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Abstract—The experimental comparison of two different overshoots and ringing can arise. This is certainly undesirable
global learning position controls (namely, ‘adaptive learning’ and in applications in which high-precision position tracking is
‘repetitive leaming’ controls) for hybrid step motors performing — raqired. Furthermore, step motors can often exhibit resonance
repetitive tasks has been recently presented in the literature. . L .

Related benefits and drawbacks have been successfully analyzeobehav,IourS at certain step -rates [1]. Comp_ensatlon of torque
on the same robotic application. However, the design of the two Pulsations by feedback actions thus constitutes an attractive
aforementioned learning controls - though relying on a rigorous solution [2]-[8]. The non-uniformity in the developed torque
stability analysis - are based on a simplified current-fed model due to the non-sinusoidal flux distribution in the air-gap [9] -
of the motor. They cannot achieve precise current tracking due ynich causes speed oscillations and deteriorates the system

to the mere presence of PI control actions in the outer current f iall t ] d is h to b
control loops. The aim of this paper is to enrich and update periormance especially at low speeds - IS however 10 be

the results of the above comparison in the light of the latest €Xplicitly taken into account in the control design in order
contributions that generalize the theoretical design to the full- to achieve high-precision position tracking.

order voltage-fed motor models of hybrid step motors. Learning \ith this respect, advanced learning control techniques are
actions are now included in the outer current control loops: they actyally able to take into account such non-uniformity [10]-
generalize the corresponding Pl actions to the periodic scenario S . .

and allow to solve a control problem whose solution was seeming [12]'_ The only con.stre.untlls to C(_)nS|der posmpn reference
very difficult to be obtained. profiles that are periodic signals with known period. Learning
controls aim in fact at performing a system inversion by re-
constructing the unknown input reference corresponding to the
periodic position reference. Therefore, in contrast to standard
model-based robust adaptive techniques [13] or to standard

[. INTRODUCTION adaptive or extended-state observer-based controls [14]-[16],

Stepper motors are electro-mechanical devices that condBgY require neither high gains in the inner speed/position
‘electrical pulses’ into discrete mechanical movements. Of@Ntrol loops nor restriction of model uncertainties to be
among the most significant advantages of step motors (acga_pdelled by f|_n|te-d!men5|on_c';1l linear or nonhnegr exo-systems
racy and repeatability, high efficiency, power density and hid’H‘th kno_vvn dimension. In this context, twq main a_pproac_hes
torque to inertia ratio, excellent durability and serviceability® €arning control can be adopted, which require neither
absence of external rotor excitation and windings, excellelorque transducers nor resetting procedurgsthe ‘adaptive
response to starting/stopping/reversing commands) is the al§ieming’ approach in [12]; ii) the ‘repetitive/iterative learning’
ity to be controlled in an open loop fashion. Position is knowAPProach in [11], [17]-[19]. While the adaptive learning ap-
simply by keeping track of the input step pulses. One relevapfoach consists in interpreting the uncertain reference input as
type of step motors is the hybrid one: it simultaneousi@n uncertain periodic signal with known period whose finite
combines the features of both the permanent magnet diRHrer expansion is to be estimatethe repetitive learning
variable reluctance type step motors. The rotor is multi-tooth@@Proach uses the input recorded during the previous trial, in

(like the variable reluctance type one) and contains an axially; i ) ) N .

. . . Resetting procedures are typically required by standard iterative learning
magnetized concentric magnet around its shaft. The teeth @ftrols in quite a number of applications involving robotic mechanisms, batch
the rotor provide a suitable path that guides the magnetic flegactors and assembly lines.
to preferred locations in the air-gap. This in turn increases?The_ periodic time functionr(t) (with period 7%) is identified by devel-

. . L Oging it in Fourier series as
the detent, holding, dynamic torque characteristics of th
motor. However, when one step pulse is applied to the step

motor (especially when moving in a large step increment)

