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Learning Position Controls for Hybrid Step Motors:
from Current-fed to Full-Order Models

Valerio Salis, Nicolas Chiappinelli, Alessandro Costabeber, Pericle Zanchetta,
Stefano Bifaretti, Patrizio Tomei, Cristiano Maria Verrelli

Abstract— The experimental comparison of two different
global learning position controls (namely, ‘adaptive learning’ and
‘repetitive learning’ controls) for hybrid step motors performing
repetitive tasks has been recently presented in the literature.
Related benefits and drawbacks have been successfully analyzed
on the same robotic application. However, the design of the two
aforementioned learning controls - though relying on a rigorous
stability analysis - are based on a simplified current-fed model
of the motor. They cannot achieve precise current tracking due
to the mere presence of PI control actions in the outer current
control loops. The aim of this paper is to enrich and update
the results of the above comparison in the light of the latest
contributions that generalize the theoretical design to the full-
order voltage-fed motor models of hybrid step motors. Learning
actions are now included in the outer current control loops: they
generalize the corresponding PI actions to the periodic scenario
and allow to solve a control problem whose solution was seeming
very difficult to be obtained.

Index Terms— Permanent magnet step motors, learning con-
trol, position tracking.

I. I NTRODUCTION

Stepper motors are electro-mechanical devices that convert
‘electrical pulses’ into discrete mechanical movements. One
among the most significant advantages of step motors (accu-
racy and repeatability, high efficiency, power density and high
torque to inertia ratio, excellent durability and serviceability,
absence of external rotor excitation and windings, excellent
response to starting/stopping/reversing commands) is the abil-
ity to be controlled in an open loop fashion. Position is known
simply by keeping track of the input step pulses. One relevant
type of step motors is the hybrid one: it simultaneously
combines the features of both the permanent magnet and
variable reluctance type step motors. The rotor is multi-toothed
(like the variable reluctance type one) and contains an axially
magnetized concentric magnet around its shaft. The teeth on
the rotor provide a suitable path that guides the magnetic flux
to preferred locations in the air-gap. This in turn increases
the detent, holding, dynamic torque characteristics of the
motor. However, when one step pulse is applied to the step
motor (especially when moving in a large step increment)
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overshoots and ringing can arise. This is certainly undesirable
in applications in which high-precision position tracking is
required. Furthermore, step motors can often exhibit resonance
behaviours at certain step rates [1]. Compensation of torque
pulsations by feedback actions thus constitutes an attractive
solution [2]-[8]. The non-uniformity in the developed torque
due to the non-sinusoidal flux distribution in the air-gap [9] -
which causes speed oscillations and deteriorates the system
performance especially at low speeds - is however to be
explicitly taken into account in the control design in order
to achieve high-precision position tracking.
With this respect, advanced learning control techniques are
actually able to take into account such non-uniformity [10]-
[12]. The only constraint is to consider position reference
profiles that are periodic signals with known period. Learning
controls aim in fact at performing a system inversion by re-
constructing the unknown input reference corresponding to the
periodic position reference. Therefore, in contrast to standard
model-based robust adaptive techniques [13] or to standard
adaptive or extended-state observer-based controls [14]-[16],
they require neither high gains in the inner speed/position
control loops nor restriction of model uncertainties to be
modelled by finite-dimensional linear or nonlinear exo-systems
with known dimension. In this context, two main approaches
to learning control can be adopted, which require neither
torque transducers nor resetting procedures1: i) the ‘adaptive
learning’ approach in [12]; ii) the ‘repetitive/iterative learning’
approach in [11], [17]-[19]. While the adaptive learning ap-
proach consists in interpreting the uncertain reference input as
an uncertain periodic signal with known period whose finite
Fourier expansion is to be estimated2, the repetitive learning
approach uses the input recorded during the previous trial, in

1Resetting procedures are typically required by standard iterative learning
controls in quite a number of applications involving robotic mechanisms, batch
reactors and assembly lines.

