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ABSTRACT
Uncovering latent community structure in complex networks is a
�eld that has received an enormous amount of a�ention. Unfor-
tunately, whilst potentially very powerful, unsupervised methods
for uncovering labels based on topology alone has been shown
to su�er from several di�culties. For example, the search space
for many module extraction approaches, such as the modularity
maximisation algorithm, appears to be extremely glassy, with many
high valued solutions that lack any real similarity to one another.
However, in this paper we argue that this is not a �aw with the
modularity maximisation algorithm but, rather, information that
can be used to aid the context speci�c classi�cation of functional re-
lationships between vertices. Formally, we present an approach for
generating a high value modularity consensus space for a network,
based on the ensemble space of locally optimal modular partitions.
We then use this approach to uncover latent relationships, given
small query sets. �e methods developed in this paper are applied
to biological and social datasets with ground-truth label data, using
a small number of examples used as seed sets to uncover relation-
ships. When tested on both real and synthetic datasets our method
is shown to achieve high levels of classi�cation accuracy in a con-
text speci�c manner, with results comparable to random walk with
restart methods.

1 INTRODUCTION
A fundamental issue at the heart of machine learning methods ap-
plied to large scale datasets is the ability to correctly identify classes
of related objects in an unsupervised manner. In network science,
this methodology is o�en referred to as community detection [13].
Many algorithms exist to solve this problem [13], yet initial start-
ing conditions or di�erent optimisation strategies may result in
con�icting results even when the same objective function is being
maximised [17]. In this paper, we develop an intuitive method to
use the uncertainty amongst a high number of near optimal solu-
tions to measure context sensitive relationships between small sets
of labelled vertices. �is approach can be based on labels that are
not �rst order neighbours to �nd other potentially related vertices.

�e use of community detection is widespread. For example, a
core goal in systems biology is to characterise the function and
functional relationships between genes, proteins or metabolites
within a larger network [15]. In many situations, only the role of a
small number of genes is known, with much of the annotation for
a given organism being computed through naive homology infor-
mation that ignores the role of a gene within a wider context. �e
advent of high throughput experimental datasets has allowed the

construction of proteome scale networks, leading to the observation
of non-trivial topological properties such as densely connected clus-
ters [11]. �ese densely connected clusters are widely believed to be
associated with speci�c function, such as multi-protein complexes
or biochemical pathways.

As a form of unsupervised machine learning, module extraction
methods largely focus on optimising some objective function with
the goal of �nding meaningful clusterings. Perhaps the most popu-
lar of these methods is that of modularity maximisation [29], which
seeks to �nd the most unexpected partition of a graph with respect
to a given null model. Overlapping methods have recently been
applied to this problem in both crisp [1, 24] and fuzzy [19] based
algorithms which have been widely used to uncover latent rela-
tionships without labelling schemes. In previous work, we found
that most of these methods have signi�cant disagreement when
evaluated in a practical context [14].

�e number and size of communities is, generally, not known
a priori, and the problem has been shown to be NP-hard [4]. �e
work of Good et al. [17] recently highlighted that the popular
modularity maximisation algorithm has a highly “glassy” search
space. In essence, for real, heterogeneous networks there are many
locally optimal partitions that bear li�le resemblance to each other
by measure of mutual information. �is allows greedy optimisation
algorithms [3] to trivially �nd solutions that score extremely high
values of modularity. In order to solve this issue, certain approaches
use a consensus based approach to clustering, combining many high
value partitions into a given median partition [22].

However, in this paper, we do not seek to �nd a single “best”
partition, whether overlapping or not and our objective is not to
uncover labels but to use limited and small sets of labels to give
the notion of a membership score to some grouping. Instead, we
use the large number of highly modular solutions to form the in-
dex for a search query system. In essence, this is a method of
semi-supervised learning that a�empts to �nd items related given
labelled sets of vertices using topology alone. Each high value parti-
tion can be treated as information about the relationships between
vertices. �at is to say, there is not a single, correct view of the
underlying community structure to a network, but rather, many
di�erent context dependent de�nitions. As the objective of commu-
nity detection approaches is to relate information, it is assumed that
some labelled meta-data can be used to �nd unlabelled, potentially
related vertices.