Index Terms—Permanent magnet step motors, learning con-
trol, position tracking.
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conjunction with the run-time tracking error, to generate thteeth) are then given by [11] (see [13] for model derivation):

input signal to be exerted in each trial. The successful use of ao(t)
such approaches in position tracking control of hybrid step — = w()
- - de
motors has been however limited to the restrictive current-fed dw(t)
model. In the experimental comparison in [10], benefits and hp(ﬁ(t))? = —ayp(0(t) — Bp(0(t))w(t)
drawbacks of the two learning approach are in fact analyzed e (0(1))ia(t) + g (1)
on the same robotic application by just including Pl control dig(t) Rp a
actions in the outer current control loops. Such PI control d = ——iq(t) + Nyig(t)w(t)
actions cannot achieve precise current tracking. The reasons dt Lo
for this theoretical limitation were constituted by the several _w(t) (0(t)) + iud(t) (1)
technical difficulties arising when the full-order voltage-fed L Lo
model of the hybrid step motor is considered in the stability diy(?) _ 752. (1) — Nyig(t)w(t)
analysis: dt Lo rid
« an uncertain function multiplies the rotor speed derivative —#nq(e(t)) + Liuq(t)
in the motor model; 0 0
« unstructured uncertainties appear in the current dynamicyhere
-1
Such technical difficulties have been recently solved in [11] J L ,
and [12]. In particular: hp(0) = it N, JLm; cos[(1 = j)N,0]
j=1
« the global results achieved in the current-fed case become ho(0) . N2
semi-global in the voltage-fed one; _ hy rly : y
« the resulting innovative control design and stability analy- ap(f) = J [TL(G) * 2 ;JL“ sinfj N, 0]
sis necessarily involve more than one learning estimation =
scheme; L (0) = Dhy(6)
« learning actions - being crucially included even in the J "
outer cgrr(_ent contrql loops - generalize the Pl actions to cp(0) = hp(0)is Ny Ziji sin[(1 — /)N, 0]
the periodic scenario and allow for convergence to zero J =
of the current tracking errors. n
The aim of this paper is to enrich and update the results oftal0) = —iyN: ZJLW' sin[(j — 1)N0]
the experimental comparison in [10] in the light of the afore- =2

mentioned contributions in [11] and [12] (just merely contain- 14(0)
ing simulation results). The motor application described in [10]

is again used for the comparison: a metal bar link connected

to the rotor shaft with a brass ball at the free end - reproducid§d: (ia,i,) are the stator current vect@, ¢) components;
the behaviour of a position-dependent single-link robotic loddd,us) are the stator voltage vectoid,q) components;

- is required to track a known periodic position referenc& = 4 is a positive integer;D is the friction coefficient;
Experimentally applying to the same specific real problem tk is the rotor inertia;7;.(-) is the load torquei; is the
latest theoretical advances in learning position control thedigtitious rotor current provided by the permanent magnet;
for full-order model step motors allows us to quantitativelyt and Lo are the stator windings resistance and the self
and qualitatively extend the comparison in [10] by studyinfpductance, respectively; the harmonies;_; L,,; cos[jN,0]

in detail the effects of different features and requirements @nd>_"_; Ly cos [j N0 — 5] model the non-sinusoidal flux

a rather complex scenario. distribution in the air-gap; the terF]ﬁ[;ﬁ >4 dLygj sin[jN,6]
represents the disturbance torque due to cogging; the param-
etersL,,;, 2 < j < n (which are zero under the standard

Il. DYNAMIC MODEL assumption of sinusoidal flux distribution) are much smaller
than L,,;. All the (constant) system parameters (including the

