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We study the creation of a spherical, finite radius source for a quantized massless scalar field in 3þ 1

dimensions. The goal is to model the breakdown of correlations that has been proposed to occur at the
horizon of an evaporating black hole. We do this by introducing at fixed radius r ¼ a a one parameter
family of self-adjoint extensions of the three dimensional Laplacian operator that interpolate between the
condition that the values and the derivatives on the two sides of r ¼ a coincide for t ≤ 0 (no wall) and the
two-sided Dirichlet boundary condition for t ≥ 1=λ (fully-developed wall). Creation of the shell produces
null, spherical pulses of energy on either side of the shell, one ingoing and the other outgoing. The
renormalized energy density hT00i diverges to positive infinity in the outgoing energy pulse, just outside
the light cone of the fully-formed wall at t ¼ 1=λ. Unlike in the 3þ 1 point source creation, there is no
persistent memory cloud of energy. As in the creation of a 1þ 1 dimensional wall, the response of an
Unruh-DeWitt detector in the post-shell region is independent of the time scale for shell formation and is
finite. The latter property casts doubt on the efficacy of this mechanism for firewall creation.

DOI: 10.1103/PhysRevD.98.024035

I. INTRODUCTION

It has been more than thirty years since Hawking first
suggested [1] that black hole formation might give rise to a
fundamental breakdown of predictability. Many approaches
have been taken in order to resolve this apparent dilemma
[2].Among these is the suggestion [3–6] that the horizon of a
radiating black hole might be more singular than suggested
by standard quantum field theory on a curved background
[7,8]. Specifically, there might exist an “energetic curtain”
[5] or “firewall” [6] whose purpose is to break correlations
between objects falling into the horizon and those remaining
on the outside. An important question then is whether there
exists a localmechanism for creating such a firewall, one that
does not rely on a detailed knowledge of the underlying
theory of quantum gravity.
Recently Brown and Louko [9] explored a 1þ 1 dimen-

sional model of firewall creation based on the imposition of
time dependent boundary conditions at a fixed point in
space. These boundary conditions were equivalent to the
insertion of a wall that broke correlations between the
quantum field on the left side of the wall and that on

the right. They found that in the rapid creation limit this
scenario resulted in the creation of a divergent null pulse of
energy emanating from the point at which the boundary
conditions were imposed. It is this pulse of energy that
plays the role of the firewall in this model because in the
spacetime of an evaporating black hole, the firewall is
supposed to be forming near the horizon, which is a null
surface. Brown and Louko [9] found that the response of an
Unruh-DeWitt detector crossing this pulse remained finite,
irrespective of how rapidly the wall was created, suggesting
that this mechanism could not produce sufficient energy to
break all correlations as required.
A potentially more realistic 3þ 1 dimensional model

was studied in [10], where time dependent boundary
conditions interpolating between Neumann-type (ordinary
Minkowski dynamics) and Dirichlet-type were imposed at
the spatial origin. This corresponds to the smooth creation
of a point source, as opposed to a wall separating two
regions of space. As one might expect from standard
quantum field theory, the field’s energy and the detector
response are more divergent in 3þ 1 dimensions than in
1þ 1 dimensions. The 3þ 1 renormalized energy density
hT00i was shown to be well defined everywhere away from
the source but unbounded both above (after) and below
(before) the energetic pulse. Moreover, in this model a
cloud of positive energy lingers near the source after the
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source is fully formed. The total energy of this cloud is
positive infinity. At fixed radius, r, hT00i is not static and
diverges as t → ∞. In the limit of rapid source creation
hT00i diverges everywhere in the timelike future of the
creation event. The response of an Unruh-DeWitt detector
traversing the shell is divergent as desired for the firewall
mechanism, but the divergence appears to be primarily due
to the energetic cloud that surrounds the source.
The purpose of the present work is to extend the study of