2The periodic time functionπ(t) (with period T∗) is identified by devel-
oping it in Fourier series as

π(t) =

+∞X
l=0

σlϕl(t)

and by estimating theM (constant) coefficients of its finite Fourier expansion

M−1X
l=0

σlϕl(t)
.
= σ[M ]T ΦM (t)

where: σ[M ] = [σ0, . . . , σM−1]T , ΦM (t) = [ϕ0(t), ..., ϕM−1(t)]T ,

ϕ0(t) = 1, ϕ2j(t) =
√

2 cos

�
jt 2π

T∗

�
, ϕ2j−1(t) =

√
2 sin

�
jt 2π

T∗

�

(j = 1, ..., (M − 1)/2).
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conjunction with the run-time tracking error, to generate the
input signal to be exerted in each trial. The successful use of
such approaches in position tracking control of hybrid step
motors has been however limited to the restrictive current-fed
model. In the experimental comparison in [10], benefits and
drawbacks of the two learning approach are in fact analyzed
on the same robotic application by just including PI control
actions in the outer current control loops. Such PI control
actions cannot achieve precise current tracking. The reasons
for this theoretical limitation were constituted by the several
technical difficulties arising when the full-order voltage-fed
model of the hybrid step motor is considered in the stability
analysis:

• an uncertain function multiplies the rotor speed derivative
in the motor model;

• unstructured uncertainties appear in the current dynamics.

Such technical difficulties have been recently solved in [11]
and [12]. In particular:

• the global results achieved in the current-fed case become
semi-global in the voltage-fed one;

• the resulting innovative control design and stability analy-
sis necessarily involve more than one learning estimation
scheme;

• learning actions - being crucially included even in the
outer current control loops - generalize the PI actions to
the periodic scenario and allow for convergence to zero
of the current tracking errors.

The aim of this paper is to enrich and update the results of
the experimental comparison in [10] in the light of the afore-
mentioned contributions in [11] and [12] (just merely contain-
ing simulation results). The motor application described in [10]
is again used for the comparison: a metal bar link connected
to the rotor shaft with a brass ball at the free end - reproducing
the behaviour of a position-dependent single-link robotic load
- is required to track a known periodic position reference.
Experimentally applying to the same specific real problem the
latest theoretical advances in learning position control theory
for full-order model step motors allows us to quantitatively
and qualitatively extend the comparison in [10] by studying
in detail the effects of different features and requirements in
a rather complex scenario.

II. DYNAMIC MODEL

Assume that both the stator self inductance variations with
position and the mutual inductance between stator windings
are negligible, whereas the non-sinusoidal flux distribution
in the air-gap is modeled by the higher order harmonics in
the mutual inductance terms (between the jth phase and the
fictitious rotor winding). The full-order dynamics of a hybrid
step motor with two phases in the(d, q) reference frame
rotating at speedNrω and identified by the angleNrθ in the
fixed (a, b) reference frame attached to the stator (θ is the rotor
position,ω is the rotor speed andNr is the number of rotor

teeth) are then given by [11] (see [13] for model derivation):

dθ(t)
dt

= ω(t)

hp(θ(t))
dω(t)

dt
= −αp(θ(t))− βp(θ(t))ω(t)

+cp(θ(t))id(t) + iq(t)
did(t)

dt
= − R

L0
id(t) + Nriq(t)ω(t)

−ω(t)
L0

ηd(θ(t)) +
1
L0

ud(t) (1)

diq(t)
dt

= − R

L0
iq(t)−Nrid(t)ω(t)

−ω(t)
L0

ηq(θ(t)) +
1
L0

uq(t)

where

hp(θ) =
J

ifNr

 n∑
j=1

jLmj cos[(1− j)Nrθ]

−1

αp(θ) =
hp(θ)

J

TL(θ) +
Nri

2
f

2

n∑
j=4

jLfj sin[jNrθ]


βp(θ) =

Dhp(θ)
J

cp(θ) =
hp(θ)ifNr

J

n∑
j=2

jLmj sin[(1− j)Nrθ]

ηd(θ) = −ifNr

n∑
j=2

jLmj sin[(j − 1)Nrθ]

ηq(θ) = ifNr

n∑
j=1

jLmj cos[(j − 1)Nrθ]

and: (id, iq) are the stator current vector(d, q) components;
(ud, uq) are the stator voltage vector(d, q) components;
n ≥ 4 is a positive integer;D is the friction coefficient;
J is the rotor inertia;TL(·) is the load torque;if is the
fictitious rotor current provided by the permanent magnet;
R and L0 are the stator windings resistance and the self
inductance, respectively; the harmonics

∑n
j=1 Lmj cos[jNrθ]

and
∑n

j=1 Lmj cos
[
jNrθ − π

2

]
model the non-sinusoidal flux

distribution in the air-gap; the term
Nri2f

2

∑n
j=4 jLfj sin[jNrθ]

represents the disturbance torque due to cogging; the param-
etersLmj , 2 ≤ j ≤ n (which are zero under the standard
assumption of sinusoidal flux distribution) are much smaller3

thanLm1. All the (constant) system parameters (including the
numbern of harmonics) along with the load torque function
are here allowed to be uncertain excepting for the number of
rotor teethNr and the stator windings self inductanceL0.