: . numbern of harmonics) along with the load torque function
Assume that both the stator self inductance variations Wifh, 1ore allowed to be uncertain excepting for the number of

position and the mutual inductance between stator windings, teethNV. and the stator windings self inductanég
are negligible, whereas the non-sinusoidal flux distribution "

in the air-gap is modeled by the higher order harmonics in
the mutual inductance terms (between tHe ghase and the ) . ) ) )
fictitious rotor winding). The full-order dynamics of a hybrid Since @ non-zera, only contributes to torque ripples, it
rotating at speedV,.w and identified by the angl&/,.0 in the 3 _ _ — _

fixed b) reference frame attached to the statbis(the rotor The _dlrect—aX|s current; does not th_us 5|gn|f|cantly contribute to torque
'Xe. .(a, ) ) ) production, whereas the quadrature-axis curfgrs assigned to produce the
position, w is the rotor speed and/,. is the number of rotor required torque.

ig Ny Y jLmj cos[(j — 1)N, 0]

Jj=1

IIl. EQUIVALENT PERIODIC DISTURBANCES



the i,-referencei; to produce the desired torque reference. i) the inner rotor position/speed control loop

Define the (back-stepping-based) rotor speed referdnces ( SINTT (1) (1)

a positive control parameter): ! b
. i) = —kyeu(t) — kyeq(t) + sat Je(t — T

o = —toce 46" - i (1) €w(t) = koeo(t) +sat, (dc(t — )

eg = 0—-0" e, =w+koey—0" (10)

leading to the rotor position and speed tracking errors:
i) the outer stator current vector control loop

€p = 60— 0*
. k;
tw = w—w' = w+keey—0". 3 ug(t) = Lo [—NTw(t)iq(t) - T—dei7d(t)]
d
Accordingly obtain the rotor position error dynamics: &[Ma)" ()@, (t)
. A~
ég = —koeo+ey. 4) + Ga(t) (12)
Then express the uncertain function . k;
P ug(t) = Lo| New(t)ia(t) = ey (t)
fe0,w) = op(0) + Bp(0)w ) 4
as FPINTT ()2 (1)
oo . d R
fe(@,w) = qoc(07,60%,0%) — hy(0)0" + gc(ep, e, t) + &Sath (Ge(t — Ty))
+hy(0)koew — hp()kjeo (6) .

. SIM )T (8) Py (1)

with ——

Qel07,0%,87) = 0y (07) + By (676" + hy(6%)0 e et
c o) = —h,(0)kge, +h 0) k2 In wnic eiyd:zd—zjl:zd,ei,q:zq—z*arete
9e(€6; €u: ) p((e) o t@*p)( )ﬁgeg*) kaco) stator current tracking errors. !

+ap(0) —ay . (07 (ew —koeo) g estimates. (), a(t), 4.(t) of the periodic functiong.(t),
+10p(0) — Bp(0 )]‘f q4(t), gq(t) are provided by the repetitive learning estimation
+[hp(0) — hy(67)]6". (7) schemes:

Due to the assumption that the position reference signal is Q.(t) = satp, (Ge(t — T0)) — poer, (£)Fy(t)
Te-period, - Q) = 0,%t<0 (12)
a(t) = qoc(07(t),07(t),0"(t)) ®) Fot) = eu(t) + rosgn[be(0(t))]eq(t)

is a periodic function with known period,. It constitutes the be(0(t)) = koLo— Rhy(6(2));

