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Abstract 12 

Cement-stabilized aggregate mixtures (CSAMs) have been used effectively within semi-rigid 13 

pavement structures. However, the sensitivity to cracking under tensile loading is the main 14 

problem that may cause a deterioration due to reflection to the overlaying layers. The primary 15 

objective of this research is to show the extent to which the steel fibers extracted from old tires 16 

might enhance the pre and post-cracking behavior of CSAMs and to understand how they affect 17 

the cracking characteristics. Mechanical performance was evaluated in terms of indirect tensile 18 

strength, modulus of elasticity, and post-peak load carrying capacity. Cracking properties were 19 

studied quantitatively, at the mesoscale level, using a combination of x-raying of the internal 20 

structure and fractal analysis through image processing technique. A new methodology was 21 

suggested and implemented for this evaluation. Despite the low cement content, results 22 

indicated a decrease in the material stiffness with fiber addition and an improvement in both 23 

pre- and post-cracking behavior. There is a clear enhancement in the toughness and 24 

deformability of the mixtures indicating a ductile material. Better cracking behavior was 25 

observed after fiber incorporation. Finer cracks and more dispersion of these cracks suggest a 26 
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reduced potential for reflection cracking. A fracture mechanism was proposed and confirmed 27 

by examining various cracking patterns. 28 

 29 

Keywords: Cement-bound pavement mixtures; tensile testing; fiber-reinforced cement-30 

stabilized mixture; fractal dimension; cracking characterization 31 

 32 

1. Introduction 33 

A cement-stabilized aggregate mixture (CSAM) is a cementitious material that consists of a 34 

mix of aggregate, cement and a small quantity of water for hydrating the cement and helping 35 

the compaction process (Lim and Zollinger 2003). It is normally used within semi-rigid 36 

pavements as a base and/or subbase layers to increase their structural capacity. Due to its low 37 

sensitivity to water and its high strength and uniformity, stabilized layers made of such material 38 

provide an excellent foundation to overlying layers. At the same time, stabilized layers protect 39 

the underlying layers by distributing the load over a wide area owing to their high rigidity. 40 

 41 

Inherent features of CSAMs, however, are shrinkage and tensile cracking, low tensile strength 42 

and high rigidity which make them sensitive to overloading and fatigue. These cracks, 43 

unfortunately, cause a decrease in load-carrying capacity and transfer efficiency as well as 44 

problems for both overlying and underlying pavement courses. In addition to the additional 45 

stresses being applied on subgrades and wearing courses, reflection cracking represents a 46 

significant further challenge to the use of cement-stabilized layers (Adaska et al. 2004) 47 

 48 

The use of fibers may provide a good solution to control the above-mentioned problems, 49 

especially in the light of findings of previous studies conducted on concrete mixtures. 50 

Furthermore, and more importantly, using these fibers might control crack initiation, 51 

propagation rate, and width. Apart from the idea that the cracks developed in a cement stabilized 52 
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aggregate layer reduce its load carrying capacity, these cracks also cause problems, especially 53 

in the case of wide cracks, to other layers.  54 

 55 

The use of fibers to reinforce CSAMs of low cement content is a relatively new technique as 56 

compared with normal concretes and few investigations have been performed to study the effect 57 

of fibers on the performance of cemented mixtures. Shahid (1997), Thompson (2001), Sobhan 58 

and Krizek (1999) and Coni and Pani (2007) all conducted studies to reveal how industrial steel 59 

fiber reinforcement affects the mechanical performance of cement-stabilized materials. Others 60 

(Khattak and Alrashidi 2006, Zhang and Li 2009, Zhang et al. 2010, Grilli et al. 2013) have 61 

used industrial polypropylene fibers. In all these studies, the host materials were either natural 62 

or secondary aggregates. Overall, their findings showed an improvement in the performance of 63 

cement-stabilized mixtures from the mechanical properties point of view. 64 

 65 

Despite several advantages gained from fibers in cemented mixtures, their high initial cost 66 

represents a challenge that limits their use (Coni and Pani 2007). This was probably the main 67 

motivation for some researchers to attempt using waste fibers in cement-stabilized mixtures. 68 