III. E QUIVALENT PERIODIC DISTURBANCES

Since a non-zeroid only contributes to torque ripples, it
is desirable to set theid-referencei∗d = 0, while choosing

3The direct-axis currentid does not thus significantly contribute to torque
production, whereas the quadrature-axis currentiq is assigned to produce the
required torque.



3

the iq-referencei∗q to produce the desired torque reference.
Define the (back-stepping-based) rotor speed reference (kθ is
a positive control parameter):

ω∗ = −kθeθ + θ̇∗ (2)

leading to the rotor position and speed tracking errors:

eθ = θ − θ∗

eω = ω − ω∗
.= ω + kθeθ − θ̇∗. (3)

Accordingly obtain the rotor position error dynamics:

ėθ = −kθeθ + eω. (4)

Then express the uncertain function

fc(θ, ω) = αp(θ) + βp(θ)ω (5)

as

fc(θ, ω) = q0c(θ∗, θ̇∗, θ̈∗)− hp(θ)θ̈∗ + gc(eθ, eω, t)
+hp(θ)kθeω − hp(θ)k2

θeθ (6)

with

q0c(θ∗, θ̇∗, θ̈∗) = αp(θ∗) + βp(θ∗)θ̇∗ + hp(θ∗)θ̈∗

gc(eθ, eω, t) = −hp(θ)kθeω + hp(θ)k2
θeθ

+αp(θ)− αp(θ∗) + βp(θ∗)(eω − kθeθ)
+[βp(θ)− βp(θ∗)]ω
+[hp(θ)− hp(θ∗)]θ̈∗. (7)

Due to the assumption that the position reference signal is
T∗-periodic,

qc(t) = q0c(θ∗(t), θ̇∗(t), θ̈∗(t)) (8)

is a periodic function with known periodT∗. It constitutes the
uncertain periodic input reference for the currentiq(t) that
achieves perfect tracking forid = 0 and for compatible initial
conditionsθ(0) = θ∗(0), ω(0) = θ̇∗(0). Similarly, introduce
the functionsqd(t) andqq(t) defined as

qd(t) = θ̇∗(t)ηd(θ∗(t))
qq(t) = θ̇∗(t)ηq(θ∗(t)) + Rqc(t), (9)

which affect the stator current dynamics and are also periodic
with known periodT∗.

IV. T HE TWO LATEST LEARNING CONTROLS

In this paper we report the state feedback learning controls
in [11] and [12] for system (1). They guarantee rotor position
tracking of a reference signalθ∗(t), which is assumed to
belong to the following class:
• θ∗(t) is a sufficiently smooth periodic function with

known periodT∗ (i.e. θ∗(t) = θ∗(t + T∗), ∀ t ≥ −T∗),
with bounded time derivativesθ∗(i)(t) (i = 1, 2) for all
t ∈ [0, T∗).

Such learning control algorithms4 - with the terms character-
izing the adaptive learning control to appear as overbraces -
read:

4Robustifying terms in [11], [12] are neglected along with certain non-
necessary(eθ, eω)-feedback terms in the definition ofuq that are however
used, for the sake of completeness, in the experiments.

i) the inner rotor position/speed control loop

i∗q(t) = −kωeω(t)− kveθ(t) +

ρ̂[N ]T(t)ΦN (t)︷ ︸︸ ︷
satBq (q̂c(t− T∗))

eθ = θ − θ∗, eω = ω + kθeθ − θ̇∗ (10)

ii) the outer stator current vector control loop

ud(t) = L0

[
−Nrω(t)iq(t)−

kid

rd
ei,d(t)

]

+

α̂[Md]T(t)ΦMd
(t)︷︸︸︷

q̂d(t) (11)

uq(t) = L0

[
Nrω(t)id(t)−

kiq

rq
ei,q(t)

+

d
dt ρ̂[N ]T(t)ΦN (t)︷ ︸︸ ︷

d
dt

satBq
(q̂c(t− T∗))

]

+

δ̂[Mq ]T(t)ΦMq (t)︷︸︸︷
q̂q(t)

in which ei,d = id − i∗d = id, ei,q = iq − i∗q are the
stator current tracking errors.