this mechanism further by considering the creation of a
spherical wall in 3þ 1 dimensions. We do this by intro-
ducing at fixed radius r ¼ a a one parameter family of self-
adjoint extensions of the three dimensional Laplacian
operator that interpolate between the condition that the
values and the derivatives on the two sides of r ¼ a
coincide for t ≤ 0 (no wall) and the two-sided Dirichlet
boundary condition for t ≥ 1=λ (fully-developed wall). As
in the previous studies, wall creation produces a null pulse
of energy on either side of the shell, one ingoing and the
other outgoing. We find that hT00i diverges to positive
infinity in the outgoing energy pulse, just outside the light
cone of the fully-formed wall at t ¼ 1=λ. Unlike in the
3þ 1 point source creation, there is no persistent memory
cloud of energy. As in the 1þ 1 dimensional wall, the
response of the detector in the post-shell region is inde-
pendent of the time scale 1=λ and finite, once again casting
doubt on the efficacy of this mechanism for breaking all
entanglement at black hole horizons.
The paper is organized as follows. In Sec. II, we set up

the massless Klein-Gordon equation with the boundary
conditions at r ¼ a required for shell formation. We solve
for the mode functions for time t < a and quantize the
field. We restrict to t < a in order to ensure that the
ingoing pulse does not have time to reach the origin and
re-disperse, thereby simplifying the calculation signifi-
cantly. In Sec. III, we discuss the quantized total energy
with focus on the energy density in the regions to the
“future” of the outgoing pulses. A discussion of the
energy density in the intermediate regions can be found
in Appendix D. Section IV investigates the response
of an Unruh-DeWitt detector. Section V concludes with
a summary of the results and conclusions. Technical
details are given in five Appendices.

II. QUANTIZATION

We consider a real massless scalar field ϕ in (3þ 1)-
dimensional Minkowski spacetime with field equation

ð∂2
t −∇2Þϕ ¼ 0: ð2:1Þ

In spherical coordinates, the Laplacian is

∇2 ¼ 1

r2
∂rðr2∂rÞ þ

1

r2
∇2

S2 ð2:2Þ

where ∇2
S2 is the Laplacian on the unit S2 sphere. We

consider only the spherically symmetric sector and there-
fore we define

ϕ ¼ fðt; rÞffiffiffiffiffiffi
4π

p
r
; ð2:3Þ

so that the field equation (2.1) becomes

ð∂2
t − ∂2

rÞfðt; rÞ ¼ 0: ð2:4Þ

We want to consider the formation of a wall, or spherical
shell, at position r ¼ a between times t ¼ 0 and t ¼ 1=λ. In
order to do this, we replace the Laplacian with a one
parameter family of self-adjoint extensions defined on
L2ðR3Þ with the sphere at r ¼ a removed. Some details
are given in Appendix A; we summarize the important
points below. The self-adjoint extensions of the Laplacian
are parametrized by the function θðtÞ, and we assume θ ∈
½0; π=2� so that the spectrum of the self adjoint extensions
of the Klein-Gordon equation has no tachyonic modes. The
angle θðtÞ can be written in terms of a function h of a
dimensionless variable T ¼ λt which is defined by the
equation

θðtÞ ¼ cot−1½Lλ cotðhðλtÞÞ�: ð2:5Þ

L is a positive constant of dimension length which is
introduced for convenience; its length is considered fixed.
The real solutions of the Klein-Gordon operator satisfy the
boundary conditions

fðt; 0Þ ¼ 0 ð2:6Þ

fðt; a−Þ ¼ fðt; aþÞ; ð2:7Þ

f0ðt; aþÞ
fðt; aþÞ −

f0ðt; a−Þ
fðt; a−Þ ¼ 2λ cotðhðλtÞÞ: ð2:8Þ

In order to model the creation of a shell at r ¼ a we
choose a smooth function hðTÞ that interpolates between
hð0Þ ¼ π=2 and hð1Þ ¼ 0

hðTÞ ¼ π=2 for T ≤ 0; ð2:9aÞ

0 < hðTÞ < π=2 for 0 < T < 1; ð2:9bÞ

hðTÞ ¼ 0 for T ≥ 1: ð2:9cÞ

From Eqs. (2.7), (2.8), (2.9) we see that the boundary
condition at r ¼ a evolves from the condition at t ¼ T ¼ 0
that the derivatives on the two sides of r ¼ a coincide, to
Dirichlet at λt ¼ T ¼ 1, which can be thought of as the
creation of a wall at r ¼ a. In order to show that this wall
has a physical interpretation which can be related to the
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firewall scenario, we would have to show that it produces a
pulse of energy, as explained in Sec. III.
We will quantize the scalar field by writing