More formally, the problem tackled in this paper can be for-
mulated as follows: Given a graph made up of vertices and edges
G = (V ,E), and a query set S ⊂ V , we ask the question; How well is
a given vertex, i < S related to S?



Figure 1: Modularity search space of an E. colimetabolic net-
work. Distance between partitions is calculated using vari-
ation of information [27] and dimensionality reduction is
performed using curvilinear component analysis [10]. �e
inset (top) demonstrates the landscape of the high modular-
ity partitions. Figure generated with the so�ware of Good et
al. [17].

We propose an algorithm that pre-computes an index of cluster-
ings for a given complex network, based on the fast greedy Louvain
algorithm [3], used in a distributed manner. �e detected clus-
ters then form the basis of a search algorithm that allows one to
compute the relatedness of nodes to a given query set. �e query-
ing method is a polynomial time algorithm that could be trivially
adapted to form the basis of many user facing applications. �is
approach is then applied to synthetic benchmark networks with
known, ground-truth labels as well as social and protein-protein
interaction networks with high quality ground truth label sets.

2 EXPLOITING THE MODULARITY QUERY
SPACE

To characterise latent community structure, one of the most popular
approaches is to use modularity maximisation given by the equation
[29]

Q =
1

2m

∑
i, j

[
Ai j −

kikj

2m

]
δ (ci , c j ), (1)

wherem is the number of edges in the network, Ai j is the binary
variable indicating the adjacency of nodes i and j , ki is the degree of
a vertex, ci indicates the community of a given vertex and δ (ci , c j ) is
the Kronecker delta such that δ (ci , c j ) = 1 if ci = c j and 0 otherwise.
As a combinatorial optimisation problem, there are many di�erent
algorithmic approaches to �nding high values of Q .

�e work by [17] forms the basis of the motivation of the ap-
proach taken here. In this study, the authors discovered that the
modularity search space for many real-world networks contains
a huge number of high value solutions. Each of these solution

Many representations of modular structure
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Figure 2: Outline of the proposed approach to querying net-
works by using multiple, high quality representations of
modular networks.

partitions are extremely close to the global maxima, making it both
di�cult to �nd the optimal value ofQ and di�cult to argue that the
highest scoring partition is the “true” community structure. �is
fact is visually demonstrated with the so�ware from [17] in Figure
1, which shows the modularity search space of an E. coli metabolic
network reconstruction [20]. �e similarity between the partitions
is compared with the variation of information measure [27] and
dimensionality of the space is reduced with curvilinear component
analysis [10] 1.

In this work, we consider each high value partition to be informa-
tion about latent relationships between vertices inferred through
the topology of the network. �is approach, in and of itself is not
unique, as there have been previous approaches that use the con-
sensus of an ensemble of clusters to create high quality overlapping
clustering of networks [22]. Such an approach, whilst well prin-
cipled, is a context insensitive view of the modular structure of a
graph.

�e objective, then, is to use the disagreement between the set
of highly modular partitions as information; that is to say, to infer
the probability that sets of vertices are contained within the same
cluster. Whilst methods based on simulated annealing can be used
to guarantee full coverage of the network, the following section
describes a method adapted from the greedy agglomerative Louvain
algorithm [3].

2.1 Algorithm outline
A broad outline of the proposed method is presented in Figure 2.
In essence, the objective is to use multiple modular representations

1�e reader should note that axis on these plots are a result of the dimensionality
reduction performed by curvilinear component analysis [10] and, therefore, have no
natural interpretation.
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of a given dataset to generate a relatedness score for a given set of
query vertices.

In order to cover the space of high modularity partitions, ran-
domly generated starting partitions are computed with a random
cut set. To achieve this, each edge is either placed inside the cut set
or not as the result of an independent Bernoulli trial. Each random
partition is used as the starting partition for the greedy Louvain
process. In principle, any search exploration procedure, such as
simulated annealing [17] could be used. �e Louvain algorithm
was selected as it is fast, running in O(n logn) time complexity [3],
and because it is a greedy algorithm and is guaranteed to stop a�er
�nding a locally maximal solution.

�e Louvain algorithm is conceptually very simple; starting from
a random partition, clusters are agglomerated if the merge results
in a positive change in modularity ∆Q . When no possible moves
result in an increase in modularity the algorithm has found a local
optima.