uncertain periodic input reference for the curréptt) that

achieves perfect tracking fay = 0 and for compatible initial and

conditionge(o) = 6*(0), w(0) = 6*(0). Similarly, introduce da(t) = satp,, (da(t — T%)) — patpr. (t)eia(t)
the functionsg,(t) andq'q(t) defined as ) = 0,¥1<0
qa(t) = 0"()na(0"(1)) 4,(t) = satp,, (G4(t —T2)) — psor. (t)eiq(t)
aq(t) = 0" (t)ng(07(t)) + Rec(t), ) Go(t) = 0,¥Vt<0 (13)
which affect the stator current dynamics and are also periogitthe repetitive learning control and by the adaptive learning
with known periodT. estimation schemes:
IV. THE TWO LATEST LEARNING CONTROLS pIN] = Proj [—uq<I>New,,6[N], vy, By
In this paper we report the state feedback learning controls ) B,
in [11] and [12] for system (1). They guarantee rotor position IpINIO) - < ﬁ (14)
tracking of a reference signdl*(¢), which is assumed to
belong to the following class: and
« 0*(t) is a sufficiently smooth periodic function with o 1AMy,
known periodT, (i.e. 0*(t) = 6*(t + T.), ¥V t > —T.), o= Newig + Lo Lo + FReaCe,d
with bounded time derivative8*(® (¢) (i = 1,2) for all R 1 S[M,]T®
t €10,Ty). iqg = —Npwig+ fouq - Tq + Feqe,q
Such learning control algorithrhs with the terms character- R . Dy, K
izing the adaptive learning control to appear as overbraces - &[Ma] = Proj *Mafoee,ma[MdLVmBqd}
read: |aDO) < Bua

4Robustifying terms in [11], [12] are neglected along with certain non- L
necessary(eg, e, )-feedback terms in the definition af, that are however  5The subsequent adaptive estimation scheme resdifto,) as auxiliary
used, for the sake of completeness, in the experiments. variables.



N . (qu N
0[M,;] = Proj —,u(;L—Oe&q, 0[My], vs, Byq (15)
18[Mg)(0)]| < By
€e,d iq — id, Ce,q = iq - Z.(I

in the adaptive learning control. The above control algorithn
depend on:

the positive control parameteks, (chosen in the repeti-
tive learning control to guarantee that6(¢)) is different
from zero for anyt > 0) andk,,, ko, a4, rq, kid: Kig, Iq,
Has //567

the known positive bounds3;, Byq, Byq 0N |g.(t)],
lga(t)], laq(t)], respectively;

the saturation functiosat , (-) : R — [~ Mg — 0,5, Me +
ds], which is a clas€* odd increasing function satisfying

PMSM

(s is an arbitrary positive reallatys, (¢) = ¢ for any
q € (0, Mg, limg_, o satyy, (q) = Me+0ds and|q; —qo| >

lq1 — satar, (g2)| for any [q1| < Mg, ¢2 € R;

the function ¢,(-) : Rf — [0,1] (z > 0), which

is a classC! increasing function fort € [0,z] (with
©2(0) = ¢2(0) = 0, ¢a(x) = 0, pa(t) = 1 for
anyt > z) endowing the above estimates with suitable
continuity properties (in accordance with the expressions
(12)-(13) when time approaches zero);

the classical projection algorith®roj¢., 2,v., B,] in
[12], which is used to modify the adaptation lan= ¢,
into 2 = Proj ., 2,v,, B,] in order to constrain, for any
t > 0, the vector estimaté(t) into the ball with center
at the origin and radius equal tg + B, (v, > 0).

Comparative theoretical remarks

« The strategy adopted by both the proposed learnifiggures 1 and 2 report the block diagrams for both the
controls consists in compensating torque pulsations Ig8arning controllers presented in this section. They dgscnbe
feedback actions in order to achieve high precision poghe structure of the proposed control schemes and highlight the

tion tracking.

Fig. 1.
(2)-(3), (10)-(13).

sat(g,(t-T.)

sat/delay

Block diagram describing the repetitive learning control scheme in

neglected and the learning gains are multiplied y
The adaptive learning estimation schemes, on the other
hand, reduce to the classical integral actions when the
projection algorithm is neglected and onpy is consid-
ered.

improvements with respect to the previous solutions derived

Both the proposed learning controllers feed back tHer current-fed motors. In particular, the content of red dashed

signal:

boxes - describing the outer current control loops - replaces

the PI control actions of [10] (see also [19]).

—kwew(t) — k’veg(t) = —(kv + kwkg)eg(t) — k‘wég(t),

which corresponds to a PD action on the rotor positio-,%unlng ISSUEs

tracking error being able to stabilize tiey, ¢y)-second

The above learning controls rely on design parameters to

order system in companion-like form. They also includge tuned.

the plug-in signalsats, (G.(t — 1)) or p[N]* ()@ (¢), .
which generalize to the periodic scenario the integral ac-
tion —k; fot eg(7)dr that is typically used to compensate
the constant disturbances affecting the rotor speed error
dynamics.