The estimateŝqc(t), q̂d(t), q̂c(t) of the periodic functionsqc(t),
qd(t), qq(t) are provided by the repetitive learning estimation
schemes:

q̂c(t) = satBq
(q̂c(t− T∗))− µqϕT∗(t)Fq(t)

q̂c(t) = 0, ∀ t ≤ 0 (12)

Fq(t) = eω(t) + rqsgn[bc(θ(t))]ei,q(t)
bc(θ(t)) = kωL0 −Rhp(θ(t));

and

q̂d(t) = satBqd
(q̂d(t− T∗))− µαϕT∗(t)ei,d(t)

q̂d(t) = 0, ∀ t ≤ 0
q̂q(t) = satBqq

(q̂q(t− T∗))− µδϕT∗(t)ei,q(t)
q̂q(t) = 0, ∀ t ≤ 0 (13)

in the repetitive learning control and by the adaptive learning
estimation schemes:

˙̂ρ[N ] = Proj
[
−µqΦNeω, ρ̂[N ], νρ, Bq

]
‖ρ̂[N ](0)‖ ≤ Bq√

N
(14)

and5

˙̂id = Nrωiq +
1
L0

ud −
α̂[Md]T ΦMd

L0
+ kedee,d

˙̂iq = −Nrωid +
1
L0

uq −
δ̂[Mq]T ΦMq

L0
+ keqee,q

˙̂α[Md] = Proj
[
−µα

ΦMd

L0
ee,d, α̂[Md], να, Bqd

]
‖α̂[Md](0)‖ ≤ Bqd

5The subsequent adaptive estimation scheme resort to(̂id, îq) as auxiliary
variables.
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˙̂
δ[Mq] = Proj

[
−µδ

ΦMq

L0
ee,q, δ̂[Mq], νδ, Bqq

]
(15)

‖δ̂[Mq](0)‖ ≤ Bqq

ee,d = id − îd, ee,q = iq − îq

in the adaptive learning control. The above control algorithms
depend on:

• the positive control parameterskω (chosen in the repeti-
tive learning control to guarantee thatbc(θ(t)) is different
from zero for anyt ≥ 0) andkv, kθ, rd, rq, kid, kiq, µq,
µα, µδ;

• the known positive boundsBq, Bqd, Bqq on |qc(t)|,
|qd(t)|, |qq(t)|, respectively;

• the saturation functionsatMξ
(·) : R → [−Mξ−δs,Mξ +

δs], which is a classC1 odd increasing function satisfying
(δs is an arbitrary positive real)satMξ

(q) = q for any
q ∈ (0,Mξ], limq→∞ satMξ

(q) = Mξ+δs and|q1−q2| ≥
|q1 − satMξ

(q2)| for any |q1| ≤ Mξ, q2 ∈ R;
• the function ϕx(·) : R+

0 → [0, 1] (x > 0), which
is a classC1 increasing function fort ∈ [0, x] (with
ϕx(0) = ϕ̇x(0) = 0, ϕ̇x(x) = 0, ϕx(t) = 1 for
any t ≥ x) endowing the above estimates with suitable
continuity properties (in accordance with the expressions
(12)-(13) when timet approaches zero);

• the classical projection algorithmProj[ξz, ẑ, νz, Bz] in
[12], which is used to modify the adaptation law˙̂z = ξz

into ˙̂z = Proj[ξz, ẑ, νz, Bz] in order to constrain, for any
t ≥ 0, the vector estimatêz(t) into the ball with center
at the origin and radius equal toνz + Bz (νz > 0).

Comparative theoretical remarks

• The strategy adopted by both the proposed learning
controls consists in compensating torque pulsations by
feedback actions in order to achieve high precision posi-
tion tracking6.

• Both the proposed learning controllers feed back the
signal:

−kωeω(t)− kveθ(t) = −(kv + kωkθ)eθ(t)− kω ėθ(t),

which corresponds to a PD action on the rotor position
tracking error being able to stabilize the(eθ, ėθ)-second
order system in companion-like form. They also include
the plug-in signalssatBq (q̂c(t− T∗)) or ρ̂[N ]T(t)ΦN (t),
which generalize to the periodic scenario the integral ac-
tion −ki

∫ t

0
eθ(τ)dτ that is typically used to compensate

the constant disturbances affecting the rotor speed error
dynamics.

