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Abstract

Developing effective strategies to use models in conjunction with experimental data is essential to understand the
dynamics of biological regulatory networks. In this study, we demonstrate how combining parameter estimation with
asymptotic analysis can reveal the key features of a network and lead to simplified models that capture the observed
network dynamics. Our approach involves fitting the model to experimental data and using the Profile Likelihood to
identify small parameters and cases where model dynamics are insensitive to changing particular individual parameters.
Such parameter diagnostics provide understanding of the dominant features of the model and motivate asymptotic model
reductions to derive simpler models in terms of identifiable parameter groupings.

We focus on the particular example of biosynthesis of the plant hormone gibberellin (GA), which controls plant growth
and has been mutated in many current crop varieties. This pathway comprises two parallel series of enzyme-substrate
reactions, which have previously been modelled using the law of mass action [23]. Considering the GA20ox-mediated
steps, we analyse the identifiability of the model parameters using published experimental data; the analysis reveals
the ratio between enzyme and GA levels to be small and motivates us to perform a quasi-steady state analysis to
derive a reduced model. Fitting the parameters in the reduced model reveals additional features of the pathway and
motivates further asymptotic analysis which produces a hierarchy of reduced models. Calculating the Akaike information
criterion and parameter confidence intervals enables us to select a parsimonious model with identifiable parameters. As
well as demonstrating the benefits of combining parameter estimation and asymptotic analysis, the analysis shows how
GA biosynthesis is limited by the final GA20ox-mediated steps in the pathway and generates a simple mathematical
description of this part of the GA biosynthesis pathway.
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1. Introduction

Ordinary differential equation (ODE) models of biologi-
cal regulatory networks usually contain many unknown pa-
rameters. Such parameters are typically very challenging
to measure experimentally and are often estimated indi-
rectly by calibrating the model to experimental data such
as a time course of measurements under an experimental
perturbation. Such model calibration deepens understand-
ing of the network dynamics and enables the model to
make more accurate predictions (predicting, for instance,
the dynamics of unseen components or the behaviour of
the network under alternative perturbations). Further-
more, the calibration enables inference to be made about
the parameter values themselves, which are often of scien-
tific interest.

The question of whether or not parameters can be es-
timated well, or at all, from experimental data is called
“identifiability”. There are many good reviews of ap-
proaches for determining identifiability of ODE models
(see e.g. [22]) but relatively much less on how models with
non-identifiable parameters can be reduced to obtain iden-

tifiable models, which is the focus of this paper.
A characteristic common to many ODE models is that

model dynamics and data agree for parameter values that
range over many orders of magnitude, and hence the pa-
rameters are not precisely identifiable from data. This phe-
nomena is often referred to as “sloppiness” [4, 14] (which
we will define more precisely below). In some circum-
stances, sloppiness can be mitigated with careful exper-
imental design, i.e., the choice over what experiments to
perform, including what to measure and when [30]. There
are also circumstances in which sloppiness causes no issues;
for example, even though parameter estimates may have
very high variance, predictions for particular variables can
still have low variance [4, 14].

In contrast to these approaches, here we consider how
to reduce a sloppy model to a simpler one with identifiable
parameters. We show how analysing parameter sensitivity
provides understanding of the model dynamics that en-
ables us to identify suitable asymptotic model reductions.
Although the full model encapsulates the key mechanisms
thought to generate the data, the reduced model is an ap-
proximation that describes the experimental data nearly
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Figure 1: The gibberellin (GA) biosynthesis and degradation path-
way. GA metabolites are shown in red and enzymes are shown in
purple.

as well. The reduced model reveals the level of complexity
required to capture the dominant dynamics on a particu-
lar time scale, and suggests how these dynamics depend
on groupings of the original model parameters. Deriv-
ing the reduced model retains mechanistic interpretation
and physical meaning of the parameter groupings, and fit-
ting the reduced model reveals how well these parameter
groupings can be identified from the data. Deriving re-
duced models is helpful not only for parameter inference
but also for computational reasons: complex multiscale
models are often created by coupling submodels for dif-
ferent components of a large system (e.g. [7, 3]) so having
smaller model components helps to reduce the overall com-
plexity and computational cost.

The particular application we consider is the biosyn-
thesis of the plant hormone gibberellin (GA), which regu-
lates organ growth, flower development and seed germina-
tion, and plays a key role in adaptation to environmental
stress [8, 11]. GA biosynthesis has been shown to be pre-
dominantly regulated at the later steps in the pathway
whereby GA12 is converted to active forms GA4 and GA1

[12]. Here, the GA biosynthesis pathway comprises two
parallel series of enzyme-substrate reactions [15, 17, 33]
(shown in Fig. 1): GA12 either undergoes a series of re-
actions catalysed by members of the GA20ox family, to
produce GA9 which is then converted to the active GA4

via the GA3ox enzymes, or GA12 is converted to GA53 (via
GA13ox) and then undergoes a series of GA20ox-mediated
steps to produce GA20 which is converted to the active
GA1 by GA3ox. The active GAs and their precursors
can also be degraded via the GA2ox family of enzymes.
Thus, the level of bioactive GA depends on the balance
between synthesis and degradation, which are controlled
via the levels of GA20ox, GA3ox and GA2ox enzymes;
these enzymes exhibit distinct spatial and temporal pat-
terns and are regulated by environmental signals and other
plant hormones [15, 17, 18, 25, 33].

The GA pathway has played a major role in improv-
ing crop productivity: during the Green Revolution in the
1960s, high-yielding semi-dwarf cereal crop varieties were
developed, many of which were later found to have genetic
mutations in the GA pathway [26]. Understanding the
mechanisms that control GA levels is a prime target for
further increasing yields [8, 16].

In this study, we focus on the GA20ox-mediated steps
of the GA biosynthesis pathway and describe how parame-
ter estimation, parameter sensitivity analysis and asymp-
totic analysis can generate a simpler description of this
biological network, providing understanding of the under-
lying dynamics and identifying the parameter groupings
that govern the network dynamics. We first describe our
methods for a general case (§2), describing fitting criteria,
derivation of confidence intervals and how the profile likeli-
hood can be used to motivate asymptotic model reduction.
We then apply our methods to analyse the dynamics of the
GA20ox-mediated steps in the GA biosynthesis pathway
(§3). Beginning with the model suggested by Middleton
et al. [23], based on the law of mass action, we develop
a series of reduced models, assessing each model by com-
paring simulation results with the experimental data from
Appleford et al. [2]. We demonstrate how our methods
motivate the derivation of a simple description of the ob-
served dynamics and reveal the key network interactions.
Our conclusions are discussed in §4.