The learning estimation schemes in the outer stator cur-
rent control loop replace the integral actions on the stator
current tracking errors. The repetitive learning estimation
schemes in fact reduce - faf, — 07 - to the classical
integral actions when saturation agg-, functions are

6This does not necessarily imply torque ripple reduction.

A constant signal is a periodic signal characterized by any arbitrarily small
period, so that a repetitive learning estimation scheme with any arbitrarily
small real as period can be successfully adopted to learn a constant signal
(see [20]).

The control parameters,, kg, k., characterize the PD
feedback action on the the position tracking eregft).

In particular, the parametet, characterizes they(t)-
feedback term in the back-stepping definition of the ref-
erencew*(t) = —kgeg + 0* in (10), while the parameter

k. plays an analogous role in the definition df in
(10). The larger such parameters are chosen, the stronger
the corresponding feedback actions on thgt), e, (t))-

error dynamics result.

The parameters:,, po, ps are the learning gains in
(12)-(13) and (14)-(15). The larger such parameters are
chosen, the larger the influence of the correction terms on
the corresponding estimate behaviour results. They play
a role that extends to the periodic case the one played by
the integral action gains.



dp(s)

8 i, ) - _ .
encoder ib PMSM Ha Hb Qq (S) qﬂ-(S) MstZ,q (S)
Keiman_] 2b—dq [~ T == g incorporating the{m, m]-Pade approximant of~*"*:
[P —
@ 6" 8 il i | ) -, | P[ ](S) _ P (—sT%) np<s> (18)
) m,m .
! | ¢Md - | ’ P, (sT,) dy(s)
€ . e e 6l ]! : i ,

5 ¢ i .l | " awdll: Here P,,(sT.) denotesy )", n]j (Q(Qm)’?! (sT.)*, while
[ 2N B < 1is such that, (s) = dp(s) — Bn,(s) has all its roots in

& [ i i, ] i| C~. It is relevant to notice that, fot, = figT%, tta = BaTk.

) itm G| ] i, L i| us = psTy, B =1, we get:
‘: T*_l(l - P[m,m](s))Qc(S) _ﬂqu(S)
| . | L7 (1 = Ponn)()Qa(s) = ~fiaFials)
i . i : q T*_l(l - P[m,m](s))Qq(s) = _ﬂéEi,q(S) (19)
; ! . -

i F{N] i I L5 (15) 5[Mg]‘ with the limit of the previous left-hand-sides faf. — 0

i n C - P being equal tosQ.(s), sQa(s) andsQ,(s), respectively and

******************* Il T A(s) converging toQ.(s). In other words, forT, — 0
|i ‘e ‘ (corresponding to the case of constant referefi¢gseven the
| oM, — | three above Pddbased learning estimation schemes reduce to

Fig. 2.
(2-(3), (10)-(11), (14)-(15).

Pacé approximants for the repetitive learning control

When the delay terms are approximated as in [17] b
properly using the Pad rational functions (see Remark 3
and stability/convergence implications therein), we obtau&

learning estimation schemes with inpufs,, e; 4, €;,, and
outputsg., 44, 44, respectively, which are linear and bounde

input bounded-output (the saturation functions along with th
or, (+)- functions are no longer required). Here, no first ordeEr

filters are involved (so that = 0 in [17]), while, for the sake
of clarity, the same Pa&dapproximants with odd orden are

used for the three learning estimation schemes (see [17]
comments on the role of. and [18] for a relevant robotic

application). In particular, the resulting control is guaranteed
to be bounded and, when compared to (10)-(13), involves%

is the complex variable):

% (P[m,m] (3) + 1)@6(8)
sA(s)

A(s)
M(s)

(16)

in place of satp, (G.(t
Ssatp, (Ge(t —

— T,)) and its time derivative

Block diagram describing the adaptive learning control scheme in

T.)) in (10)-(11), respectively, with the mod-

simple integral actions (see the related comparative remarks).