• The learning estimation schemes in the outer stator cur-
rent control loop replace the integral actions on the stator
current tracking errors. The repetitive learning estimation
schemes in fact reduce - forT∗ → 07 - to the classical
integral actions when saturation andϕT∗ functions are

6This does not necessarily imply torque ripple reduction.
7A constant signal is a periodic signal characterized by any arbitrarily small

period, so that a repetitive learning estimation scheme with any arbitrarily
small real as period can be successfully adopted to learn a constant signal
(see [20]).

Fig. 1. Block diagram describing the repetitive learning control scheme in
(2)-(3), (10)-(13).

neglected and the learning gains are multiplied byT∗.
The adaptive learning estimation schemes, on the other
hand, reduce to the classical integral actions when the
projection algorithm is neglected and onlyϕ0 is consid-
ered.

Figures 1 and 2 report the block diagrams for both the
learning controllers presented in this section. They describe
the structure of the proposed control schemes and highlight the
improvements with respect to the previous solutions derived
for current-fed motors. In particular, the content of red dashed
boxes - describing the outer current control loops - replaces
the PI control actions of [10] (see also [19]).

Tuning issues

The above learning controls rely on design parameters to
be tuned.
• The control parameterskv, kθ, kω characterize the PD

feedback action on the the position tracking erroreθ(t).
In particular, the parameterkθ characterizes theeθ(t)-
feedback term in the back-stepping definition of the ref-
erenceω∗(t) = −kθeθ + θ̇∗ in (10), while the parameter
kω plays an analogous role in the definition ofi∗q in
(10). The larger such parameters are chosen, the stronger
the corresponding feedback actions on the(eθ(t), eω(t))-
error dynamics result.

• The parametersµq, µα, µδ are the learning gains in
(12)-(13) and (14)-(15). The larger such parameters are
chosen, the larger the influence of the correction terms on
the corresponding estimate behaviour results. They play
a role that extends to the periodic case the one played by
the integral action gains.
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Fig. 2. Block diagram describing the adaptive learning control scheme in
(2)-(3), (10)-(11), (14)-(15).

Pad́e approximants for the repetitive learning control

When the delay terms are approximated as in [17] by
properly using the Padé rational functions (see Remark 3
and stability/convergence implications therein), we obtain
learning estimation schemes with inputsFq, ei,d, ei,q and
outputsq̂c, q̂d, q̂q, respectively, which are linear and bounded-
input bounded-output (the saturation functions along with the
ϕT∗(·)- functions are no longer required). Here, no first order
filters are involved (so thatα = 0 in [17]), while, for the sake
of clarity, the same Padé approximants with odd orderm are
used for the three learning estimation schemes (see [17] for
comments on the role ofm and [18] for a relevant robotic
application). In particular, the resulting control is guaranteed
to be bounded and, when compared to (10)-(13), involves (s
is the complex variable):

Λ(s) =
β

1 + β
(P[m,m](s) + 1)Q̂c(s)

M(s) = sΛ(s) (16)

in place of satBq (q̂c(t − T∗)) and its time derivative
d
dt satBq

(q̂c(t− T∗)) in (10)-(11), respectively, with the mod-
ified linear learning estimation schemes in place of (12)-(13)8:

Q̂c(s) = −dp(s)
qπ(s)

µqFq(s)

Q̂d(s) = −dp(s)
qπ(s)

µαEi,d(s) (17)

8Q̂c(s), Q̂d(s), Q̂q(s), Fq(s), Ei,d(s), Ei,q(s) are the Laplace trans-
forms of the Laplace transformable signalsq̂c(t), q̂d(t), q̂q(t),Fq(t), ei,d(t),
ei,q(t), respectively.

Q̂q(s) = −dp(s)
qπ(s)

µδEi,q(s)

incorporating the[m,m]-Pad́e approximant ofe−sT∗ :

P[m,m](s) =
Pm(−sT∗)
Pm(sT∗)

.=
np(s)
dp(s)

. (18)

Here Pm(sT∗) denotes
∑m

k=0

(
m
k

)
(2m−k)!
(2m)! (sT∗)k, while

β < 1 is such thatqπ(s) = dp(s)−βnp(s) has all its roots in
C−. It is relevant to notice that, forµq = µ̄qT∗, µα = µ̄αT∗,
µδ = µ̄δT∗, β = 1, we get:

T∗
−1(1− P[m,m](s))Q̂c(s) = −µ̄qFq(s)

T∗
−1(1− P[m,m](s))Q̂d(s) = −µ̄αEi,d(s)

T∗
−1(1− P[m,m](s))Q̂q(s) = −µ̄δEi,q(s) (19)

with the limit of the previous left-hand-sides forT∗ → 0
being equal tosQ̂c(s), sQ̂d(s) and sQ̂q(s), respectively and
Λ(s) converging to Q̂c(s). In other words, forT∗ → 0
(corresponding to the case of constant referencesθ∗), even the
three above Padé-based learning estimation schemes reduce to
simple integral actions (see the related comparative remarks).