For instance, Sobhan and Mashnad (2002) and Sobhan and Mashnad (2003) used a waste plastic 69 

strip as reinforcement in a cemented aggregate. Such usage helps to reduce the cost of 70 

construction and might also enhance the performance in addition to increasing sustainability in 71 

highway construction. Even in the case of concrete mixtures, only a few researchers  (Aiello 72 

and Leuzzi 2010, Centonze et al. 2012, Sengul 2016, Leone et al. 2018) have tried to utilize 73 

steel fibers extracted from post-consumer tires as reinforcement.  74 

 75 

No study has been reported in the literature investigating the effect of waste steel fibers sourced 76 

from old tires on the performance of cement-stabilized aggregate. Even though Angelakopoulos 77 

et al. (2015) and Neocleous et al. (2011) used these waste fibers in roller-compacted concrete, 78 

their mixtures had quite different aggregate gradation and much higher cement content as 79 
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prescribed by the Portland Concrete Association (PCA 2005). Furthermore, none of the 80 

previous studies have examined the internal structure and cracking properties of such 81 

composites. Therefore, a study was undertaken, and is here reported, to investigate how the 82 

inclusion of waste steel fibers in cement-stabilized aggregate of low cement content (as 83 

compared with other cementitious materials) may affect its behavior.  84 

 85 

Cement-stabilized aggregate layers (either base or subbase or both) within the pavement 86 

structure are subjected to tensile stresses at the bottom of the layer. This, in turn, suggests that 87 

a tensile test will best simulate actual, in-situ, distress. It would also be instructive to investigate 88 

the cracking properties and the internal structure at a mesoscale level so as to better understand 89 

the fracturing mechanism and to identify the relationship with macroscale properties. Therefore, 90 

the aim of the study is to quantify and understand the behavior of these composites in order to 91 

optimize them with the eventual goal of overcoming the disadvantages of cement-stabilized 92 

base pavements in a cost-effective manner. 93 

 94 

2. Experimental Program 95 

2.1 Constitutes materials 96 

 2.1.1 Aggregate 97 

A crushed limestone aggregate was used during this investigation. This aggregate was sourced 98 

from Tunstead Quarry in Nottingham, UK at different fraction sizes which are 20 mm, 14 mm, 99 

10 mm, 6 mm and dust. Grain size distributions for various stated fraction sizes was determined 100 

in accordance with BS EN 933-1:2012. Figure 1 illustrates the gradation of different aggregates.  101 

 102 

2.1.2 Recycled fibers 103 

Recycled steel fibers, extracted from post-consumer tires, were utilized as reinforcement in 104 

cement-stabilized aggregate mixtures. Due to the nature of the fibers used in the tire 105 

manufacturing and recycling process, the fibers produced after the tire shredding process have 106 
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different diameters and lengths. To evaluate the behavior of fiber reinforced cement-stabilized 107 

aggregate mixtures (FRCSAMs), it is necessary to quantify the fibers’ geometrical properties. 108 

This is because the interlocking of the fibers with the aggregate and the bond strength of the 109 

fibers with the matrix is expected to be highly related to the fiber length in addition to the 110 

cement content. Therefore, both fiber diameter and length were characterized to help understand 111 

the effect of different geometrical properties of the fibers on the performance of modified 112 

mixtures, as different fiber properties may result in different performance. 113 

 114 

To achieve this fiber quantification, a random fiber sample was taken from different locations 115 

of the fiber container. To measure the fiber diameters, a digital micrometer with a total range 116 

between 0 and 2.5 mm and a precision of 0.001 mm was used (Figure 2). Regarding fiber 117 

lengths characterization, an image processing technique was adopted through the following 118 

procedure: firstly, the fibers were distributed on a white board as batches in such a way as to 119 

ensure the fibers were isolated from each other. Then, pictures were captured for each batch 120 

utilizing a high-resolution camera. After that, these images were inserted into a CAD 121 

environment and scaled up to reflect the actual dimensions in millimeters. From CAD software 122 

tools, fiber lengths were measured.  123 

 124 

Results showed a bimodal distribution of the fibers’ diameters as illustrated in Figure 3. Around 125 

20.53%, 12.15%, 29.89%, and 15.27% of the fibers have a diameter about 0.2-0.25 mm, 0.15-126 

0.20 mm, 0.35-0.40 mm and 0.40-0.45 mm, respectively. With regards to fibers’ lengths, on the 127 

contrary, there is a unimodal distribution of this parameter where the majority of the fibers 128 

(around 63.15%) have a length range between 35 and 40 mm. This majority is distributed as 129 

follows: 24.01%, 21.71%, and 17.43% have a length range of 35-40 mm, 30-35 mm and 40-45 130 

mm, respectively.  131 

 132 



6 

 

Comparing and contrasting this geometrical characterization of fibers with those attempted in 133 

the previous studies, Caggiano et al. (2015) and Caggiano et al. (2017) indicated similar 134 

distributions where either bimodal or multimodal distributions and a unimodal distribution were 135 

obtained for the fibers’ diameters and lengths, respectively. Martinelli et al. (2015) and 136 