V. THEORETICAL DISCUSSION

We shall compare in the next experimental section the adap-
tive learning control with the non-infinite-memory (stabilized)
version of the repetitive learning control. While the key-idea
of approximating infinite-dimensional exo-systems by finite-
Imensional ones is implicitly underlying the adaptive learn-
ing control approach, the finite-dimensional approximation
e~ T py the [m, m]-Pac approximantPy,,, ,,(sT') takes

0,olace at a different design level, that is after the control design

and not before it. The resulting non-infinite-memory approxi-
Mations of the repetitive estimation schemes constitute linear
Ime-invariant finite-dimensional dynamic systems: they are
described by transfer functions exhibiting all their poles with
ergative real patt so that typical long term instability issues

¥ classical repetitive learning controls due to high frequency
disturbance noises are avoided. In digital implementations, the
ontinuous-time state differential equations of the realization
r the proper rational function—*7+ (approximating ther’, -
delay line in the repetitive learning estimation scheme) are
approximated by discrete-time state difference equations. Such
difference equations involve the storage, in the case of first
order Euler approximations, of a number of values equal to
the corresponding dimension of the state and a computational
cost that grows proportionally to the above dimension. The
dimension of the state grows with the Radpproximation

ified linear learning estimation schemes in place of (12)%13)order m, while playing a role similar to the one played by

) (s) — dp(s)

Qe(s) = *mﬂqu(S)
A _ _dp(s) (s
Qd(S) - qﬂ-(S) :U’OéEl,d( ) (17)

8Qc(s), Qa(s), Qq(s), Fy(s), E;ia(s), Eiq(s) are the Laplace trans-
forms of the Laplace transformable signélgt), ¢q(t), 4q(t), Fq(t), ei,a(t),
ei,q(t), respectively.

the number of stored values at each trial in [10]. The larger
m is (exactly like the number of stored values at each trial
in [10] or the numberM of sinusoidal basis functions in

the adaptive learning approach described in footnote 2), the
smaller is the approximation error in reproducing the internal

9This is in contrast to repetitive estimation schemes that use a finite number
of stored values (see [10]) and that would have here required high-order
polynomials to approximate the delay-signal.



: : - Stall torque 2.6 Nm
model by thg correspondlr)g controllscheme. Aggm, the d'|g|tal Rafed voltage | 80 V DC
implementation of the P&dbased linear repetitive learning Rated phase currenf 6 A
estimation scheme represents - for any- a discrete-time Maximal radial load| 156 N
approximation of an ‘exponentially stable’ continuous-time Maximal thrust load| 267 N

dynamic repetitive learning estimation scheme with learning
capabilities. This is in contrast to the digital implementation
of the adaptive learning control (or of the learning estimation
scheme using a finite number of stored values in [10]). Such
‘exponentially stable’ nature, which is related to the choice of

TABLE |
MAIN MOTOR PROPERTIES

Phase a

B8 < 1 and leads to a bounded-input, bounded-output learning Veat
estimation law without the use of saturation functions, is the c |l Jgi L
theoretical counterpart of the possible inclusion - in place of az;nfT H’mm%ﬂ: Driver
the projection algorithm - of a forgetting term in the adaptive [4ia ﬁ?
estimation scheme of the adaptive learning control. S ia
M 8
0 Controller
VI. EXPERIMENTAL SET UP AND RESULTS Ve s
In this section, both the learning position controls are exper- s bi {;
imentally tested and compared on the same robotic applicatior DC Source] | € l Aﬁ <: Driver
The rotor position reference signal is chosen as the otftput 2mF [ H-bridge 5
of the linear third order filter Phase b Vsat
él = (O Fig. 3. Functional block diagram.
G = G
(3 = —1728¢ — 432G, — 363 + wy The experimental tests have been performed by applying a
ye = 1728( (20) 4 kHz switching frequency- PWM signal to the power in-