V. THEORETICAL DISCUSSION

We shall compare in the next experimental section the adap-
tive learning control with the non-infinite-memory (stabilized)
version of the repetitive learning control. While the key-idea
of approximating infinite-dimensional exo-systems by finite-
dimensional ones is implicitly underlying the adaptive learn-
ing control approach, the finite-dimensional approximation
of e−sT∗ by the [m,m]-Pad́e approximantP[m,m](sT ) takes
place at a different design level, that is after the control design
and not before it. The resulting non-infinite-memory approxi-
mations of the repetitive estimation schemes constitute linear
time-invariant finite-dimensional dynamic systems: they are
described by transfer functions exhibiting all their poles with
negative real part9, so that typical long term instability issues
of classical repetitive learning controls due to high frequency
disturbance noises are avoided. In digital implementations, the
continuous-time state differential equations of the realization
for the proper rational functione−sT∗ (approximating theT∗-
delay line in the repetitive learning estimation scheme) are
approximated by discrete-time state difference equations. Such
difference equations involve the storage, in the case of first
order Euler approximations, of a number of values equal to
the corresponding dimension of the state and a computational
cost that grows proportionally to the above dimension. The
dimension of the state grows with the Padé approximation
order m, while playing a role similar to the one played by
the number of stored values at each trial in [10]. The larger
m is (exactly like the number of stored values at each trial
in [10] or the numberM of sinusoidal basis functions in
the adaptive learning approach described in footnote 2), the
smaller is the approximation error in reproducing the internal

9This is in contrast to repetitive estimation schemes that use a finite number
of stored values (see [10]) and that would have here required high-order
polynomials to approximate the delay-signal.



6

model by the corresponding control scheme. Again, the digital
implementation of the Padé-based linear repetitive learning
estimation scheme represents - for anym - a discrete-time
approximation of an ‘exponentially stable’ continuous-time
dynamic repetitive learning estimation scheme with learning
capabilities. This is in contrast to the digital implementation
of the adaptive learning control (or of the learning estimation
scheme using a finite number of stored values in [10]). Such
‘exponentially stable’ nature, which is related to the choice of
β < 1 and leads to a bounded-input, bounded-output learning
estimation law without the use of saturation functions, is the
theoretical counterpart of the possible inclusion - in place of
the projection algorithm - of a forgetting term in the adaptive
estimation scheme of the adaptive learning control.

VI. EXPERIMENTAL SET UP AND RESULTS

In this section, both the learning position controls are exper-
imentally tested and compared on the same robotic application.
The rotor position reference signal is chosen as the output10

of the linear third order filter

ζ̇1 = ζ2

ζ̇2 = ζ3

ζ̇3 = −1728ζ1 − 432ζ2 − 36ζ3 + wζ

yζ = 1728ζ1 (20)

whose inputwζ = θ∗(t) = 1.2 sin(πt/2) is periodic with
periodT = 4 s.

In the experiments, the initial conditions have been set to
θ(0) = π andω(0) = 0. This choice11 complies with a realistic
setting in which the motor is initially at rest and the initial
position is compatible with the corresponding reference signal.
In order to make significant the comparison, the same values
for the common design parameterskθ = 13, kω = 5, kv = −2,
kid = kiq = 9, rd = rq = L0 are chosen, while

RMSeθ,[32,36]s =

√
1
4

∫ 36

32

eθ(τ)2dτ (21)

is taken, from [10], as performance index.

A. The experimental set up

The Aerotech 310SMB3 two-phase hybrid step motor,
manufactured by Eastern Air Devices Inc., is used in the
experiments (see Table I for its main properties). The rotor
shaft is connected to a metal bar link (21 cm of length) with
a brass ball at the end.

As shown in the functional block diagram of Fig. 3, the
motor is fed by two H-bridges (one for each phase).