2. Methods

2.1. Models and fitting criteria

The dynamics of a biological network are often modelled
by a system of ODEs of the form

dy

dt
= f(y,θ) with y = y0 at t = 0, (1)

where y = y(t;θ) = (y1(t;θ), . . . , ys(t;θ)) is a vector con-
taining variables representing concentrations of the various
interacting species included in the model; θ = (θ1, . . . , θp)
is a vector of models parameters; and y0 is the initial value
of y at time t = 0. We suppose that only a subset of the
y1, . . . , ys – here taken without loss of generality to be the
first m ≤ s – are measurable experimentally, and that
these are measured only at a finite number of time points
and subject to measurement error. Supposing that vari-
able yj , say, is measured at the nj time points tj1, . . . , tjnj

(not necessarily the same for different j) and that yData
ji

denotes the experimental measurement of variable yj at
time tji, then the full set of experimental data, comprising
N = n1 + · · ·+ nm data points, is{

yData
ji ; i = 1, . . . , nj , j = 1, . . . ,m

}
. (2)

Fitting a model (1) to experimental data (2) involves deter-
mining θ (and possible some elements of y0 if they them-
selves are unknown) so that the model solution is close, by
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some criterion, to the data. One approach is to minimise
the sum-of-squares criterion,

S(θ) =

m∑
j=1

nj∑
i=1

(yData
ij − yj(tji;θ))2, (3)

to find
θ̂ = argminS(θ), (4)

which is the “least-squares estimate” of θ. Another, more
statistically minded, approach is to define an error model
relating the deterministic model (1) to the data (2), con-
struct the “likelihood function”, L(θ) (see e.g. [9]) then
estimate θ by maximising L(θ) (or equivalently the log-
likelihood function, `(θ) = logL(θ)). For example, under
a Gaussian error model

yData
ij = yj(tji;θ) + εij , (5)

where the errors εij ∼ N(0, σ2) are independent Gaussian
random variables (i.e. Normally distributed) with mean 0
and variance σ2, the log-likelihood function is

`(θ) = −N
2

log
(
2πσ2

)
− 1

2σ2
S(θ), (6)

where N is the number of data points and S(θ) is given
by (3). For any σ2, `(θ) is maximised with respect to θ
by minimising S(θ). In other words, under a Gaussian er-
ror model, (5), which we adopt throughout this paper, the

“maximum-likelihood estimate”, θ̂ = argmax `(θ) is iden-
tical to the least-squares estimate of θ (4). The advantage
of the likelihood framework, however, is that it provides
distributional results for making statistical inference about
θ, as described below.

2.2. Confidence intervals for parameter values

The asymptotic distribution (i.e., as N →∞) of θ̂, un-
der mild conditions that commonly hold, is

θ̂ ∼ Np(θ, I−1(θ)), (7)

where Np(·, ·) denotes the multivariate Gaussian distribu-
tion, and I(θ) = −EH is the so-called Fisher information
matrix, where E denotes expectation and

H(θ) =
∂2`(θ)

∂θ∂θ>
(8)

is the Hessian matrix of ` with respect to θ [29]. Result
(7) can be used to construct individual or joint confidence
regions for the components of θ. For example, from (7), by
basic properties of the multivariate Gaussian distribution
[21], θ̂j is distributed as

θ̂j ∼ N(θj ,
[
I−1(θ)

]
jj

),

then, approximating I(θ) with −H(θ̂), we can derive the
bounds of a 100(1− α)% confidence interval as

θ̂j ±
√
χ2
1(α)

[
−H−1(θ̂)

]
jj
, (9)

where χ2
1(α) is the α upper quantile of the χ2

1 distibution.
The term “sloppiness”, introduced above, is now some-

times used very loosely to mean “difficulty in estimating
parameters”, though the term was originally introduced
with the more particular meaning that the spectrum of
eigenvalues of H span many orders of magnitude, and in-
clude some very small values. Small eigenvalues make H
ill-conditioned, inflating elements of H−1 and hence inflat-
ing the confidence intervals for the individual parameters.
We show later in Fig. 7 the eigenvalue spectra of models
of different complexity, and in Tables 2 and 3 examples of
confidence intervals computed using (9). For details of the
numerical calculations of H in this paper, see Appendix
A.

A different way to investigate the information about par-
ticular parameters contained within the data is by the
“profile likelihood” [28, 32]. This approach explores pa-

rameter space in the neighbourhood of θ̂ by varying a sin-
gle parameter and fitting the model with respect to the
remaining parameters. As described below, this provides
insight into the shape of the likelihood in the neighbour-
hood of the maximum. To calculate the profile likelihood,
consider a particular parameter of interest, θj , denote the
other parameters, θ−j , and write the log-likelihood as
`(θj ,θ−j). The log-profile-likelihood is defined as

`P(θj) = `(θj , θ̂−j), (10)

where θ̂−j = argmaxθ−j
`(θj ,θ−j), i.e., (10) is the log like-

lihood maximised over all the parameters except the par-
ticular one of interest. By Wilks’ theorem [31], under a
null hypothesis that θj takes a particular value, θ0j , say,
then asymptotically

2
(
`(θ̂)− `P(θ0j )

)
∼ χ2

1, (11)

which can be rearranged to give the confidence interval{
θj : 2

(
`(θ̂)− `P(θj)

)
< χ2

1(α)
}
. (12)

The confidence interval can be visualised by marking the
χ2
1(α) threshold on a plot of −2`P(θj) versus θj ; see for

example, Fig. 10.
An intuitive view of the Gaussian- and profile-likelihood-

based confidence intervals, (9, 12), is that they both in-
volve investigating the curvature of `(θ) in the vicinity of

θ = θ̂: flatness indicates that the data are not informa-
tive about θ, whereas high curvature indicates that the
data are very informative about θ. The Gaussian-based
confidence intervals amount to approximating `(θ) by a

quadratic with its curvature matched at the maximum, θ̂.
This entails an assumption of symmetry that may not be
warranted for the model and data (see, e.g., Fig 11). The
profile-likelihood confidence intervals involve no such as-
sumption and are often more accurate than the Gaussian-
based confidence intervals for nonlinear models and data
sets of typical size [28, 32]. Another advantage of profile-
likelihood confidence intervals is that they are invariant
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to the choice of parameterisation, e.g. whether or not the
parameters are defined on a log scale (as in this paper),
whereas Gaussian-based ones are not.

A point sometimes not highlighted is that the asymp-
totic results (7, 11) and hence confidence intervals derived
from them, (9, 12), require that θ is a point in the interior
of parameter space rather than a point on the boundary.
This is not always the case: for example, some of the pa-
rameters that are non-negative on physical grounds may be
exactly zero. In Model II later `(θ) is maximised when one
or more of the parameters approaches zero, in which case
we do not compute confidence intervals. Another point we
note is that in the derivations of the confidence intervals
above we have assumed that σ2 is known, whereas here
we substitute σ2 with its estimate σ̂2 = N−1S(θ̂), where

S(θ̂) is computed from the fitted model. This has little
effect on confidence intervals and saves the expressions for
the confidence intervals from becoming more complicated.
Details of how to compute the confidence intervals without
making this substitution are given in [29, p196].