�e index coverage is directly proportional to the number of
starting random partitions. A full coverage index could be consid-
ered as every locally optimal partition. Given that there is no free
lunch and it is impossible to know every solution, one can only
ensure a full coverage index through an exhaustive search over the
2m possible starting cut sets, where m is the number of edges in
the graph. Consequently, the approach taken here is to use a large
but not exhaustive subset of the possible solutions using a suitably
large space of 2000 solutions for the networks studied in this paper
2.

2.2 Measuring the quality of relationships
Given a query of vertices, the relatedness to other vertices in a
network is quanti�able by the fraction of times they are clustered
with the query set, given the set of high quality partitions. Formally,
this can be expressed in terms of the expansion score of a given
vertex,

µi (S) =
1
|P | |S |

∑
P ∈P

∑
j ∈S

δ (cpi , c
p
j ), (2)

where S denotes a query set, P is a given partition in the space of
all high quality partitions P, cpi indicates the cluster vertex i is con-
tained in within partition P and δ (u,v) is the Dirac delta function
that equals 1 if cpi and c

p
j are the same cluster and 0 otherwise. As

a simple example, for a pair of vertices i and S such that S = {j} we
would consider µi to be the number of times i and j appear in the
same cluster, given an ensemble of network clusterings. We de�ne
µi (S) for all vertices in the network, including those in S . However,
for the case where i is in S we, instead, consider the value µi (S − i)
to remove bias.

3 RESULTS
3.1 Cross-validation method
In this study we test a small number of labels that we intend to use
in order to evaluate how well our method correctly generalises to
discover unlabelled vertices. We would like to test a signi�cantly

2Initial results indicate that a signi�cantly smaller space of partitions may still yield
high quality results but we note that further work is required to asses the best number
of partitions in a practical context.

smaller number of seed nodes than two class classi�cation methods
used in previous studies, which use leave-one-out cross validation
[21]. �e cross validation procedure we devise is described as
follows and depends on the size of the community and the number
of initial seed labels being used.

For this work we would like to capture binary classi�cation
performance, true positives (tp), true negatives (tn), false positives (fp)
and false negatives (fn), on our datasets of community memberships.
In order to generate the di�erent sets for the cross validation we
take each label set and generate unique sample sets of vertices from
the known true positive labels.

As the seed label sets can be as small as 3 vertices, exhaustive
cross validation was not possible for all labelling schemes. Conse-
quently, cross validation is either conducted on an exhaustive set
of all possible

( |S |
s
)

unique labellings or 120 seed queries sampled
randomly without replacement from the possible subsets 3, where
S is the set of gold standard true labels and s is the size of the
randomly selected seed sets.

As the selected seed sets can be contained within multiple com-
munities, we consider the set of true positives not to be the commu-
nity for which the seed set is randomly selected, but all communities
for which that seed set is a subset of. �is is because the purpose of
the approach presented within this paper is to distinguish between
di�erent communities in a context speci�c manner, if the overlap
between two communities is represented by the seed nodes this
should be considered in the tests.

It should therefore be noted that presented receiver operator
characteristic (ROC) scores are dependent on community sizes. We
also note that we do not consider separate training and test sets in
this study as the method does not use any examples when building
the index space from partitions of the graph.

Formally, the steps for this procedure with a given label set S
are outlined as follows:

• Generate up to 120 unique subsets of size s , randomly
sampled without replacement (set T ).

• For each test subset {∀St ∈ T |St ⊂ S ∧ |St | = s}, generate
the µi (St ) score for all vertices in the network

• Exclude vertices in St from the test
• Consider the true community membership of St to be the

true positive set.
• Consider each of the nodes in V not in the community

membership of St to be the true negative set.
• Generate a network wide average ROC curve interpolated

from all test subsets from all communities.
In the case for the synthetic networks tested below, true labels are

drawn from the known communities, with each tested in isolation.
For the real world networks tested the labels are considered in the
same manner though many nodes have no assigned labels. Every
community is considered with di�erent seed set sizes.