Caggiano et al. (2017) attributed the unimodal distribution of the fiber length to the uniform 137 

process by which the shredding machines cut the fibers whereas the multimodal/bimodal 138 

distribution of the fiber diameters results from the mixed types of tires i.e., passenger car, buses 139 

and truck tires. 140 

 141 

2.1.3 Other constituents 142 

Portland cement (CEM I 52.5 N) was used to bind the aggregates at a cement content of 7% by 143 

weight of aggregate and fibers. This was selected based on the highest cement content used in 144 

previous studies (Farhan et al. 2016) to stabilized the aggregate mixtures. The highest level was 145 

chosen to provide enough bond strength between fibers and the surrounding materials. The 146 

aggregate-cement mixture was moisturized utilizing tap water. 147 

 148 

2.2 Mix design 149 

As is well known, the performance of cement-stabilized aggregate is largely governed by its 150 

density which, in turn, partly depends on aggregate gradation. Consequently, the aggregate 151 

mixture was batched individually for each sample to ensure comparable specimens i.e., to 152 

eliminate any variability resulting from aggregate gradation change. Aggregate fraction sizes 153 

were blended in different proportions (13% of 20 mm, 18% of 14 mm, 16% of 10 mm, 13% of 154 

6 mm and 40% of dust) in such a way as to ensure production of Cement Bound Granular 155 

Mixture 2-0 described in BS EN 14227-1:2013. The fabricated gradation is shown in Figure 1.  156 

 157 

In their investigations, Shahid (1997) and later on Thompson (2001) used industrial steel fibers 158 

at a maximum volumetric content of 1%. Therefore, the same maximum fiber level was used 159 
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in this study. However, initial trials attempted during the course of this investigation showed a 160 

difficulty in homogeneous dispersion of the fibers at this maximum level due to the occurrence 161 

of balling and agglomeration. Consequently, the fiber content was limited to 0.75% by volume 162 

of aggregate. In addition to the reference mix, fiber-reinforced mixtures containing 0.25%, 163 

0.50% and 0.75% by volume of aggregate were studied. Similar fiber reinforcement levels have 164 

been investigated in concrete mixtures as reported in Aghaee et al. (2015). 165 

 166 

Since the aggregate was identical, in terms of type and gradation, with that used by Farhan et 167 

al. (2016), the same cement and water contents were adopted, namely 7% (by dry weight of 168 

aggregate) and 4.7% (by dry weight of aggregate and cement), respectively, for the reference 169 

mix containing no fibers. Concerning fiber-reinforced mixtures, cement and water contents 170 

were proportioned on the basis of the dry weight of aggregate and fibers and the dry weight of 171 

aggregate, cement, and fibers, respectively. Although volumetric proportioning of cement and 172 

water should in theory be adopted, especially in the light of the large differences between the 173 

specific gravities of fibers and aggregates, using a weight basis to determine these amounts is 174 

suitable for such low percentages of fibers, cement, and water. The differences are negligible 175 

and within the accuracy of the batch process taking into account that each sample was batched, 176 

mixed and compacted separately. A vibrating hammer was used for compaction of specimens 177 

as described in BS EN 13286-4:2003. 178 

 179 

To designate the different mixtures, two letters (C and F to indicate cement and fibers, 180 

respectively) are each followed by a number to indicate the component (either fibers or cement) 181 

content used. For instance, the mixture stabilized with 7% cement and reinforced with 0.5% 182 

fibers, will be described as C7F0.5. 183 

 184 

 185 

 186 
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2.3 Specimen fabrication and curing   187 

Mixing of various components was carried out manually. Dry aggregates of different fractional 188 

sizes were mixed with cement for one minute. After that, the designed water content was added 189 

and the wet aggregate-cement mixture was further mixed for two minutes. Finally, a further 190 

one-minute mixing was performed after fiber addition. 191 

 192 

The final mix was compacted in two layers using a vibrating hammer (Kango 638) in oiled steel 193 

molds to manufacture 100 mm x 100 mm cylindrical specimens.  The compacted specimens 194 

were left in their molds overnight and then demolded, wrapped with cling film and placed in 195 

wet plastic bags. After a 28-day curing period, samples were unwrapped and trimmed with a 196 

diamond saw to obtain a height of exactly 100 mm ready for testing (Figure 4). It can be seen 197 

from this figure that no pulling-out of the fibers occurred during the sawing process which 198 

might suggest a good bond and/or interlocking between the fibers and adjacent aggregate.   199 

 200 

2.4 Testing methodologies 201 

 202 

2.4.1 Tensile strength and density  203 

Cement-stabilized base courses within a pavement structure are always designed based on 204 

tensile stress at the bottom of the layer. Therefore, the effect of fiber reinforcement was 205 

evaluated in terms of tensile properties. Also, the classification of cement stabilized aggregate 206 

mixtures is conducted based on the tensile strength of the mixture as described by BS EN 207 

14227-1:2013. In this study, the indirect tensile test was performed at 28-days on an Instron 208 

testing machine with a capacity of 200 kN based on BS EN 13286-42:2003. Three of the 100 209 

mm dia. x 100 mm height specimens were manufactured and tested.  Indirect tensile strength 210 