2.3. Profile likelihood motivating model reduction

As we demonstrate in our case study below, the presence
of non-identifiable parameters suggests that the observed
dynamics can be captured by a simpler model. To derive
the simpler model, the profile likelihood can be used to
suggest an appropriate asymptotic model reduction. For
example, if the confidence interval is unbounded in one di-
rection, we take the corresponding limit in which θi → 0 or
θi →∞. In some cases, the model dynamics may depend
on θj only in a ratio with other parameters, in which case

plotting how the other fitted parameters, θ̂−j , vary as θj
is varied suggests an appropriate model reduction. Tak-
ing an asymptotic limit may also be appropriate for an
identifiable parameter if the estimated value and profile
likelihood show this parameter to be large or small. Hav-
ing derived a reduced model, we compute an information
criterion (AICc, see Appendix B) to select amongst the
candidate models. A schematic of this model reduction
approach is shown in Fig. 2.

3. Modelling the GA20ox-mediated steps in the
GA biosynthesis pathway

The GA biosynthesis pathway features two parallel se-
ries of oxidation steps mediated by the GA20ox enzymes
(Fig. 1). Each of these steps involves the GA species first
binding to GA20ox with a reversible reaction, and the re-
sulting complex then dissociating into the next GA species
in the pathway and GA20ox [23] (Fig. 3a). Thus, the con-

version of GA53 to GA20 (Fig. 3b) involves the reactions

[GA53]
∗

+ [GA20ox]
∗ ka53−−−⇀↽−−−

kd53
[GA53.GA20ox]

∗
,

[GA53.GA20ox]
∗ km53−−−→ [GA44]

∗
+ [GA20ox]

∗
,

[GA44]
∗

+ [GA20ox]
∗ ka44−−−⇀↽−−−

kd44
[GA44.GA20ox]

∗
,

[GA44.GA20ox]
∗ km44−−−→ [GA19]

∗
+ [GA20ox]

∗
,

[GA19]
∗

+ [GA20ox]
∗ ka19−−−⇀↽−−−

kd19
[GA19.GA20ox]

∗
,

[GA19.GA20ox]
∗ km19−−−→ [GA20]

∗
+ [GA20ox]

∗
,(13)

where kdj , kaj and kmj denote rate constants for j =
53, 44, 19, square brackets denote concentrations and aster-
isks denote dimensional quantities. Equivalent reactions
govern the conversion of GA12 to GA9 (Fig. 3c); however,
to maintain conciseness, we give reactions and equations
for only the GA53 pathway throughout.

3.1. Middleton et al’s model: Model I

To describe the reactions (13), we initially adopt the
model by Middleton et al. [23] who modelled the conver-
sion of GA12 to GA9 using the law of mass action. Thus,
reactions (13) can be described by a system of coupled
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Figure 2: Schematic showing the key steps in using parameter inference to identify and derive reduced versions of sloppy models.

Figure 3: (a) The reactions involved in a single oxidation step, shown
for the conversion of GA53 to GA44. (b) The series of GA20ox-
mediated reactions that convert GA53 to GA20. (c) The series of
GA20ox-mediated reactions that convert GA12 to GA9.

ordinary differential equations (ODEs):

d[GA53]
∗

dt∗
= −ka53[GA53]

∗
[GA20ox]

∗

+kd53[GA53.GA20ox]
∗
,

d[GA44]
∗

dt∗
= km53[GA53.GA20ox]

∗

−ka44[GA44]
∗
[GA20ox]

∗

+kd44[GA44.GA20ox]
∗
,

d[GA19]
∗

dt∗
= km44[GA44.GA20ox]

∗

−ka19[GA19]
∗
[GA20ox]

∗

+kd19[GA19.GA20ox]
∗
,

d[GA20]
∗

dt∗
= km19[GA19.GA20ox]

∗
,

d[GA53.GA20ox]
∗

dt∗
= ka53[GA53][GA20ox]

∗

−(kd53 + km53)[GA53.GA20ox]
∗
,

d[GA44.GA20ox]
∗

dt∗
= ka44[GA44]

∗
[GA20ox]

∗

−(kd44 + km44)[GA44.GA20ox]
∗
,

d[GA19.GA20ox]
∗

dt∗
= ka19[GA19]

∗
[GA20ox]

∗

−(kd19 + km19)[GA19.GA20ox]
∗
,

d[GA20ox]
∗

dt∗
= (kd53 + km53)[GA53.GA20ox]

∗

+(kd44 + km44)[GA44.GA20ox]
∗

+(kd19 + km19)[GA19.GA20ox]
∗

−ka53[GA53]
∗
[GA20ox]

∗

−ka44[GA44]
∗
[GA20ox]

∗

−ka19[GA19]
∗
[GA20ox]

∗
, (14)

where t∗ denotes time.

To estimate the parameters in this model, we follow [23]
in comparing the model dynamics to data from Apple-
ford et al. [2] who performed in vitro studies to investi-
gate the dynamics of the conversion of GA53 to GA9 and
GA12 to GA20. Considering the GA53 conversion, for ex-

5



ample, their solution initially contained fixed concentra-
tions of GA53 and GA20ox1, which we denote by s0 and
e0 respectively, and the concentrations of GA53, GA44,
GA19 and GA20 were measured at subsequent time points
(see data points in Fig. 4). Thus, the data corresponds
to the initial conditions [GA53]

∗
= s0, [GA20ox]

∗
= e0,

[GA44]
∗

= [GA19]
∗

= [GA20]
∗

= [GA53.GA20ox]
∗

=
[GA44.GA20ox]

∗
= [GA19.GA20ox]

∗
= 0. In the exper-

iments [2], the initial concentration s0 is given, which fol-
lowing [23] we take to be known initial conditions. The
initial GA20ox concentration e0 is an unknown and is a
parameter to be estimated.

Fitting the model parameters to the data (as described
in §2.1 and Appendix A), we see that equations (14) (here-
after referred to as Model I), can represent the observed
dynamics for the GA53 and GA12 pathways; see blue lines
in Fig. 4 and 5 respectively (consistent with the results in
[23] for the GA12 pathway). The profile likelihood for each
parameter (Fig. 6) shows that the fitted model remains
in agreement with the data for wide ranges of parameter
values. This conclusion is consistent with the eigenvalue
spectrum of the Hessian varying over several orders of mag-
nitude (Fig. 7), and hence the model being sloppy. The
model’s sloppiness motivates us to seek a simpler model
for the observed dynamics. The profile likelihood sug-
gests that to fit the data the estimated initial GA20ox
concentration, e0, needs to be small compared to the pre-
scribed initial GA53 concentration, s0. Thus, motivated
by the profile likelihoods and previous studies of enzyme-
substrate reactions, we will consider the limit in which
e0 � s0.