3.2 Random walk with restart
In the following sections compare our method with the commonly
used random walk with restart method as described in [21]. �is
simulates an in�nite random walk with a �xed probability, α that a
3�is is equivalent to

(10
3
)

combinations, given time constraints, an exhaustive sample
would not be possible for the larger communities in this study.
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walker would teleport back to the initial seed nodes. Formally, the
random walk with restart algorithm uses the form

®pt+1 = (1 − α)W ®pt + α ®p0, (3)

whereW is the row normalised adjacency matrix of a graph, ®p0 is
the initial walk vector such that ®p0 =

1
|S | for vertices in the seed

set. �e random walk algorithm repeats equation 3 from ®p0 until
the L1 norm between ®pt and ®pt+1 converges to 0, simulating the
steady state vector ®p∞. For the tests performed in this work we use
a restart probability α = 0.25.

3.3 Synthetic networks
In this section we test the method on benchmark networks con-
structed with a ground-truth community structure. To evaluate
how our method performs we use the undirected, unweighted LFR
benchmark [23] in overlapping and non-overlapping forms. We test
the area under the ROC curve (AUC) scores for networks varying
the mixing parameter (fraction of edges between communities) and
the fraction of overlapping nodes. In these tests, the community
distribution is de�ned with a power law coe�cient of −1.0, the
degree distribution is de�ned with a power law coe�cient of −2.0.
�e number of nodes is stated in the text.

3.3.1 Non-overlapping modules. Figure 3 represents tests on 10
networks with 1000 and 5000 nodes varying the mixing coe�cient
(number of edges between communities). As one would expect,
the prediction of the method drops o� steeply where communities
are less de�ned above a mixing coe�cient of 0.6. Using larger
seed sets also improves accuracy with some prediction of true
communities being possible at extremely high levels of mixing.
Overall, results are comparable to the random walk with restart
method, with slightly improved performance with a smaller number
of seed nodes.

3.3.2 Overlapping modules. In Figure 4 we show the results of
network performance when tested against an increasing level of
overlapping communities. For these tests we �x the mixing coe�-
cient at 0.3. Here, each vertex can belong to up to 4 communities.
In order to test performance we varied the fraction of nodes that
are in more than one community. �e method still has an AUC
score above 0.5 when all nodes are placed in multiple communities.
�is indicates that the method is capable of uncovering latent over-
lapping memberships even when given a relatively small number
of seed nodes. As with the non-overlapping results, the scores
are comparable with the rwr method with performance slightly
improved in the case of 1000 node models, but comparable for 5000
node models.

3.4 Real networks
In order to test the performance of the semi-supervised classi�ca-
tion on real-world data we present our �ndings on example net-
works with metadata communities. All datasets use the largest
single connected component sub-graph. �e real networks used
are:

• EUemails core dataset (EU emails) [25]�is anonymised
dataset is taken from the SNAP database [26] and contains
986 nodes and 16, 687 edges representing emails between

individuals. �e metadata community labels represent dif-
ferent departments within the organisation. In total there
are 42 communities, 39 of which contain at least 3 nodes.

• Yeast protein-protein interactionnetwork (Yeast PPI)
[35] �is dataset is a collection of recorded binary inter-
actions between proteins collected with high-throughput
yeast-2-hybrid assays. �e metadata used are known, ex-
perimentally validated protein complexes from [31]. �e
network contains 6222 nodes in the largest connected com-
ponent, with 22,386 edges. �ere are 409 experimentally
validated protein complexes, 236 of which contain 3 or
more nodes. �e protein complexes are typically very small
in terms of number of proteins, with 90% of the complexes
containing less than 10 proteins and only 2 complexes
containing 50 or more proteins.

• Escherichia coli protein-protein interaction network
(E.coli PPI) [34] For the E. coli dataset we used manually
curated interacting proteins from [34]. �e network con-
tains 1913 nodes and 7252 edges, the protein complexes
range in size between 3 and 65 nodes. 85% of the complexes
contain 10 or less nodes.

• Arabidopsis thaliana protein-protein interactionnet-
work (Arabidopsis PPI) [11]. �e network itself contains
4519 nodes and 11,096 edges. For the Arabidopsis dataset,
the complex sources were more limited. Consequently,
we obtained all gene ontology annotations under the GO
term “Protein-containing complex” from AmiGO [6] where
experimentally collected physical interaction evidence was
acquired. At the time of writing, this resulted in 7 com-
plexes containing between 4 and 12 nodes. In addition, we
included small protein complexes from the IntAct database
[30], resulting in a total of 165 unique complexes. As the
labels for this dataset are small it was not possible to test
algorithm performance with 15 seed nodes.