verters (FSBB20CH60C-3-phase-inverter) used as H-bridges.
A Texas Instruments controller board, based on the DSP
TMS320F28335, has been employed to implement the pro-
osed control algorithms and to generate the logic driving
?gnals for the power switches (see Figs. 3 and 4). Each
control algorithm has been executed with a sampling interval
= 250 ps. At the beginning of each sampling interval,
phase currents values (provided by two Hall effect current
sors) have been acquired along with the rotor position. The
rotor position measurement has been provided by0a pulse
per revolution encoder interfaced to a dedicated hardware unit

whose inputw, = 6*(t) = 1.2sin(wt/2) is periodic with
periodT =4 s.

In the experiments, the initial conditions have been set
0(0) = m andw(0) = 0. This choicé! complies with a realistic
setting in which the motor is initially at rest and the initial
position is compatible with the corresponding reference signﬁf.e
In order to make significant the comparison, the same valugg.n
for the common design parametégs= 13, k, = 5, k, = —2,
kig = kiq =9, rq =14 = Lo are chosen, while

1 /36 on the DSP that counts the rising and falling edges of the two
RMS,, 32,36)s = 1/ eo(T)2dr (21) quadrature encoder signals. In order to reduce the speed noise
32 due to the relatively low encoder resolution, the discrete-time
is taken, from [10], as performance index. Kalman filter (with a 20 Hz cut-off frequency) proposed in

[21] has been used, whose choice is motivated by the rather
low phase lag. The experimental prototype is shown in detail

A. The experimental set up i Fia. 4. with th , hanical and electroni bsvst
n Fig. 4, e main mechanical and electronic subsystems
The Aerotech 310SMB3 two-phase hybrid step motolﬁeinlg hig\r,:/llighted by Idashed bc;xes Ic sUbsy
e

manufactured by Eastern Air Devices Inc., is used in th
experiments (see Table | for its main properties). The rot%r

shaft is connected to a metal bar linki(cm of length) with The adaptive learning control

a brass ball at the end. The remaining control parameters for the adaptive learning
As shown in the functional block diagram of Fig. 3, th&¢ontrol (all values are in SI units) areg, = 1, pa = 0.6,
motor is fed by two H-bridges (one for each phase). ps = 0.6, N = My = My = 15, while p[N](0) = &[N](0) =

The DC bus voltage is generated by TDK-LambdaGEN!N](0) = 0. Fig. 5 shows the rotor position tracking error
300-11 Rack Programmable PSU set to 8Q.\and 10 ffa(f)’T while Fig. 6 shows the time histories af(), e.,(?),
A as max-current, with an RC filter acting on the outpuf[V]" (£)®n(t), i5(t). The stator currentsiy(t), s (t)), which
are captured on the oscilloscope, are reported in Fig. 7. The

1%The robustness of the proposed control algorithms with respect to nq#, ¢) stator currents tracking erroks 4(t), e; ,(t) are also
periodic disturbances affecting the rotor position reference signal is thﬁﬁally reported in Fig. 8 ' ’

tested. . . . .
The rotor angled = 7 corresponds to the vertical position of the robotic In order to illustrate the benefits of estimating the above

load. (large) number of Fourier coefficients, the same experiment is



Fig. 4. Experimental prototype (top-view photograph).
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Fig. 8. Adaptive learning control withv = M, = M, = 15: (d, ¢) stator
currents tracking errors; q(t), e;,q(t).

carried out withN = My = M, = 5 instead of N = My =
M, = 15: as shown in Fig. 9, in whicley(t) is reported, a
larger residual tracking error is obtained (see Table Il for the
resulting performance index values).
The (d, g) stator currents tracking erroes 4(t), e; 4(t) are
¢ reported in Fig. 10 fotV = My = M, = 5.