3.2. Model reduction, Model II

Applying the law of mass action is a standard way of
physically describing enzyme-substrate reactions; however,
the resulting Model I is complex with the model dynam-
ics depending on 10 parameter values. Given the profile
likelihood revealed that Model I only fits the data if e0/s0
is small, we now consider a model reduction by taking the
limit e0/s0 → 0. This quasi-steady-state assumption is
the basis of the Briggs-Haldine derivation of the Michaelis-
Menten equation [24], and, for a single substrate-enzyme
reaction, has been shown to generate a reduced model
in which parameters are identifiable using standard time
course data [6]. In the limit as e0/s0 → 0, the complexes
form rapidly and the complex concentrations are in equi-
librium after an initial transient time scale.

3.2.1. Nondimensionalisation

To derive a reduced model, we first non-dimensionalise
the governing equations. We consider the GA concentra-
tions relative to the initial GA53 concentration, s0, the
complex and enzyme concentrations relative to the initial
enzyme concentration, e0 and time relative to the rate at

0 20 40 60 80
0

2

4

6

GA
53

C
o
n
c.

(µ
M
)

0 20 40 60 80
0

1

2

3

4

GA
44

0 20 40 60 80
0

0.5

1

1.5

GA
19

C
o
n
c.

(µ
M
)

0 20 40 60 80
0

1

2

3

4

5 GA
20

0 20 40 60 80
0

0.05

0.1

0.15

0.2

GA
53

−GA20ox

C
o
n
c.

(µ
M
)

0 20 40 60 80
0

1

2

3
x 10

−5

GA
44

−GA20ox

0 20 40 60 80
0

0.5

1

GA
19

−GA20ox

Time (min)

C
o
n
c.

(µ
M
)

0 20 40 60 80
0

0.5

1

GA20ox

Time (min)

Figure 4: Fits of model dynamics to the GA53 pathway data; blue
lines = Model I; green lines = Model II; purple dashed lines = Model
III; red lines = Model IV. For these data, the known initial concen-
tration of GA53 is s0 = 5.56µM. We note that there is no noticeable
difference between the predicted Model II and Model III dynamics
and that in this case, Model IV does not capture the dynamics well
(as is reflected in the S(θ̂) and AICc values in Table 1). In the up-
per panels, the predicted GA53, GA44, GA19 and GA20 for Models
II-IV are redimensionalised via (15) to show comparison with the
experimental data.
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Figure 5: Fits of model dynamics to the GA12 pathway data; blue
lines = Model I; green lines = Model II; purple dashed lines = Model
III; red lines = Model IV. For these data, the known initial concen-
tration of GA53 is s0 = 4.38µM. We note that there is no noticeable
difference between the predicted dynamics of Model II, Model III or
Model IV and as a result the green, purple and red lines cannot be
easily distinguished. In the upper panels, the predicted GA12, GA15,
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show comparison with the experimental data.
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lines). We note that for this GA53 pathway s0 = 5.56µM and there-
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motivates the asymptotic reduction to Model II. Similar profile likeli-
hoods are obtained when fitting with the GA12 pathway data (results
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which GA53 binds to GA20ox; thus

([GA53]
∗
, [GA44]

∗
, [GA19]

∗
, [GA20]

∗
)

= s0([GA53], [GA44], [GA19], [GA20]),

([GA53.GA20ox]
∗
, [GA44.GA20ox]

∗
,

[GA19.GA20ox]
∗
, [GA20ox]

∗
) =

e0([GA53.GA20ox], [GA44.GA20ox],

[GA19.GA20ox], [GA20ox]),

t∗ =
1

ka53e0
t. (15)

We introduce the following dimensionless parameter
groupings:

ε =
e0
s0
, (ᾱ44, ᾱ19) =

1

ka53
(ka44, ka19),

(λ̄53, λ̄44, λ̄19) =
1

ka53s0
(km53, km44, km19),

(κ̄53, κ̄44, κ̄19) =
1

ka53s0
(kd53 + km53,

kd44 + km44, kd19 + km19). (16)

On nondimensionalising in this fashion, the governing
equations, (14), become

d[GA53]

dt
= −[GA53][GA20ox]

+(κ̄53 − λ̄53)[GA53.GA20ox], (17a)

d[GA44]

dt
= λ̄53[GA53.GA20ox]

−ᾱ44[GA44][GA20ox]

+(κ̄44 − λ̄44)[GA44.GA20ox], (17b)

d[GA19]

dt
= λ̄44[GA44.GA20ox]

−ᾱ19[GA19][GA20ox]

+(κ̄19 − λ̄19)[GA19.GA20ox], (17c)

d[GA20]

dt
= λ̄19[GA19.GA20ox], (17d)

ε
d[GA53.GA20ox]

dt
= [GA53][GA20ox]

−κ̄53[GA53.GA20ox], (17e)

ε
d[GA44.GA20ox]

dt
= ᾱ44[GA44][GA20ox]

−κ̄44[GA44.GA20ox], (17f)

ε
d[GA19.GA20ox]

dt
= ᾱ19[GA19][GA20ox]

−κ̄19[GA19.GA20ox], (17g)

ε
d[GA20ox]

dt
= κ̄53[GA53.GA20ox]

+κ̄44[GA44.GA20ox]

+κ̄19[GA19.GA20ox]

−[GA53][GA20ox]

−ᾱ44[GA44][GA20ox]

−ᾱ19[GA19][GA20ox], (17h)

with initial conditions,

[GA53] = 1, [GA44] = [GA19] = [GA20] = 0,(18a)

[GA20ox] = 1, [GA53.GA20ox] = 0, (18b)

[GA44.GA20ox] = [GA44.GA20ox] = 0. (18c)

3.2.2. Model reduction

Having non-dimensionalised, we reduce the model by
taking the limit e0/s0 → 0. Considering t∗ = O(1), equa-
tions (17e-g) give expressions for the complex concentra-
tions in the limit as ε→ 0

[GA53.GA20ox] = κ53[GA53][GA20ox],

[GA44.GA20ox] = κ44[GA44][GA20ox],

[GA19.GA20ox] = κ19[GA19][GA20ox], (19)

where

κ53 =
1

κ̄53
, κ44 =

ᾱ44

κ̄44
, κ19 =

ᾱ19

κ̄19
, (20)

(i.e. κj = kajs0/(kdj + kmj) the ratio between the typi-
cal complex association rate and the complex dissociation
rate). Summing (17e-h) shows that the total enzyme con-
centration is conserved; thus the initial conditions, (18b-c),
require that the enzyme and complex concentrations sum
to one for all times, and from (19), we obtain

[GA20ox] =

1

1 + κ53[GA53] + κ44[GA44] + κ19[GA19]
. (21)

Substituting (19, 21) into (17a-d) and returning to dimen-
sional time, t∗, (for ease of fitting with the data), we obtain

d[GA53]

dt∗
=

−λ53[GA53]