(ITS) was computed as 211 

 ITS =
2P

πhd
                                                                                                                                                 (1)  212 
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In the above equation, ultimate load in Newtons and specimen thickness and diameter in 213 

millimeter are denoted by P, h and D, respectively. Density was measured using the water-214 

displacement method. 215 

 216 

2.4.2 Load-diametrical deformation curves and static elasticity modulus 217 

Simultaneously with ITS measurement, lateral deformations were captured using a linear 218 

variable differential transformer (LVDT) to construct the load-deformation relationships 219 

necessary to estimate modulus of elasticity and toughness. Figure 5 shows the instrumented ITS 220 

test setup used in this paper. Deformation was controlled at a rate of 0.5 mm/min. Based on BS 221 

EN 13286-43:2003 recommendations, 30% of the ultimate load and its corresponding 222 

deformation were used to estimate static modulus of elasticity. However, due to the differences 223 

in gauge distance resulting from the different LVDT arrangements between the above-224 

mentioned specification and that employed in this paper, Solanki and Zaman (2013)’s equation 225 

was adopted in moduli calculations instead of the one stated in BS EN 13286-43:2003, as 226 

follows:  227 

 228 

Et =
2P

π.D.h.∆H(D2+DG
2 )

{(3 + υ)D2. DG + (1 − υ) [DG
3 − 2D(D2 + DG

2 )tan−1 (
DG

D
)]}                   (2) 229 

 230 

where Et= static modulus of elasticity measured in indirect tensile mode, P= 30% of maximum 231 

sustained load; D=diameter of the specimen; h= thickness of specimen; ∆𝐻=lateral deformation 232 

at 30% of ultimate load; DG= gauge distance and 𝜐 = Poisson’s ratio. 233 

 234 

2.4.3 Absolute toughness and ductility  235 

To assess the load-bearing capacity in the post-peak zone or toughness of the reinforced 236 

mixtures, the area under the load-deformation curve was estimated (Shahid 1997). As reported 237 

by Sobhan and Mashnad (2000), such estimation takes into consideration the enhancement of 238 

both strength and ductility due to fiber reinforcement.  239 
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Ductility, on the other hand, was quantified in terms of the deformability index (Di) proposed 240 

by Park (2011) as 241 

 242 

 Di = ∆reinforced/∆unreinforced                                                                                                       (3) 243 

 244 

where ∆reinforced  and ∆unreinforced  are the deformations at ultimate load of fiber-reinforced and 245 

unreinforced specimens, respectively. 246 

 247 

3. Findings and discussion 248 

3.1 Effect of fibers on indirect tensile strength and density 249 

Figure 6 illustrates the effect of fiber reinforcement on the ITS value of cement-stabilized 250 

aggregate mixtures. Ultimate tensile strength improved by 22%, 40%, 50% due to fiber 251 

inclusion at volumetric contents of 0.25%, 0.5% and 0.75%, respectively. Despite the low 252 

cement content used in CSAMs compared with that of normal concrete, it seems that the 253 

interlocking with the aggregate particles represents another mechanism for activating the fiber 254 

reinforcement. In his study, Thompson (2001) used industrial steel fibers in cemented aggregate 255 

and reported a lower degree of improvement,  with about 30% and 40% improvement due to 256 

0.5% and 1% volumetric fiber contents, respectively. The greater enhancement reported in this 257 

paper can be attributed to the hybrid fiber reinforcement of different fiber lengths and diameters. 258 

This explanation was inspired from Betterman et al. (1995) who reported that the presence of 259 

hybrid fiber reinforcement ensures better performance. They considered that the improvement 260 

of tensile strength is governed by the presence of microfibers whereas the larger fibers are 261 

responsible for the enhancement in the post-peak zone. Another contributory factor in this 262 

greater enhancement is the degree of fiber dispersion inside specimen where, for the same fiber 263 

content, the number of fibers used by Thompson (2001) is much less than that used in this study. 264 

This is because the length and diameter of the industrial fiber used by the latter author is 60 mm 265 

and 0.9 mm, respectively, which are greater than these of fiber used here (Section 2.1). 266 
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Therefore, this led to better dispersion of the fiber in current study which means better internal 267 

stress resistance at both micro- and macro scale levels. 268 

 269 

These findings confirm that the use of cheap waste steel fibers can improve the tensile strength 270 

of cemented mixtures to a similar level or better than that achieved by relatively expensive 271 

industrial steel fibers. This leads to more economical reinforcement for this mixture type while 272 

still achieving improved mechanical performance. 273 

 274 

Regarding the measured density, fiber addition caused an increase in this parameter as shown 275 

in Figure 7. This is logical since the density of steel fibers is more than that of the limestone 276 

aggregate. Therefore, the maximum increase of 0.8% in density that occurred at 0.75% fiber 277 

content does not necessarily mean an increase in compaction efficiency but this increase could 278 

be due to the differences in specific gravities of mixture components (i.e., fiber and aggregate). 279 