C. The Paé-based repetitive learning control

The remaining control parameters for the Edwhsed repet-
itive learning control (all values are in Sl units) aye; = 14,
e = 6, ug = 6, while m = 7. The Tustin transformation
z }j}ijg has been applied to the Rad-functions in
order to translate them into thedomain, while preserving
the stability of the control. The algebraic loop induced by

this transformation has been directly removed in the C-

N = My = M, | Performance indeRMS,, (32,365
5 2.4-1073
15 0.795-1073

TABLE I
PERFORMANCE INDEX VALUES FOR THE ADAPTIVE LEARNING CONTROL
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language implementatiéf Fig. 11 shows the rotor positionFig. 13. Paé-based repetitive learning control with = 7: stator currents
tracking errorey(t), while Fig. 12 shows the time histories of(éa (%), i (t))-

w(t), eu(t), A(t) (inverse Laplace transform of(s)), i; ().

The stator currentsi,(t),i,(t)), which are captured on the )

oscilloscope, are reported in Fig. 13. Thiq) stator currents Performance index values). ,

tracking errorse; 4(t), e; (t) are finally reported in Fig. 14.  11€ (d,q) stator currents tracking errorsq(t), i q(t) are
In order to illustrate the benefits of using a largethe same /SO reported in Fig. 16 fom = 3.

experiment is carried out witth = 3 instead ofm = 7: as

shown in Fig. 15, in whichey(t) is reported, a larger residual VII. EXPERIMENTAL DISCUSSION

tracking error is obtained (see Table Il for the resulting Comparative experimental considerations are in order:

125ych algebraic loop is due to the fact that the discrete state-space mode!

in contrast to the results in [10], here the closed loop

associated td\(s) includes a rather small direct link between the outijk)
and the inputF (k), which in turn again depends ajj(k). Such rather small
dependency has been removed in the implementation process.

Rotor angle tracking error
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2005 | ! . . . .
0 4 8 12 16 20 24 28 32 36

[s]

Fig. 11. Paé-based repetitive learning control with = 7: rotor position
tracking errorey (t).

behaviour in the first trialt(< 4 s) is no longer worst for
the repetitive learning position control: the fact that no
learning action is performed far < T, (characterizing
the finite-memory version of the repetitive estimation
scheme in [10]) is not here inherited from the Pdxhsed
repetitive learning scheme;

in accordance with [10], similar steady-state residual
tracking errors are obtained by both the learning position
controls: small values of: for the Pa@&-based repetitive

m | Performance indeRMS, (32 36)s
3 14.6-10~3
7 5.10~3

TABLE IlI

PERFORMANCE INDEX VALUES FOR THEPADE-BASED REPETITIVE
LEARNING CONTROL.
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Fig. 15. Padé-based repetitive learning control with = 3: rotor position
tracking errorey (t).

place of the non-delayed corresponding term in [10] and
leads to better rotor speed behaviours;

« while in the adaptive learning control the sinusoidal basis
functions are externally generated, in the ®&hdsed
repetitive learning control the ‘internal model’ is directly
included in the controller, so that some additional compu-
tational efforts concerning the Tustin transformation and
the related algorithm implementation in C-language are
to be taken into account.

VIII. CONCLUSIONS

Both the adaptive and the repetitive learning position con-
trols recently designed in [11] and [12] for voltage-fed hybrid
step motors have been, for the first time, experimentally tested
and compared with reference to the same robotic application
described in [10]. Simple structure and small number of design
parameters to be tuned, as well as absence of resetting proce-
dures, keep on being definite advantages for both the presented
controllers. Simulation results in [11] and [12] are successfully
confirmed by the presented experiments in the presence of
unmodeled dynamics, discrete-time controller implementation,
encoder quantization errors, as well as rotor speed filtering and
current sensing. The role played on the tracking performance
by the number of estimated Fourier coefficients in the adaptive
learning control is the same played by the approximation order
in the Pa@-based repetitive learning control.
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