1 + κ53[GA53] + κ44[GA44] + κ19[GA19]
,

d[GA44]

dt∗
=

λ53[GA53]− λ44[GA44]

1 + κ53[GA53] + κ44[GA44] + κ̄19[GA19]
,

d[GA19]

dt∗
=

λ44[GA44]− λ19[GA19]

1 + κ53[GA53] + κ44[GA44] + κ19[GA19]
,

d[GA20]

dt∗
=

λ19[GA19]

1 + κ53[GA53] + κ44[GA44] + κ19[GA19]
. (22)

where parameter groupings

λj =
ka53e0λ̄j

κj
=
kmj(kdj + kmj)

kajs0
, (23)

for j = 53, 44, 19, have dimensions min−1. In summary,
by assuming that the enzyme concentrations are small rel-
ative to the GA concentrations, the governing equations,
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Model p GA53 pathway GA12 pathway
N=54 N=46

S(θ̂) AICc S(θ̂) AICc
I 10 2.7266 -136.12 1.5584 -129.42
II 6 2.9559 -143.09 1.6505 -138.91
III 4 2.9560 -148.06 1.6506 -144.09
IV 3 7.5705 -99.62 1.6605 -146.22

Table 1: Comparison of model fits. The Akaike Information Crite-
rion (AICc) provides a method of model selection by assessing good-
ness of fit whilst penalising over-complicated models that have more
parameters (see definition in Appendix B)

(17), reduce to four ODEs for the GA concentrations (22)
coupled to four expressions for the quasisteady complex
and enzyme concentrations (19, 21) for t∗ = O(1), with
initial conditions

[GA53] = 1, [GA44] = [GA19] = [GA20] = 0. (24)

These equations and expressions depend on 6 parame-
ter groupings (20, 23). The reduced model cannot sat-
isfy initial conditions (18b-c). As in the Michaelis-Menten
approximation of a single enzyme-substrate reaction, the
complex concentrations evolve to their quasisteady state
on an initial time scale 0 ≤ t∗ � 1 [24]; however, to re-
main focussed on data-fitting, we consider the derivation
of this inner solution to be beyond the scope of this study.

Fitting Model II to the experimental data [2] (as de-
scribed in Appendix A), we see that the reduced model
captures well the observed dynamics (Fig. 4 and 5), sug-
gesting that the complex concentrations are indeed quasi-
steady on the time scale of the experiment. Since Model II
is derived as an asymptotic reduction of Model I, it fits the
data slightly less well than Model I for both pathways in
the sense of having a larger residual sum-of-squares, S(θ̂),
but it involves four fewer parameters and by AICc Model
II is favoured over Model I (see Table 1 and Appendix B).

The profile likelihoods show different behaviour for the
two pathways (Figs. 8 and 9). For the GA53 pathway,
the profile likelihood indicates that the model dynamics
fit the data well when κ53 and κ44 are small; however, the
confidence intervals of the remaining four parameters are
finite (and do not include zero) (Fig. 8). For the GA12

pathway, we similarly see that κ12 and κ15 are small, but
in this case, the other parameters have unbounded confi-
dence intervals and hence any of these may be very large
(Fig. 9). For both pathways, the eigenvalue spectra of the
Hessian is sloppy (Fig. 7). Given the similar features in
the profile likelihoods of the two pathways, we consider a
model reduction by taking κ53 and κ44 (or equivalently κ12
and κ15) to be small. We note that the profile likelihoods
(Figs. 8 and 9) also show that the fitted values of the
other parameters do not change as κ53, κ44, κ12 and κ15
varied from small values, and thus, it appears that these
four parameters have a negligible influence on the model
dynamics on this time scale.
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Figure 8: Profile likelihoods for Model II fit to the GA53 pathway
data. The first and third row of panels show the profile likelihood
for each parameter (solid lines), the estimated parameter value (as-
terisk) and the confidence interval threshold for α = 0.95 (dashed
lines). The second and fourth row of panels show how the other pa-
rameter values vary along these Likelihood profiles. In the numerical
optimization, we have imposed a lower bound of 10−4 for the value
of each parameter.
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Figure 9: Profile likelihoods for Model II fit to the GA12 pathway
data. The first and third row of panels show the profile likelihood
for each parameter (solid lines), the estimated parameter value (as-
terisk) and the confidence interval threshold for α = 0.95 (dashed
lines). The second and fourth row of panels show how the other pa-
rameter values vary along these Likelihood profiles. In the numerical
optimization, we have imposed a lower bound of 10−4 for the value
of each parameter.

3.3. A further model reduction: Model III

The profile likelihoods (Fig. 8 and 9) show that the
model fits the data equally well for any small values of
the parameters κ53 and κ44 for the GA53 pathway and
κ12 and κ15 for the GA12 pathway. This motivates a fur-
ther model reduction (Model III) in which we suppose that
ε� κ53 � 1, κ44 = O(κ53) as κ53 → 0. Here the dynamics
depend on four parameters, and the governing equations
are

d[GA53]

dt∗
=

−λ53[GA53]

1 + κ19[GA19]
,

d[GA44]

dt∗
=

λ53[GA53]− λ44[GA44]

1 + κ19[GA19]
,

d[GA19]

dt∗
=

λ44[GA44]− λ19[GA19]

1 + κ19[GA19]
,

d[GA20]

dt∗
=

λ19[GA19]

1 + κ19[GA19]
, (25)

which are coupled to an expression for the enzyme concen-
tration

[GA20ox] =
1

1 + κ19[GA19]
, (26)

and expressions (19) for the complex concentrations, and
subject to initial conditions (24). In this limit, the dissoci-
ation rates of complexes GA53-GA20ox and GA44-GA20ox
are much larger than their association rates so that their
concentrations are asymptotically small.

Fitting the parameters for Model III, we find no no-
ticeable difference between the predicted Model III and
Model II dynamics (see Fig. 4 and 5); the fitted parame-

ters and residual sum-of-squares, S(θ̂), are similar to those
of Model II; however, since Model III has fewer parame-
ters than Model II, Model III has a lower AICc (Table 1).
For both pathways, the range of eigenvalues of the Hes-
sian is much smaller for Model III than Model II, showing
that Model III is less sloppy that Model II (Fig. 7). The
profile likelihoods show that the parameters are identifi-
able for the GA53 pathway and we find reasonable agree-
ment between the Gaussian- and profile-likelihood-based
confidence intervals in this case (Fig. 10, Table 2). In
contrast, the profile-likelihood based confidence intervals
are unbounded for the GA12 pathway (Fig. 11). Thus,
the profile likelihoods suggest that dynamics of the GA53

pathway appear to be parsimonously described by Model
III, whereas those of the GA12 pathway may be captured
by a simpler model. The profile likelihoods for the GA12

pathway show that any of the four parameters may be
large, and there appears to be a linear relationships be-
tween the parameters along each profile likelihood (Fig
11), which suggests that the model dynamics depend on
ratios between certain parameter values.