Most importantly, incorporating of these steel fibers at the mentioned contents seems have a 280 

negligible effect on compaction efficiency of the stabilized mixture. In fact, calculating material 281 

packing changes (based on the overall density and fiber percentage changes) indicates that there 282 

is a small decrease in aggregate packing density (around 0.76%) although this may be within 283 

the inherent variability that can be expected. 284 

 285 

3.2 Effect of fibers on load-deformation curves and moduli of elasticity  286 

Figure 8 demonstrates the load-deformation relationships for different investigated mixtures. 287 

Unlike the unreinforced cement-stabilized aggregate mixtures (CSAMs) where the 288 

deformation-softening occurs immediately after the first crack formation, in all FRCSAMs 289 

there is a deformation-hardening zone following the first crack point. The deformation-290 

softening then occurred gradually. In addition, it can be seen that for the reinforced mixtures, 291 

the deformation at peak load is much higher than for unreinforced mixtures which indicates a 292 

more ductile behavior.  293 
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Reduced mixture stiffness were obtained with fibers incorporation; Figure 9 shows that the 294 

moduli of elasticity of the FRCSAMs are lower than that of the CSAM. Adding volumetric 295 

fiber content of 0.25%, 0.5%, and 0.75% reduced the modulus of elasticity to 57%, 75% and 296 

54% that of the unreinforced mixture. The fluctuation in this stiffness reduce may possibly be 297 

attributed to differences in fiber distribution. Nevertheless, the fibrous mixtures are always less 298 

stiff than the unreinforced materials.  299 

 300 

3.3 Effect of fibers on toughness and ductility 301 

In general, it can be inferred, based on the findings illustrated in Figure 10, that the greater the 302 

fiber-content the greater the toughness of the fiber-modified mixture. The range of toughness 303 

improvement is between 174 and 359%. This indicates that FRCSAMs tend to absorb more 304 

energy before failure compared with non-reinforced mixtures.  305 

 306 

Regarding ductility, Figure 11 shows that the deformation indices are always greater for 307 

reinforced mixtures as compared with those for mixtures containing no fibers. Compared with 308 

the unreinforced mixture, deformability increased 12, 10 and 7 times when fiber content of 309 

0.25%, 0.5%, and 0.75%, respectively were incorporated. The largest ductility occurred at 310 

0.25% fiber content, then a decrease was experienced at higher reinforcement levels. Kim et al. 311 

(2010) reported similar behavior when they studied different fiber levels in normal concrete 312 

mixtures. They concluded that the ductility was significantly improved after fiber inclusion and 313 

the best ductility occurred at the lowest investigated reinforcement level. The reason behind 314 

this behavior might be due to the relatively heavy reinforcement at 0.5% and 0.75% fiber 315 

content, which might restrain the specimen from showing more deformation at failure. 316 

 317 

3.4 Suggested fracturing mechanism 318 

A possible explanation for the observed behavior is that when the micro-cracks first develop, 319 

fibers tend to arrest their propagation and to reduce the stresses at cracks tips. This means that 320 
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the fibers absorb the energy generated to propagate these cracks. At this stage, the specimen 321 

still carries additional tensile load due to the combined effect of binder (cement) and aggregate-322 

fiber interlock, as clearly shown from load-deformation curves (Figure 8). At the same time, 323 

deformation occurs as a result of deterioration of the bond between fibers and adjacent materials 324 

and slippage of the fibers. With continuing load application, there is more energy dissipation to 325 

deteriorate the bond between fibers and their surrounding components or to fail those fibers in 326 

the path of a crack. Since fibers inhibit the propagation of cracks, other cracks tend to develop 327 

toward the weakest directions which, in turn, results in cracks branching and more dispersion 328 

of these cracks inside the fractured sample. After the ultimate load has been reached, the macro-329 

cracking stage begins, but a bridging effect due to fibers still exists. This would explain the load 330 

carrying capacity in the post-peak zone. Hence, it can be said that the fracture of FRCSAMs 331 

might be largely governed by the fiber distribution inside these mixtures. This suggested 332 

fracturing mechanism will be examined later.  333 

 334 

4 Damage assessment at mesoscale level 335 

The sensitivity of cement-stabilized aggregate mixtures to shrinkage or load-induced cracking 336 

represents one of the most important (if not the only) issue. Therefore, evaluation of the 337 

cracking patterns and damage characteristics is necessary to best evaluate and understand the 338 

usefulness of fiber reinforcement and also to support the proposed fracturing mechanism. This 339 

has been conducted quantitatively, at a mesostructure level, in terms of fractal analysis. As the 340 

uniformity of fiber distribution is expected to control both crack initiation and propagation and 341 

might lead, as reported by Zhang and Li (2009), to an improvement in the strength of the 342 

composite, the distribution of the steel fibers within the CSAMs has also been evaluated. 343 

