the culture medium and therefore RBITC PGA NP should carry negative charge as 333 

revealed by its zeta potential value measured at pH 7.4 (HEPES buffer, 10mM), (- 53.7 ± 334 

13.34). upon addition of RBITC PGA NP into the culture medium, protein -corona will be 335 

formed due to adsorption of different types of proteins and this should facilitate their uptake 336 

into cells. This is consistent with the literature where carboxylated polystyrene particles (1µm 337 

and 50nm) were taken up by alveolar type I cells (Fröhlich, 2012) . Park and his colleagues 338 

(Park et al., 2011) prepared gold NP functionalized with aromatic thiol derivatives to produce 339 

nanoparticles with a surface functional groups; NH2, COOH and OH. Functionalized gold NP 340 

were able to  adsorb proteins and had been taken up into A549 cells, adenocarcinomic human 341 

alveolar basal epithelial cells. It has been shown that there is not much difference of cell uptake 342 

due to different surface groups due to thick protein corona formed (Park et al., 2011). 343 

Therefore, it is the adsorbed layer of protein which affects NP uptake into cells rather than the 344 

charge of the naked particles. The uptake of RBITC PGA NP into Huh7.5 cells is also in 345 

agreement with a previous publication reporting that RBITC PGA NP are endocytosed and 346 

sorted into the lysosomal compartment of DAOY cells, a human medulloblastoma cell line 347 

(Meng et al., 2006). 348 

A single plane confocal microscopy image of NP taken up by virus-transfected cells compared 349 

to non-transfected cells after incubation for 4 h is presented (Figure 6). Non-transfected cells 350 

(Figure 6A) showed a relatively small number of fine dots of red fluorescence (orange arrow) 351 

that were associated with the cells compared to the significantly coarser and brighter dots seen 352 

https://en.wikipedia.org/wiki/Adenocarcinoma
https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Pulmonary_alveolus
https://en.wikipedia.org/wiki/Basal_lamina
https://en.wikipedia.org/wiki/Epithelial
https://en.wikipedia.org/wiki/Cell_(biology)
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in the virus transfected cells (Figure 6B). The red fluorescence observed outside cells suggested 353 

some extracellular particle aggregation had occurred (green arrows).  354 

3.6. Flow Cytometry quantitative study of NP uptake by virus transfected and non-355 

transfected Huh7.5 cells: 356 

Flow cytometry of NP uptake into virus transfected and non-transfected Huh7.5 cells over 357 

different incubation times (0 to 4 h) was performed (Figure 7).  The X-axis represents Alexa-358 

488 fluorescence intensity (indicative of virus transfection) while the Y-axis represents RBITC 359 

fluorescence intensity (indicative of NP uptake).  The control graph shows that the majority of 360 

cells have a small shift along the X-axis demonstrating virus transfection. However, there are 361 

smaller populations with no increase or a little increase of fluorescence due to labelled core 362 

proteins of the virus as previously described in section 3.4. With increasing incubation time 363 

there was a progressive increase in fluorescence on the Y-axis representing NP uptake for the 364 

majority of the cell population in both transfected and non-transfected cells. For cells 365 

electroporated with HCV there was a significant population of cells with either no significant 366 

virus transfection or a low virus transfection in which no increase in NP fluorescence was 367 

observed. This might be due to an effect of virus RNA on cell vitality and this requires further 368 

investigation to determine whether these cells die or resume endocytosis at a later time. For 369 

non-transfected cells, there is very small population of cells showing low NP uptake. 370 

For better understanding of these results, it should be noted that the FACS had been set up to 371 

avoid the fluorescence spill over from RBITC channel into Alexa-488 channel and vice versa. 372 

The FACS had been set up using Huh7.5 cells of different properties in the following order; 373 

(1) Huh7.5 cells; non-transfected cells that were not treated with NP and they were used to 374 

blank the FACS. (2) a set of Huh7.5 cells; non-transfected and treated with NP to adjust red 375 

channel, (3) a set of Huh7.5 cells; transfected and not treated with NP to adjust green channel 376 

and (4) a set Huh7.5 cells; transfected and treated with NP to avoid spill over of fluorescence. 377 
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The data of fluorescence of Alexa-488 versus fluorescence of RBITC is presented (Figure 7) 378 

to show that the increased fluorescence from nanoparticle uptake, is related to the fluorescence 379 

from virus transfection. The relative proportion of cells (percentage of gated cells in each 380 

quadrant) involved in both virus transfection and nanoparticle uptake is also presented (Table 381 

2). The fluorescence from virus transfection is confined to the right half of the graph (Figure 382 

7) and (LR and UR in Table 2), and the fluorescence from particle uptake is found in the upper 383 

half of the graph (Figure 7) and (UL and UR in table 2).  Looking at percentages of cells in 384 

different quadrants (Table 2), we can see that most of the non-transfected cells did show uptake 385 

of nanoparticles (UL quadrant). In contrast, in the transfected cells there was a much lower 386 

percentage of cells in the UL quadrant, but also significant number of cells which show virus 387 

transfection and NP uptake (UR quadrant), and non-transfected and no NP uptake (LL 388 

quadrant).  These changes in the numbers of cells in these quadrants show that virus 389 

transfection did influence NP uptake.  It should also be noted, as explained earlier (Figure 3) 390 

that some of Huh7.5 cells replicate virus to a lower efficiency and might occupy the LL 391 

quadrant. From the above, we could speculate that the statistics of cells (% Gated cells) 392 

presented in Table 2 may underestimate the population of transfected cells in the LR quadrant 393 

and may overestimate the true percentage of cells in the LL quadrant because of this population 394 

of cells with a lower efficiency of transfection showing a low fluorescence of virus expression. 395 