3.4. A final model reduction: Model IV

Motivated by the profile likelihoods of the GA12 path-
way, we consider the limit in which κ19 → ∞, and intro-
duce λ̃j = λj/κ19 for j = 53, 44, 19 which we take to be
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Figure 10: Profile likelihoods for Model III fit to the GA53 path-
way data. Upper panels show the profile likelihood for each param-
eter (solid lines), the approximation to the likelihood entailed by
the Gaussian-based confidence intervals (dot-dash), the estimated
parameter value (asterisk) and the confidence interval threshold for
α = 0.95 (dashed lines). Lower panels show how the other parameter
values vary along these likelihood profiles.

0 1 2 3
15

20

25

−
2
l P
(θ

j
)

0 1 2 3
15

20

25

0 1 2 3
15

20

25

2 3 4
15

20

25

0 1 2 3
−2

0

2

4

6

log(λ12)

lo
g(
o
th
er

p
a
ra
m
et
er
s)

 

 

λ15
λ24
κ24

0 1 2 3
−2

0

2

4

6

log(λ15)

 

 

λ12
λ15
κ24

0 1 2 3
−2

0

2

4

6

log(λ24)

 

 

λ12
λ15
κ24

2 3 4
0

1

2

3

log(κ24)

 

 

λ12
λ15
λ24

Figure 11: Profile likelihoods for Model III fit to the GA12 path-
way data. Upper panels show the profile likelihood for each param-
eter (solid lines), the approximation to the likelihood entailed by
the Gaussian-based confidence intervals (dot-dash), the estimated
parameter value (asterisk) and the confidence interval threshold for
α = 0.95 (dashed lines). Lower panels show how the other parameter
values vary along these likelihood profiles.

Parameter Estimated Confidence Confidence
value interval interval

PL Gaussian
log(λ53) −0.54 [−0.62,−0.45] [−0.65,−0.44]
log(λ44) −1.03 [−1.16,−0.89] [−1.21,−0.86]
log(λ19) −0.72 [−0.86,−0.55] [−0.92,−0.52]
log(κ19) 1.08 [0.84, 1.31] [0.78, 1.37]

Table 2: Estimated parameters and their profile-likelihood (PL) and
Gaussian-based confidence intervals (with α = 0.95) for Model III
and the GA53 pathway. These values correspond with the results
shown in Fig. 10.

O(1) parameters as κ19 → ∞. Letting δ = 1/κ19, Model
III can be rewritten as

d[GA53]

dt∗
=
−λ̃53[GA53]

δ + [GA19]
, (27a)

d[GA44]

dt∗
=

λ̃53[GA53]− λ̃44[GA44]

δ + [GA19]
, (27b)

d[GA19]

dt∗
=

λ̃44[GA44]− λ̃19[GA19]

δ + [GA19]
, (27c)

d[GA20]

dt∗
=

λ̃19[GA19]

δ + [GA19]
, (27d)

and

[GA20ox] =
δ

δ + [GA19]
∗ . (28)

We now consider the limit as δ → 0. In this case,
the leading-order equations depend on the magnitude of
[GA19] compared to δ, therefore to derive the governing
equations, we consider a series of distinct timescales in
which different terms are present at leading order (see
[10, 19] for examples where similar approaches have been
used, and [20] for a textbook description). As detailed
below, five timescales emerge from the asymptotic analy-
sis; to validate this analysis, Figs. 12 and 13 compare the
asymptotic solutions to numerical simulations of Model
III, (27), with δ = 0.01.

3.4.1. Matched asymptotic analysis to evaluate the
leading-order dynamics in the limit δ → 0

Timescale 1, t∗ = O(δ2): At the beginning of the ex-
periment, only GA53 and GA20ox are present. Therefore
at early times [GA19] � δ, the amount of enzyme bound
with [GA19] is asymptotically small and the concentration
of free enzyme [GA20ox] = 1 (see (28)). We rescale

[GA44] = δ[GA44]
†
, [GA19] = δ2[GA19]

†
,

[GA20] = δ3[GA20]
†
, (29)

(using daggers to denote the rescaled variables) and find
that the concentrations evolve on a fast time scale, T , such
that t∗ = δ2T . At leading order, equations (27) become

d[GA53]

dT
= 0,

d[GA44]
†

dT
= λ̃53[GA53],

d[GA19]
†

dT
= λ̃44[GA44]

†
,

d[GA20]
†

dT
= λ̃19[GA19]

†
, (30)

which have solution

[GA53] = 1, [GA44]
†

= λ̃53T,

[GA19]
†

=
λ̃53λ̃44T

2

2
, [GA20]

†
=
λ̃53λ̃44λ̃19T

3

6
, (31)

(satisfying initial conditions (24)). As shown in Fig. 12a,
these analytical expressions agree with the dynamics of
Model III, (27), at early times.
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Timescale 2, t∗ = O(δ3/2): As the GA19 concentra-
tion increases, we move to a different asymptotic regime in
which [GA19] = O(δ) and significant amounts of both free
and GA19-bound enzyme are present. To ensure matching
between consecutive timescales, we require the long-time
behaviour of each variable to match to the short-term dy-
namics on the subsequent timescale. Thus, considering the
long-time dynamics of Timescale 1, if T is scaled with δα

as T → ∞ (for unknown α) then from (31), we find that

[GA44]
†

is scaled with δα, [GA19]
†

with δ2α and [GA20]
†

with δ3α. We find a suitable balance setting α = −1/2.
Thus, the rescaled time, t̂, is t∗ = δ3/2t̂ and the relevant
scalings are

[GA44] = δ1/2[GA44]
‡
, [GA19] = δ[GA19]

‡
,

[GA20] = δ3/2[GA20]
‡
. (32)

The resulting rescaled problem reads

d[GA53]

dt̂
= 0,

d[GA44]
‡

dt̂
=

λ̃53[GA53]

1 + [GA19]
‡ ,

d[GA19]
‡

dt̂
=

λ̃44[GA44]
‡

1 + [GA19]
‡ ,

d[GA20]
‡

dt̂
=

λ̃19[GA19]
‡

1 + [GA19]
‡ . (33)

Applying initial conditions [GA53]
‡

= 1, [GA44]
‡

=

[GA19]
‡

= [GA20]
‡

= 0, numerical solutions reveal that
these equations, (33), faithfully reproduce the dynamics
of Model III at early times (Fig. 12b).

Given we do not have an analytical solution on this time
scale, we elucidate the long-time behaviour of the dynam-
ics by supposing each variable takes the form αt̂η as t̂→∞
(where α and η are unknown constants for each variable);
substituting into the governing equations (33), we find that

[GA44]
‡

=

(
6λ̃253

λ̃44

)1/3

t̂1/3,

[GA19]
‡

=

(
9λ̃53λ̃44

2

)1/3

t̂2/3,

[GA20]
‡

= λ̃19t̂ as t̂→∞. (34)

These long-time dynamics are in good agreement with nu-
merical solutions of the governing equations on this time
scale, (33) (Fig. 12b).