  344 

To enable this analysis, the damaged samples were first x-rayed (Figure 12) using a mini focus 345 

system having an x-ray source of 300 kV and a linear detector. Five equally spaced CT scans 346 
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were captured for each sample at a resolution of 0.065 mm/pixel. Samples of these scans are 347 

illustrated in Figure 13. 348 

 349 

4.1 Fractal analysis, fracture energy, and their distributions 350 

In previous studies, fractal analysis has been used to investigate damage of concrete mixtures 351 

(Issa and Hammad 1994, Carpinteri et al. 1999, Yan et al. 2002, Guo et al. 2007, Erdem and 352 

Blankson 2013, Yang et al. 2017), asphaltic mixtures (Hassan 2012) and cement-stabilized 353 

mixtures (Farhan et al. 2016). Authors of these studies adopted the surface macro-crack or the 354 

fractured surfaces to estimate either one-dimensional (1D) or, more precisely, three-355 

dimensional (3D) fractal dimensions. Fractal dimension identifies, quantitatively, the 356 

irregularity of surface cracks which helps to identify the propagation patterns of these cracks. 357 

In the current study, due to the expected variations in fiber distribution, variation in the cracking 358 

patterns along the sample height is likely, which may necessitate, for better accuracy, the 359 

determination of the fractal dimension through the sample height rather than adopting the 360 

surface macro-crack used in past studies. Finding the 3D fractal dimension based on the 361 

fractured surface is impossible for the current study due to the local crushing and/or non-362 

splitting of the specimen (due to the fiber bridging effect) as shown in Figure 14. Therefore, a 363 

new methodology for estimating the 2D fractal dimension based on the combination of in-depth 364 

macro-crack and x-ray computed tomography is suggested and implemented in this paper for 365 

the first time. In this methodology, fractal dimensions were estimated from individual images 366 

of each sample through an image processing technique utilizing ImageJ software. The box-367 

counting method was employed for fractal dimension estimation. Then, the distribution of the 368 

fractal dimension along the sample height and the average value were calculated.  369 

 370 

Guo et al. (2007) proposed and used the following formula for rough estimation of the fracture 371 

energy from the computed fractal dimension:  372 

 373 



15 

 

Ws/Gf = a * (δ/a) 1-D
1-d                                                                                                                                                      (4) 374 

 375 

where the energy dissipated at the crack surface is denoted as Ws, At the observation scale (δ) 376 

the fracture energy is Gf, a is the euclidean length which is taken as the diameter of the specimen 377 

and D1-d is the estimated fractal dimension. Therefore, the corresponding fracture energies were 378 

also calculated and the fracture energy profile along the sample and the average value were also 379 

estimated.  380 

 381 

4.2 Fibers distribution and cracking density 382 

An image processing technique in ImageJ software was utilized to estimate fiber distribution 383 

and cracking density along the specimen height. Firstly, the CT scan images for each sample 384 

were inserted into the ImageJ environment. Cropping, filtration and image enhancement were 385 

conducted using software tools. For a meaningful comparison, the inserted images were 386 

calibrated to convert dimensions from pixels to actual dimensions. Next, different thresholds 387 

were used to separate the fibers from the other components and then to separate the cracking 388 

area. In this process, since one of the components of the X-ray images is the air-voids, it was 389 

difficult to separate them from the cracked area where both have similar dark color (Figure 13). 390 

To overcome this problem, these air-voids were tracked and deleted before binarization of the 391 

CT scan images.  392 

 393 

4.3 Effect of fibers on damage and mesostructural properties 394 

Figure 13 and Figure 14 show the cracking patterns of different fiber contents. It can be seen 395 

that the cracking seems of less width as the fiber content increases. This may suggest that the 396 

load transfer efficiency is much better in the case of reinforced as compared to non-reinforced 397 

mixtures. This load carrying capacity, in fact, comes from two components. The first is the 398 

crack bridging effect of the fibers that ties the cracked blocks together. The second is the 399 

improved aggregate interlock across the cracks due to limited crack width. This component is 400 
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highly influenced by crack width as reported by Shahid (1997). Another important conclusion 401 

that can be inferred from Figure 14 is the mode of failure for different mixtures. Failure is a 402 

combination of tensile failure (due to the maximum tensile stress occurring perpendicularly to 403 

the loading strip) and local crushing underneath the loading strip. This suggests that the indirect 404 

tensile test, in the case of fibre-reinforced mixtures, might underestimate the tensile strength of 405 

those mixtures and/or the tensile stress carrying capacity beyond the ultimate strength. The 406 

apparent reduced capacity (see Figure 8) after peak load might be due to wedge formation/local 407 

crushing at the loading point (Figure 14) rather than loss of tension-sustaining capacity. The 408 

behavior in the post-peak zone appears to be predominantly governed by this local 409 

crushing/wedge formation which makes it difficult to quantify the actual toughness as reported 410 

by Thompson (2001). Thus, the actual toughness might be underestimated. 411 

 412 

Regarding fiber distribution along the specimen height, it can clearly be seen from Figure 15a 413 

that the more the fiber content, the more the fluctuation in the distribution of fibers. It seems 414 

that the presence of fibers caused a disorder in cracking regardless of fiber content, as shown 415 

in Figure 15b. Fractal dimension distributions through different samples are illustrated in Figure 416 