Therefore, the NP uptake detected in UL quadrant for transfected cells might involve NP uptake 396 

not only due to non-transfected cells but also, virus transfected cells that replicate virus with a 397 

lower efficiency.  398 

Quantitative flow cytometry of NP uptake by virally transfected/non-transfected Huh7.5 cells 399 

is presented (Figure 8). NP uptake by virus transfected cells was significantly higher (P < 0.05) 400 

than non-transfected cells over all incubation time intervals, around 2 times more.  It is also 401 

interesting to note that the rates of uptake changed with time and the change in rates of uptake  402 
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 403 

differed between transfected and non-transfected cells.  In non-transfected cells the rate of 404 

uptake was constant for about 2h before the rate started to drop off.  However, in virus 405 

transfected cells there was a reduction in rate of uptake after a very rapid initial rate for the first 406 

hour of incubation.  After this initial period the rate of uptake showed a value similar to the 407 

initial rate of uptake in non-transfected cells and this rate is then maintained for the remainder 408 

of the 4h period. 409 

 410 

There was a slow rate of release of free RBITC from NP, and a control sample representing the 411 

amount of free dye associated with NP was also assessed. Free dye uptake was negligible after 412 

incubation with either virus transfected or non-transfected cells for 4 h and this demonstrated 413 

that fluorescence measured was due to actual NP uptake. The latter is in agreement with a 414 

Table 2: % Gated cells for virus transfected and non-transfected Huh7.5 cells 

Time %Gated for virus transfected Cells %Gated for virus non-transfected cells 

LL UL LR UR LL UL LR UR 

Experimental 99.34 0.03 0.58 0.05 - - - - 

0 31.38 51.64 4.30 12.67 27.14 72.53 0.11 0.22 

0.5 13.74 66.77 1.65 17.84 2.46 97.17 0.09 0.29 

1 14.15 67.82 1.60 16.42 1.47 98.11 0.09 0.32 

2 13.03 67.32 1.43 18.22 1.46 97.91 0.13 0.51 

3 11.10 69.18 0.82 18.90 1.09 98.46 0.07 0.38 

4 10.78 68.60 0.91 19.70 1.04 98.50 0.07 0.39 

Experimental: Cells electroporated in presence of HCV RNA and treated with 1ry and 2ry 

antibodies 

LL: Lower Left quadrant; low virus transfection, low NP uptake 

UL: Upper Left quadrant; low virus transfection, raised NP uptake 

LR: Lower Right quadrant; raised virus transfection, low NP uptake 

UR: Upper Right quadrant; raised virus transfection, raised NP uptake 
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previous publication that reported incubation of free dye (RBITC) with DAOY cells was 415 

associated with a very limited uptake compared to RBITC PGA NP (Meng et al., 2006). The 416 

staining for virus core protein required membrane permeabilization by saponin, which could 417 

potentially result in some leakage of NP. To account for this, control samples where cells were 418 

incubated with NP but not permeabilised was assessed. There was no statistically significant 419 

difference in uptake between permeabilised and non-permeabilised cells (Figure 8). The 420 

enhancement of NP uptake due to virus transfection might be explained by enhancement of 421 

one or more of the endocytic pathways that are responsible for NP uptake. This is consistent 422 

with the previous finding that adenovirus infection enhanced macro-pinocytosis process due to 423 

modulation of the cell cytoskeleton (Meier et al., 2002). The selective advantage of NP uptake 424 

into virus transfected hepatocytes as presented in the current study offers a significant benefit 425 

that might be attained by encapsulating antiviral agents for hepatic virus infection e.g. Hepatitis 426 

B and Hepatitis C. This concept could be further extended to other viruses, but further 427 

investigations is essential. 428 

 429 

4. Conclusions: 430 

Drug delivery using nanoparticles has been of interest since the early 1980s, but more recently 431 

there have been significant advances in drug delivery using biodegradable nanoparticles.  Much 432 

of this interest in nanoparticle delivery systems has its focus on cancer treatment because of 433 

the enhanced permeability and retention effect which provides a mechanism for selective 434 

delivery or increased targeting to tumour tissue.  We have additionally reported that under 435 

certain conditions PGA particles also showed an enhanced uptake into DAOY 436 

medulloblastoma cells in cells culture. There are other tissues where possibilities exist for 437 

targeting of nanoparticles and which may be exploited therapeutically.  One such possibility is 438 

delivery to the liver.  With this in mind we hypothesised that nanoparticle delivery may be a 439 
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good way to enhance delivery of antiviral agents to the liver while reducing the off-target 440 

accumulation and therefore side effects of antiviral agents in case of virus liver infections e.g. 441 

hepatitis B and C viruses. 442 

The current work demonstrated that Huh7.5 cells, a hepatic cell line transfected with HCV 443 

RNA showed a higher NP uptake than non-transfected cells. Virus transfection also resulted in 444 

changes in rates of uptake with time in comparison to non-transfected cells. These data suggest 445 

that polymer nanoparticles may provide a useful future delivery system for targeting virus 446 

infections of liver providing that antiviral agents could be sufficiently loaded into polymer 447 

nanoparticles. This approach could prove particularly effective in eradication of hepatitis B 448 

virus, where elimination of the HBV covalently closed circular DNA requires selective 449 

targeting of molecular therapies to latently infected hepatocytes. The application of NP directed 450 

therapies for other important viral diseases is an exciting possibility that requires further 451 

exploration. 452 
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