Timescale 3, t∗ = O(1): Once [GA19] = O(1), the ma-
jority of the enzyme is bound with GA19 and the concen-
tration of free enzyme [GA20ox] = O(δ), see (28). Rescal-
ing the long-time dynamics on the previous timescale, (34),
we see that on a t∗ = O(1) timescale the four GA concen-
trations are O(1); thus, the leading-order dynamics are

governed by

d[GA53]

dt∗
=
−λ̃53[GA53]

[GA19]
, (35a)

d[GA44]

dt∗
=

λ̃53[GA53]− λ̃44[GA44]

[GA19]
, (35b)

d[GA19]

dt∗
=

λ̃44[GA44]− λ̃19[GA19]

[GA19]
, (35c)

d[GA20]

dt∗
= λ̃19. (35d)

From (35d), we obtain an explicit solution for the GA20

concentration:

[GA20] = λ̃19t
∗. (36)

As the enzyme and complex concentrations sum to one
at all times, this explicit solution (36) reveals that the
Timescale 3 equations (35) are only valid for t∗ < 1/λ̃19.
For this time period, t∗ ∈ [0, 1/λ̃19], we see that numer-
ical solutions of (35) faithfully reproduce the solutions of
Model III, (27) (Fig. 12c).

Matching to the subsequent time scale requires the dy-
namics in the limit t∗ → 1/λ̃19. Supposing each variable
takes the form α(1/λ̃19− t∗)η, we find suitable balances in
the governing equations, (35), with

[GA53] =
(λ̃44 − λ̃53)(λ̃19 − λ̃53)

λ̃44

(
1

λ̃19
− t∗

)
,

[GA44] =
λ̃53(λ̃19 − λ̃53)

λ̃44

(
1

λ̃19
− t∗

)
,

[GA19] = λ̃53

(
1

λ̃19
− t∗

)
, as

(
1

λ̃19
− t∗

)
→ 0. (37)

These analytical solutions accurately represent the
Timescale 3 dynamics in the limit as t∗ → 1/λ̃19 (Fig. 13).

Timescale 4 : The Timescale 3 equations show that as
t∗ → 1/λ̃19, all the GA53 is converted to GA20, [GA20]→ 1
and the concentrations of GA53, GA44 and GA19 become
small. Matching with the previous timescale, (37), we
rescale

t∗ =
1

λ̃19
+ δτ, [GA53] = δ[GA53]

�
,

[GA44] = δ[GA44]
�
, [GA19] = δ[GA19]

�
,

[GA20] = 1− δ[GA20]
�
, (38)

and the governing equations become

d[GA53]
�

dτ
=
−λ̃53[GA53]

�

1 + [GA19]
� ,

d[GA44]
�

dτ
=

λ̃53[GA53]
� − λ̃44[GA44]

�

1 + [GA19]
� ,

d[GA19]
�

dτ
=

λ̃44[GA44]
� − λ̃19[GA19]

�

1 + [GA19]
� ,

d[GA20]
�

dτ
= − λ̃19[GA19]

�

1 + [GA19]
� (39)
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Figure 12: Comparison of predicted dynamics of Model IV for
Timescales 1-3 with numerical solutions of Model III (27). In each
panel, solutions of Model III are shown in solid lines and we prescribe
λ̃53 = 0.5, λ̃44 = 0.8, λ̃19 = 1 and δ = 0.01. (a) Analytical solutions
for Timescale 1 (31) (dashed lines). (b) Numerical solutions of gov-
erning equations for Timescale 2 (33) (dashed lines), and analytical
solutions for the long time behaviour of the dynamics on Timescale
2 (34) (dotted lines). (c) Numerical solutions of governing equations
for Timescale 3 (35) (dashed lines), where initial conditions were
applied at t∗ = 10−4 using the analytical solution of the long time
behaviour of Timescale 2 (34).
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Figure 13: Comparison of predicted dynamics of Model IV for
Timescales 3-4 with numerical solutions of Model III (27) for λ̃53 =
0.5, λ̃44 = 0.8, λ̃19 = 1 and δ = 0.01. Each panel shows numerical
solutions of Model III (27) (solid lines), numerical solutions of the
governing equations for Timescale 3 (35) (dashed lines), analytical
solutions of the Timescale 3 dynamics in the limit as t∗ → 1/λ19 (37)
(dotted lines) and numerical solutions of the governing equations for
Timescale 4 (39) with initial conditions applied at t∗ = 0.9 using the
Timescale 3 solutions in the limit as t∗ → 1/λ19 (dash-dot lines).

Parameter Estimated Confidence Confidence
value interval, interval,

PL Gaussian

log(λ̃53) −2.11 [−2.22,−2.00] [−2.26,−1.95]

log(λ̃44) −2.40 [−2.56,−2.27] [−2.60,−2.21]

log(λ̃19) −2.02 [−2.06,−1.98] [−2.07,−1.96]

log(λ̃12) −1.83 [−1.91,−1.75] [−1.94,−1.72]

log(λ̃15) −1.96 [−2.06,−1.86] [−2.10,−1.82]

log(λ̃24) −1.81 [−1.84,−1.79] [−1.84,−1.78]

Table 3: Estimated parameters and their profile-likelihood (PL) and
Gaussian-based confidence intervals (with α = 0.95) for Model IV.
These values correspond with the results shown in Fig. 14.

Solving the Timescale 4 governing equations, (39), numer-
ically, we see good agreement with the numerical solutions
of Model III (Fig. 13). As τ →∞, the numerical solutions
show that [GA53]

� → 0, [GA44]
� → 0, [GA19]

� → 0 and
[GA20]

� → 0.
Timescale 5 : It remains to characterise the dynamics

for t∗ = O(1) and t∗ > 1/λ̃19. Considering the long-time
dynamics of Timescale 4 (Fig. 13), the leading-order solu-
tion for Timescale 5 is simply given by

[GA53] = [GA44] = [GA19] = 0, [GA20] = 1. (40)

3.4.2. Fitting Model IV

The dominant (t∗ = O(1)) dynamics are given by the
asymptotic solutions in Timescales 3 and 5, which can be
solved subject to prescribing an initial non-zero concen-
tration of GA19. For a given parameter set, we simulate
the Timescale 3 equations for t∗ ∈ [0, 1/λ̃19] (35), pre-
scribing initial conditions using the long time dynamics of
Timescale 2 (34), applied at t∗ = 10−4, and then prescribe
the Timescale 5 equations for t > 1/λ̃19 (40). Simulat-
ing Model IV in this way, we fit the three model parame-
ters to the experimental data (Figs. 4 and 5). The profile
likelihoods (Fig. 14) show that for Model IV each param-
eter is identifiable using the data, with narrow Gaussian
and profile-likelihood-based confidence intervals that are
in good agreement (Table 3).