15c. This figure reveals that the addition of fibers increases the fractal dimension which 417 

confirms an improvement in the dispersed nature of the cracks. Regarding the fractal dimension 418 

distributions, the reference stabilized mixture showed a lower degree of variability along the 419 

sample height as compared with fiber-reinforced mixtures. The distribution in the latter 420 

mixtures fluctuated, which in turn indicates variability in the damage patterns. These findings 421 

might suggest a change to the cracking patterns after fiber-reinforcement of stabilized mixtures 422 

and confirms an increase in crack tortuosity. Yan et al. (2003) attributed the higher fractal 423 

dimensions to the higher degree of crack disorder during load application. This supports the 424 

suggested fracturing mechanism (Section 3.4) 425 

 426 
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Fracture energy estimated on the basis of in-depth macro-cracks also increased as shown in 427 

Figure 15d. This seems consistent with the improvement that occurred in the toughness or 428 

absorbed energy computed on the basis of load-deformation relationships (Figure 10). Apart 429 

from the variability within fiber-reinforced mixtures, both approaches confirm higher fracture 430 

energy in FRCSAMs compared with non-reinforced CSAMs. Table 1 illustrates the average 431 

fractal dimensions, fracture energies and cracking densities for different mixtures. The general 432 

trend observed from this table is that the addition of fibers causes an increase in the above-433 

mentioned parameters. Fractal dimension is well correlated with macro-structural properties 434 

(ITS and modulus of elasticity) as shown in Figure 16. In one study by Yan et al. (2002) on the 435 

flexural-induced cracking of fiber-reinforced concrete, fractal dimension estimated on the basis 436 

of surface-macro cracks was also well correlated with both compressive and flexural strengths. 437 

 438 

Overall, the tortuous cracks combined with the fiber bridging effect results in an improvement 439 

in the load transfer capacity after crack initiation and formation. The distribution of cracks over 440 

a greater area rather than individual, concentrated cracks might help to reduce the reflectivity 441 

of the cracks which will lead to less need for maintenance and should improve the riding quality 442 

and ensure more durable pavements. 443 

 444 

5 Practical implications 445 

In terms of stress ratio (the applied stress at the bottom of a stabilized layer divided by its 446 

strength) as used in pavement design in accordance with the mechanistic-empirical philosophy, 447 

an increase in tensile strength due to steel fiber inclusion will cause a decrease in stress ratio 448 

and thus an increase in fatigue life or decrease in pavement thickness. Regarding load transfer 449 

capacity, the bridging effect of the fibers will provide an excellent load transfer mechanism 450 

between pavement blocks after crack formation. Furthermore, such a bridging effect will also 451 

keep cracks narrow which, in turn, leads to less reflection cracking potential; hence, a delay in 452 

the deterioration of the pavement structure and also less frequent maintenance. Considering the 453 
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high cost of industrial fibers, incorporating waste fibers is an attractive option and can be 454 

justified from two points of view. Firstly, the cost of such waste fibers is much less than 455 

industrial fibers. Secondly, the use of fibers will ensure savings in layer thickness and at the 456 

same time reduce maintenance frequency. 457 

 458 

6 Conclusions 459 

The impact of sustainable reinforcement of cement-stabilized aggregate mixtures with recycled 460 

steel fibers was investigated. The performance was evaluated in terms of tensile properties. 461 

Cracking damage and internal structure were quantified at a mesoscale level to better 462 

understand the behavior and fracture mechanism in combination with the macro-scale 463 

properties. The main conclusions inferred from the study could be summarized as follows: 464 

1. Indirect tensile strength improved noticeably due to recycled steel fiber inclusion. ITS 465 

increased linearly with the amount of fibers. From a mechanistic pavement design point 466 

of view, this will reduce the required pavement thickness or reduce the maintenance needs. 467 