The DC bus voltage is generated by TDK-LambdaGEN-
300-11 Rack Programmable PSU set to 80 Vdc and 10
A as max-current, with an RC filter acting on the output.

10The robustness of the proposed control algorithms with respect to non-
periodic disturbances affecting the rotor position reference signal is thus
tested.

11The rotor angleθ = π corresponds to the vertical position of the robotic
load.

Stall torque 2.6 Nm
Rated voltage 80 V DC

Rated phase current 6 A
Maximal radial load 156 N
Maximal thrust load 267 N

TABLE I

MAIN MOTOR PROPERTIES.

Fig. 3. Functional block diagram.

The experimental tests have been performed by applying a
4 kHz switching frequency- PWM signal to the power in-
verters (FSBB20CH60C-3-phase-inverter) used as H-bridges.
A Texas Instruments controller board, based on the DSP
TMS320F28335, has been employed to implement the pro-
posed control algorithms and to generate the logic driving
signals for the power switches (see Figs. 3 and 4). Each
control algorithm has been executed with a sampling interval
Ts = 250 µs. At the beginning of each sampling interval,
the phase currents values (provided by two Hall effect current
sensors) have been acquired along with the rotor position. The
rotor position measurement has been provided by a1000 pulse
per revolution encoder interfaced to a dedicated hardware unit
on the DSP that counts the rising and falling edges of the two
quadrature encoder signals. In order to reduce the speed noise
due to the relatively low encoder resolution, the discrete-time
Kalman filter (with a 20 Hz cut-off frequency) proposed in
[21] has been used, whose choice is motivated by the rather
low phase lag. The experimental prototype is shown in detail
in Fig. 4, with the main mechanical and electronic subsystems
being highlighted by dashed boxes.

B. The adaptive learning control

The remaining control parameters for the adaptive learning
control (all values are in SI units) are:µq = 1, µα = 0.6,
µδ = 0.6, N = Md = Mq = 15, while ρ̂[N ](0) = α̂[N ](0) =
δ̂[N ](0) = 0. Fig. 5 shows the rotor position tracking error
eθ(t), while Fig. 6 shows the time histories ofω(t), eω(t),
ρ̂[N ]T(t)ΦN (t), i∗q(t). The stator currents(ia(t), ib(t)), which
are captured on the oscilloscope, are reported in Fig. 7. The
(d, q) stator currents tracking errorsei,d(t), ei,q(t) are also
finally reported in Fig. 8.

In order to illustrate the benefits of estimating the above
(large) number of Fourier coefficients, the same experiment is
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Fig. 4. Experimental prototype (top-view photograph).

Fig. 5. Adaptive learning control withN = Md = Mq = 15: rotor position
tracking erroreθ(t).

Fig. 6. Adaptive learning control withN = Md = Mq = 15: ω(t), eω(t),
ρ̂[N ]T(t)ΦN (t), i∗q(t).

Fig. 7. Adaptive learning control withN = Md = Mq = 15: stator currents
(ia(t), ib(t)).

Fig. 8. Adaptive learning control withN = Md = Mq = 15: (d, q) stator
currents tracking errorsei,d(t), ei,q(t).

carried out withN = Md = Mq = 5 instead ofN = Md =
Mq = 15: as shown in Fig. 9, in whicheθ(t) is reported, a
larger residual tracking error is obtained (see Table II for the
resulting performance index values).

The (d, q) stator currents tracking errorsei,d(t), ei,q(t) are
reported in Fig. 10 forN = Md = Mq = 5.

C. The Pad́e-based repetitive learning control

The remaining control parameters for the Padé-based repet-
itive learning control (all values are in SI units) are:µq = 14,
µα = 6, µδ = 6, while m = 7. The Tustin transformation
z = 1−Tss/2

1+Tss/2 has been applied to the Padé s-functions in
order to translate them into thez-domain, while preserving
the stability of the control. The algebraic loop induced by
this transformation has been directly removed in the C-

N = Md = Mq Performance indexRMSeθ,[32,36]s

5 2.4 · 10−3

15 0.795 · 10−3

TABLE II

PERFORMANCE INDEX VALUES FOR THE ADAPTIVE LEARNING CONTROL.
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Fig. 9. Adaptive learning control withN = Md = Mq = 5: rotor position
tracking erroreθ(t).