As expected given the parameter estimates for Model
III, the value of S(θ̂) and the AICc (Table 1) show that the
Model IV approximation (κ19 →∞) captures the observed
dynamics of the GA12 pathway, but is not appropriate
for the GA53 pathway. Thus, our study recommends that
Model IV is the appropriate choice for the GA12 pathway,
whereas one would choose Model III for the GA53 pathway.

4. Discussion

We have described how parameter estimation can moti-
vate asymptotic reduction of a network model and lead to
a simpler model that represents well the observed dynam-
ics. We demonstrated the use of these methods to analyse
a recently published model of GA biosynthesis [23].
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Figure 14: Profile likelihood for Model IV fit to the GA53 path-
way data (upper panels) and the GA12 pathway data (lower panels).
Each panel show the profile likelihood for the parameter (solid line),
the approximation to the likelihood entailed by the Gaussian-based
confidence intervals (dot-dash line), the estimated parameter value
(asterisk) and the confidence interval threshold for α = 0.95 (dashed
lines).

When fitting sloppy systems biology models to exper-
imental data, calculating the profile likelihood provides
helpful insight into the nature of parameter space in the
neighbourhood of the best estimated parameter set. The
profile likelihood reveals when taking a parameter to be
increasingly small or large is consistent with the model
fitting well the observed dynamics, or where the model
dynamics are insensitive to particular parameter values.
This, together with plots of how the other fitted parame-
ters change as the prescribed one is varied, helps identify
an appropriate asymptotic model reduction. The simpler
model can then be fitted to the data to assess whether it
is an appropriate approximation. As asymptotically re-
duced models depend on groupings of the original model
parameters, the reduced model has fewer parameters and
is a more parsimonious representation of the observed dy-
namics. Asymptotic model reduction often involves care-
ful consideration of distinct time scales (for instance, as
in the reduction of Model III to Model IV), and there-
fore automating the model-reduction step is unlikely to be
possible in many cases.

The profile likelihood also enables calculation of con-
fidence intervals for each parameter. These tend to be
preferable in practise compared with confidence intervals
based on the approximate Gaussian distribution of θ̂, es-
pecially so for strongly non-linear models where the Gaus-
sian approximation is poor (see e.g. Fig. 11). However, we
have found that in the final reduced models, where param-
eters are identifiable, the two types of confidence interval
do agree quite closely (e.g. Fig. 10).

We have focussed here on using the profile likelihood
for parameter inference and model reduction. Other ap-
proaches for considering dependence between model pa-

rameters with a view to model reduction include investi-
gating the eigenvectors of H that correspond to the small-
est eigenvalues [22], or adopting a Bayesian paradigm [13]
and investigating structure amongst posterior parameter
samples. In our view, though, the profile likelihood offers
the most direct way to understand the effect of varying
the value of individual parameters, and hence identifying
good candidate model reductions.

Our study focussed on analysing a model of the GA
biosynthesis pathway. Given the importance of GA for
plant development, a GA pathway model is likely to fea-
ture in future plant models and the existing GA pathway
model [23] has already featured in a multiscale model of
plant growth regulation [3] and a study on hormone cross-
talk [1]. In assessing the required level of complexity for
capturing the dynamics of GA biosynthesis, our analysis
will simplify future plant models. We recommend that
Model III with the parameter estimates given in Table 2
could be used to simulate the conversion of GA53 to GA20

whereas Model IV with the parameter estimates given in
Table 3 captures the conversion of GA12 to GA9.

For both pathways, the analysis revealed the typical en-
zyme concentrations to be significantly smaller that the
typical GA concentrations; as a result, the dynamics can
be captured by Model II in which complex and enzyme
concentrations equilibriate rapidly and are at a quasi-
steady state after an initial transient time scale. The con-
centrations of complexes or free enzyme can be approxi-
mated as simply a function of the GA concentrations (19,
21). Fitting the parameter groupings under this Model II
approximation further revealed that for GA53 and GA44

(and equivalently GA12 and GA15) the ratios between the
typical complex association and dissociation rates (κ53
and κ44 respectively) are small, resulting in small GA53-
GA20ox and GA44-GA20ox complex concentrations. We
note that these parameter groupings, κ53 and κ44, arose
through the first asymptotic model reduction to Model II
and therefore the second asymptotic limit is only revealed
once Model II is fitted to the data. We find a further ap-
proximation is applicable to the GA12 pathway; here, fit-
ting Model III to the data showed that binding of GA24 to
GA20ox to form GA24-GA20ox occurs much more rapidly
than GA24-GA20ox dissociation, resulting in the majority
of the enzyme being bound in a complex with GA24. Thus,
the modelling suggests that dissociation of GA24-GA20ox
is a major limiting step in the production of bioactive GA4.
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Appendix A. Numerical optimisation

The likelihood function, `(θ), for nonlinear models often
has many local optima, so gradient-based numerical opti-
misation algorithms tend to get trapped in local optima
and fail to find the global optimum, θ̂. A simple strat-
egy to overcome this is to repeat the optimisation many
times using different widely spaced starting values for θ.
Following Raue et al. [27], we choose starting values us-
ing Latin hypercube sampling, which involves specifying a
range for each parameter, dividing it into p equally sized
intervals and then constructing p parameter sets such that
for each parameter a value is selected from each interval
once and only once. For each optimisation, we use Matlab
function lsqnonlin’s gradient-based trust-region-reflective
algorithm, which requires the derivative

∂`

∂θ
=

1

σ2

m∑
j=1

nj∑
i=1

(yData
ij − yj(tji))

∂yj(tji)

∂θ
.

in which ∂y/∂θ can be computed by solving numerically
the “sensitivity equations”

d

dt

(
dy

dθ

)
=
∂f

∂θ
+
∂f

∂y

dy

gθ
with

dy

dθ

∣∣∣
t=0

= 0.

For the models and data in this paper, this method con-
sistently identifies the optimum θ̂.

A useful by-product of computing ∂y/∂θ is that it can
be used to compute a cheap approximation to H [4],

H ≈ −
m∑
j=1

nj∑
i=1

1

σ2

∂yj(tji)

∂θ

∂yj(tji)

∂θ>
,

which we used for calculations of H throughout the paper.

Appendix B. Information criterion for model se-
lection

A common way to select amongst candidate models is
via the Akaike Information Criterion, or the “corrected
version” (AICc) defined as [5]

AICc = 2p− 2`(θ̂) +
2pN

N − p− 1
. (B.1)

This information criterion trades off the quality of model
fit, measured by `(θ̂), with the number of parameters in-
volved: when computed for multiple models, the model to
be favoured is the the one with smallest AICc. We com-
pute the AICc values for each of the models we consider.
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