ROC curves generated with the cross validation procedure de-
scribed in Section 3.1 are shown in Figure 5. �ese results represent
ROC curves and mean AUC statistics.

�e results of our method are comparable to the random walk
with restart approach, which performs be�er on the datasets tested
with the exception of the EU email dataset for which our model
produces higher AUC scores.

In the case of the Arabidopsis thaliana network the protein com-
plexes tested are signi�cantly smaller than for other networks and
so a comparison of seed sizes is not possible. However, in the other
networks studied, using 3 or more seed nodes appears to improve
results, though for 15 seed nodes the results are not signi�cantly
be�er than with 7 seeds. �e lower quality labels within the Ara-
bidopsis protein complex dataset likely explains the signi�cant
di�erence in results when compared with other protein interaction
datasets.

3.4.1 Tests on gene ontology labels. In a practical situation the
higher quality label sets described above are not likely to be avail-
able. Consequently, we wish to highlight that the method also
serves as a useful network reduction tool where the quality of la-
bels is not well de�ned. In order to achieve this goal, for each of the
biological data sets in this study, we acquired all Gene Ontology
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Figure 3: Non-overlapping LFR community networks with varying seed nodes with 1000 and 5000 nodes. Data points repre-
sent mean AUC scores for all communities on 10 sampled networks at varying mixing coe�cients. Error bars represent one
standard deviation.
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Figure 4: Overlapping LFR community networks with varying seed nodes with 1000 and 5000 nodes. Data points represent
mean AUC scores for all communities on 10 sampled networks at varying overlapping fraction of nodes. Error bars represent
one standard deviation.

terms for each of the proteins from AmiGO [7]. Gene Ontology is a
controlled vocabulary of terms associated with biological functions
in three broad categories of Cellular Components (CC), Metabolic
Functions (MF) and Biological Processes (BP), forming a hierarchy
of terms and associated sub terms.

�ese labels are not all likely to be represented within the protein-
protein interaction networks, though many biological processes
are. For the Yeast, Arabidopsis and E. coli PPIs we collected 85, 549
and 420 terms covering at least 3 nodes, respectively. As expected,
average ROC and AUC scores shown in Figure 6 are considerably
lower than for the Protein complexes for both our method and
the rwr approach. Notably, however, the performance of the rwr

approach is signi�cantly worse than one would expect to �nd at
random for the Yeast GO terms. �e reason for this performance
remains unknown, however, it is likely to to the fact that the gene
ontology labels are poorly represented in the dataset. However, this
approach should be considered in contrast to conventional gene
enrichment strategies on conventional network clusters [8].

4 DISCUSSION
�e semi-supervised method for vertex classi�cation presented in
this work has been shown to produce good results on both synthetic
benchmarks and real-world datasets. Interestingly, this method is
capable of correctly classifying communities with only a small
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Figure 5: Receiver operator characteristic (ROC) curves for the high quality labels for real networks described in Section 3.4.
Results represent the averages over all receiver operating characteristic scores from all samples of label sets with the cross
validation procedure described in 3.1.

number of seed query vertices. �ese results show that this query
method could be used as a powerful exploratory tool in network
analysis.

�e fact that the method is able to uncover small protein com-
plexes seems to contradict the principle that modularity maximisa-
tion algorithms have a resolution limit [12]. Whilst this appears to
be the case it is important to note that the resolution limit applies
to a single partition of space. Further work is needed to investigate
why small communities are still detectable. However, we speculate
that it is likely due to the fact that the co-classi�cation of vertices
between di�erent partitions remains fairly tolerant to changes. In
other words, the small cluster of nodes is always clustered in the
same community, regardless of the partition. We do note that,
where communities are very small, any approach will be extremely
sensitive to false positive and false negative results. As such, this
should be considered when using any method of this form as an
exploratory tool.

�e approach also appears to be tolerant to a small number of
seed nodes. �is is interesting as in most sampled cases the relevant
nodes are unlikely to be direct neighbours. From the perspective
of exploratory studies, this implies that a small number of query
vertices can be used to �nd potentially related vertices.