Regarding the rigidity of the cemented layer, fiber addition produces less stiff materials 468 

such that the elastic modulus reduced after fiber reinforcement.  469 

 470 

2. Toughness and deformability of the fiber-reinforced cemented composite improved 471 

significantly, which confirms that it is a more ductile material and suggests improved 472 

fatigue behavior. Post-failure decay of pavements constructed of such a material can be 473 

expected to be less rapid, which may be helpful in maintaining lifeline access when 474 

maintenance intervention is not forthcoming. 475 

 476 

3. Fractal analysis revealed a greater fractal dimension when fiber-reinforced mixtures 477 

compared with mixtures without fibers. This conclusion is valid through the sample height, 478 

indicating more homogenous crack dispersion.  479 

 480 
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4. Despite the lower cement content (as compared with normal concrete), the fibers still 481 

improve mechanical properties and cracking behavior. This might suggest that the bond 482 

between fibers and surrounding materials is not the only mechanism of improvement, but 483 

that the interaction and interlocking with the aggregate is another mechanism enhancing 484 

behavior. Therefore, it is recommended to quantify the extent to which these two 485 

mechanisms and their interaction might affect the final performance of the reinforced and 486 

compacted cement-stabilized mixtures. 487 

 488 

5. No direct relation was observed between fiber distribution and damage properties. 489 

Nevertheless, the presence of fibers along the sample height caused disordered cracking 490 

and more dispersion of these cracks which may reduce reflection cracking in the pavement 491 

structure. This was supported by quantitative characterization of the internal structure.  492 

 493 

6. The suggested methodology for calculating the fractal dimensions along the specimen on 494 

the basis of CT scans seems effective and more representative for quantitative 495 

identification of the cracking patterns and propagation and also for accurate estimation of 496 

fractal dimension and fracture energy distribution along the specimen. 497 

 498 

 499 

 500 
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Figure Captions 509 

Figure 1: Gradation of individual aggregate fraction sizes, aggregate mix and specification. 510 

Figure 2: Recycled steel fiber appearance and diameter measurement process 511 

Figure 3: Fibre geometrical properties: a. fiber lengths; b. fiber diameters 512 

Figure 4: Specimens after demoulding and trimming. 513 

Figure 5: Close-up view of indirect tensile testing setup. 514 

Figure 6: Effect of fiber content on indirect tensile strength. 515 

Figure 7: Measured densities for fiberized mixtures. 516 

Figure 8: Load-diametrical deformation curves for different fiber levels: a. C7F0; b.C7F0.25; 517 

c. C7R0.5; d.C7R0.75 (three specimens for each mix). 518 

Figure 9: Elastic modulus for different fiber contents. 519 

Figure 10: Absolute toughness for investigated mixtures. 520 

Figure 11: Deformability indices for various investigated mixtures. 521 

Figure 12: X-raying tensile-induced failed samples. 522 

Figure 13: X-ray sample images of failed specimens: a. C7F0; b. C7F0.25; c. C7F0.5 and d. 523 

C7F0.75 524 

Figure 14: Failure modes for various investigated mixtures:  a. C7F0.25; b.C7F0.5; c. C7R0.75 525 

Figure 15: Damage and mesostructure properties: a. Fiber distributions, b. cracking density 526 

distributions, c. fractal dimension distributions and d. Fracture energy distributions 527 

Figure 16: Correlation of fractal dimension with ITS and elastic modulus. 528 
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Figure 1: Gradation of individual aggregate fraction sizes, aggregate mix and specification. 
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Figure 2: Recycled steel fiber appearance and diameter measurement process. 
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Figure 3: Fibre geometrical properties: a. fiber lengths; b. fiber diameters. 
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Figure 4: Specimens after demoulding and trimming. 
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Figure 5: Close-up view of indirect tensile testing setup. 
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Figure 6: Effect of fiber content on indirect tensile strength. 
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Figure 7: Measured densities for fiberized mixtures. 
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Figure 8: Load-diametrical deformation curves for different fiber levels: a. C7F0; b.C7F0.25; 

c. C7R0.5; d.C7R0.75 (three specimens for each mix). 
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Figure 9: Elastic modulus for different fiber contents. 
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Figure 10: Absolute toughness for investigated mixtures. 
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Figure 11: Deformability indices for various investigated mixtures. 

 



32 

 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

Figure 12: X-raying tensile-induced failed samples. 
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Figure 13: X-ray sample images of failed specimens: a. C7F0; b. C7F0.25; c. C7F0.5 and 

d. C7F0.75 
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Figure 14: Failure modes for various investigated mixtures:  a. C7F0.25; b.C7F0.5; c. C7R0.75. 
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Figure 15: Damage and mesostructure properties: a. Fiber distributions, b. cracking density 

distributions, c. fractal dimension distributions and d. Fracture energy distributions. 
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Mixture 

designation 

Fractal 

dimension 

Ws /Gf , mm Cracking 

density, % 

C7F0 1.1276 146.62 1.50 

C7F0.25 1.2314 202.52 5.20 

C7F0.50 1.2266 198.27 4.01 

C7F0.75 1.3156 264.10 4.86 

Table 1: Average values of mesostructure properties for different fiber reinforcement levels. 
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Figure 16: Correlation of fractal dimension with ITS and elastic modulus. 
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