Fig. 10. Adaptive learning control withN = Md = Mq = 5: (d, q) stator
currents tracking errorsei,d(t), ei,q(t).

language implementation12. Fig. 11 shows the rotor position
tracking erroreθ(t), while Fig. 12 shows the time histories of
ω(t), eω(t), λ(t) (inverse Laplace transform ofΛ(s)), i∗q(t).
The stator currents(ia(t), ib(t)), which are captured on the
oscilloscope, are reported in Fig. 13. The(d, q) stator currents
tracking errorsei,d(t), ei,q(t) are finally reported in Fig. 14.

In order to illustrate the benefits of using a largem, the same
experiment is carried out withm = 3 instead ofm = 7: as
shown in Fig. 15, in whicheθ(t) is reported, a larger residual
tracking error is obtained (see Table III for the resulting

12Such algebraic loop is due to the fact that the discrete state-space model
associated toΛ(s) includes a rather small direct link between the outputi∗q(k)
and the inputFq(k), which in turn again depends oni∗q(k). Such rather small
dependency has been removed in the implementation process.

Fig. 11. Pad́e-based repetitive learning control withm = 7: rotor position
tracking erroreθ(t).

Fig. 12. Pad́e-based repetitive learning control withm = 7: ω(t), eω(t),
λ(t), i∗q(t).

Fig. 13. Pad́e-based repetitive learning control withm = 7: stator currents
(ia(t), ib(t)).

performance index values).
The (d, q) stator currents tracking errorsei,d(t), ei,q(t) are

also reported in Fig. 16 form = 3.

VII. E XPERIMENTAL DISCUSSION

Comparative experimental considerations are in order:

• in contrast to the results in [10], here the closed loop
behaviour in the first trial (t ≤ 4 s) is no longer worst for
the repetitive learning position control: the fact that no
learning action is performed fort ≤ T∗ (characterizing
the finite-memory version of the repetitive estimation
scheme in [10]) is not here inherited from the Padé-based
repetitive learning scheme;

• in accordance with [10], similar steady-state residual
tracking errors are obtained by both the learning position
controls: small values ofm for the Pad́e-based repetitive

m Performance indexRMSeθ,[32,36]s

3 14.6 · 10−3

7 5 · 10−3

TABLE III

PERFORMANCE INDEX VALUES FOR THEPADÉ-BASED REPETITIVE

LEARNING CONTROL.
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Fig. 14. Pad́e-based repetitive learning control withm = 7: (d, q) stator
currents tracking errorsei,d(t), ei,q(t).

Fig. 15. Pad́e-based repetitive learning control withm = 3: rotor position
tracking erroreθ(t).

learning control do not however guarantee comparably
satisfactory tracking capabilities (even due to the stabi-
lizing action performed byβ < 1);

• in contrast to the results in [10], in which the stator
current tracking errors exhibit always the same magnitude
(due to the mere presence of PI control actions), here
the learning estimation schemes in the outer current
control loops allow increasingly satisfactory stator current
tracking for largerN = Md = Mq or m;

• in contrast to [10], here the uncertain function estimate
λ(t) in i∗q(t) of the Pad́e-based repetitive learning control
filters the measurement errors ineω(t): this is related to
the presence of the delayed termsatBq (q̂c(t − T∗)) in

Fig. 16. Pad́e-based repetitive learning control withm = 3: (d, q) stator
currents tracking errorsei,d(t), ei,q(t).

place of the non-delayed corresponding term in [10] and
leads to better rotor speed behaviours;

• while in the adaptive learning control the sinusoidal basis
functions are externally generated, in the Padé-based
repetitive learning control the ‘internal model’ is directly
included in the controller, so that some additional compu-
tational efforts concerning the Tustin transformation and
the related algorithm implementation in C-language are
to be taken into account.

VIII. C ONCLUSIONS

Both the adaptive and the repetitive learning position con-
trols recently designed in [11] and [12] for voltage-fed hybrid
step motors have been, for the first time, experimentally tested
and compared with reference to the same robotic application
described in [10]. Simple structure and small number of design
parameters to be tuned, as well as absence of resetting proce-
dures, keep on being definite advantages for both the presented
controllers. Simulation results in [11] and [12] are successfully
confirmed by the presented experiments in the presence of
unmodeled dynamics, discrete-time controller implementation,
encoder quantization errors, as well as rotor speed filtering and
current sensing. The role played on the tracking performance
by the number of estimated Fourier coefficients in the adaptive
learning control is the same played by the approximation order
in the Pad́e-based repetitive learning control.
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