5 RELATEDWORK
�is work relates very strongly to the idea of local community
detection, more speci�cally the idea of seed set expansion [16]. Here,
a given seed set is created and random walks are analysed to �nd
clearly related communities of vertices. One of the most common
approaches to �nding related vertices in a network is the random
walk with restart (RWR) [5, 21] explained in section 3.2. �is ap-
proach has been applied in �elds as diverse as recommender systems
and the detection of potential drug targets [9]. In RWR the relat-
edness of any pair of vertices can be seen as the probability of a
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(a) Yeast PPI GO terms
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Figure 6: Receiver operator characteristic (ROC) curves for gene ontology labels for real networks described in Section 3.4.
Results represent the averages over all receiver operating characteristic scores from all samples of label sets with the cross
validation procedure described in 3.1.

particle traversing the graph starting at a given vertex and end-
ing at another. Conceptually, RWR is very similar to the method
presented in this paper given that the user has a given query. �e
RWR probability as analogous though not equivalent to the value
of µi (S).

�e reader may also consider the similarity of this approach to
that of label propagation [18, 32], which seeks to �nd communities
based on a vote, where at di�erent time steps a node updates it’s
label to to be the most common amongst its neighbours. A common
problem with label propagation schemes is that they o�en fail to
converge, resulting in many competing clusterings of a network.
We liken this to the problem encountered by Good et al. [17] in
modularity maximisation. A core contribution of this paper is
that, in such situations, there is no single, context independent
labelling scheme that can be seen as the “true” community structure,
overlapping or not. Indeed, the approach applied here is extremely
general and could be adapted to the label propagation approach
(or any other community detection algorithm) should su�cient
semi-supervised group memberships be known a priori.

Many existing method are based on the idea of a locally dense
subgraph containing all query nodes [2]. In contrast, the query
approach presented here does not require the queries to be a self
contained sub-graph. Indeed, queries can contain spurious nodes
that are topologically distant from one another - the result is that
the µi (S) score for the query set will likely be very low. Further
investigation into how to evaluate the quality of high average µi (S)
for i ∈ S is le� to future work.

In the �eld of community detection, a number of very recent
articles have focused on using metadata to improve the results of
community detection approaches. �ese algorithms, however, are
distinct from the approach taken here as the metadata is not used
in the module discovery process. Furthermore, the results in this
work a�empt to explicitly label unlabelled data and only require
a relatively small number of labels to operate in such a fashion.
In contrast, the recent approach by Newman and Clauset [28], for
example, uses examples in which practically the entire network
contains labels which is less useful from the perspective of label
discovery.

6 CONCLUSIONS
�is paper has presented a novel approach to semi-supervised com-
munity detection utilising a consensus of high scoring partitions
computed with the popular modularity maximisation approach.
Previously the glassy search space of this optimisation algorithm
has been seen as a major limitation. However, in this work we con-
sider each locally optimal partition to be information regarding the
true multi-class labels that are likely present in real networks. �e
approach presented here di�ers from other ensemble approaches
in that the objective is to provide a probabilistic framework for
label classi�cation. Performance was shown to be strong on both
synthetically generated networks and real-world ground truth com-
munities with relatively small sets of labels. In the case of synthetic
networks communities are correctly detected up to the detectability
threshold. For real world networks with small label sets, aver-
age AUC scores were comparable to the random walk with restart
method for the high quality datasets tested in this study.

However, this approach requires the community landscape to
contain many local maxima, a property likely shared by many real-
world, heterogeneous networks. Similarly, the method presented
here requires both some labelled data and the labels to be relevant
in the context of the underlying network.

�is work presents a number of interesting potential future av-
enues for research, such as observing how query sets change in
time dynamic or multi-scale networks. Furthermore, as the algo-
rithm is trivial to run in a distributed manner, this approach could
be applied to larger graphs than those studied in this paper. Fur-
ther research should also be conducted into how this approach
could be applied to other partition quality functions, such as the in-
fomap algorithm [33]. �e method was implemented in python and
all so�ware is available at h�ps://github.com/SBRCNo�ingham/
cluster query tool.
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