ϕðt; rÞ ¼
Z

∞

0

ðakϕkðt; rÞ þ a†kϕkðt; rÞÞdk; ð2:10Þ

or equivalently

fðt; rÞ ¼
Z

∞

0

ðakUkðt; rÞ þ a†kUkðt; rÞÞdk; ð2:11Þ

where

Ukðt; rÞ ¼
ϕkðt; rÞffiffiffiffiffiffi

4π
p

r
; ð2:12Þ

and the annihilation and creation operators have the
commutators ½ak; a†k0 � ¼ δðk − k0Þ. The mode functions
Ukðt; rÞ will be normalized so that the field and its time
derivative have the correct equal-time commutator. The
vacuum j0i is the state that is annihilated by all ak. Wework
in the radial null coordinates u ≔ t − r and v ≔ tþ r, and
write the field equation (2.1)

∂u∂vf ¼ 0: ð2:13Þ

We construct an ansatz for the mode functions in two
regions inside (r < a) and outside (r > a) the shell. We
consider the case when a > 1=λ which means that (in units
where c ¼ 1) the timescale forwall formation is less than the
distance between the location of the wall and the origin.
Physically this means that during thewall formation process
only left-movers are modified inside the shell, and only
right-movers are modified outside the shell. Our ansatz is

Ukðt;rÞ¼

8>>><
>>>:

1ffiffiffiffiffiffiffiffi
4πk

p ðe−ikvþEkðuÞÞ for r>a;

1ffiffiffiffiffiffiffiffi
4πk

p ðGkðvÞ−e−ikuÞ for 0<r<a:
ð2:14Þ

This form ofUk satisfies the Klein-Gordon equation for any
choice of the functionsGkðuÞ andEkðvÞ. Our goal is to find a
solution for these functions so that the boundary conditions
(2.6)–(2.8) are satisfied. Substituting (2.14) into (2.7), (2.8)
we obtain

−e−ikðt−aÞ þ Gkðtþ aÞ ¼ e−ikðtþaÞ þ Ekðt − aÞ ð2:15aÞ

2λ cot hðλtÞ ¼ −ike−ikðtþaÞ − E0
kðt − aÞ

e−ikðtþaÞ þ Ekðt − aÞ

−
−ike−ikðt−aÞ þG0

kðtþ aÞ
−e−ikðt−aÞ þGkðtþ aÞ ð2:15bÞ

where the prime indicates differentiation with respect to the
argument. To solve (2.15), we use the dimensionless time
variable T ¼ λt introduced previously and define the aux-
iliary function BðTÞ

BðTÞ¼
8<
:
1 for T ≤ 0;

exp

�Z
T

0

cotðhðzÞÞdz
�

for 0<T < 1:
ð2:16Þ

From (2.9) it is easy to see that Bð0Þ ¼ 1 and that for
0 ≤ T < 1, BðTÞ is smooth and satisfies

B0ðTÞ
BðTÞ ¼ cotðhðTÞÞ: ð2:17Þ

InAppendixBwe show that 1=BðTÞ and all of its derivatives
approach zero asT → 1−, and therefore 1=BðTÞ is smooth at
T ¼ 1, but BðTÞ → ∞ as T → 1−.
Rearranging (2.15) we obtain first order differential

equations for the derivatives ∂tEkðt; aÞ and ∂tGkðt; aÞ.
Introducing the additional dimensionless variables K ¼
k=λ and A ¼ aλ, y ¼ λu and w ¼ λv, and defining the
functions RKðyÞ ¼ EkðuÞ and SKðwÞ ¼ GkðvÞ we obtain

RKðyÞ ¼

8>><
>>:

−e−iKy y < −A

−e−iKy þ 2i sinðAKÞ
BðyþAÞ

R yþA
0 e−iKzB0ðzÞdz y ∈ ð−A; 1 − AÞ

−e−iKðyþ2AÞ y > 1 − A

ð2:18Þ

SKðwÞ ¼

8>><
>>:

e−iKw w < A

e−iKw þ 2i sinðAKÞ
Bðw−AÞ

R
w−A
0 e−iKzB0ðzÞdz w ∈ ðA; 1þ AÞ:

e−iKðw−2AÞ w > 1þ A

ð2:19Þ

Substituting these expressions into (2.14) we obtain expressions for the mode functions Ukðt; rÞ in the regions inside and
outside of the shell. A spacetime diagram is shown in Fig. 1.
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In order to write equations in a more compact form we
sometimes use a shorthand notation in which functions that
depend only on yþ A are written without their arguments,
for example B ≔ Bðyþ AÞ. This notation is used through-
out the Appendices.
The solutions in Eqs. (2.18), (2.19) have the following

features:
(1) The regions in Fig. 1 marked Pout and Pin corre-

spond to the early time regions, relative to the

wall creation. The top line of either (2.18) or
(2.19) gives the mode functions in these regions,
which are just those of the Minkowski vac-

uum: Ukðt; rÞ ¼ 1ffiffiffiffiffiffi
4πk

p ðe−ikv − e−ikuÞ ¼ − ie−ikt sinðkrÞffiffiffiffi
πk

p .

(2) The regions in Fig. 1 markedFout andFin correspond
to the late time regions, relative to the wall creation.
Themode functions in these two regions are obtained
from the bottom lines of (2.18), (2.19) which give

Ukðt; rÞ ¼
−ie−ikðtþaÞ sin½kðr − aÞ�ffiffiffiffiffi

πk
p ; y > 1 − A and r > a ½region Fout�;

Ukðt; rÞ ¼
−ie−ikðt−aÞ sin½kðr − aÞ�ffiffiffiffiffi

πk
p ; w > 1þ A and r < a ½region Fin�:

Comparing with the above expression we see that
when ka ¼ 2nπ, which means that wall formation
occurs at a node of the original mode, the mode
function in the late time region is the same as the
original Minkowski mode.

(3) The middle lines of (2.18) and (2.19) give, respec-
tively, the expressions for the mode functions on the
inward andoutward light cones of the eventswhere the
boundary condition changes [at r¼a and t∈ ð0;λ−1Þ].

(4) For t < a we have

lim
r→a−

ðGkðvÞ − e−ikuÞ ¼ lim
r→aþ

ðe−ikv þ EkðuÞÞ

and therefore the mode functions Ukðt; rÞ are con-
tinuous at the location of the shell r ¼ a.

(5) It is easy to see that RKðyÞ is smooth for y < 1 − A
and in Appendix B we show that it is also smooth
at y ¼ 1 − A. Similarly SKðwÞ is smooth for
w ≤ 1þ A.

(6) The mode functions are normalized so that

ðϕk;ϕk0 Þ ¼ i
Z

∞

0

drr2
Z
S2
dΩðϕk∂tϕk0 − ð∂tϕkÞϕk0 Þ

¼ δðk − k0Þ

for any constant time hypersurface with t < λ−1.
(7) The late time region inside the shell (w > 1þ A and

r < a which is denoted region Fin in Fig. 1) is not
part of our calculation. One problem is that this part
of the spacetime diagram would be influenced by
waves reflected at the origin, so that we do not
expect the ansatz (2.14) to be satisfied in this region.
Physically, once the shell is fully formed, an infinite
potential separates the regions inside and outside,
which means there is no flow of probability be-
tween them.

Useful alternate expressions for the functions RKðyÞ and
SKðwÞ are obtained by integrating the middle lines in (2.18)
and (2.19) by parts:

RKðyÞ ¼ −e−iKðyþ2AÞ −
2i sinðAKÞ
Bðyþ AÞ

−
2K sinðAKÞ
Bðyþ AÞ

Z
yþA

0

e−iKzBðzÞdz; ð2:20Þ

SKðwÞ ¼ e−iKðw−2AÞ −
2i sinðAKÞ
Bðw − AÞ

−
2K sinðAKÞ
Bðw − AÞ

Z
w−A

0

e−iKzBðzÞdz: ð2:21Þ

FIG. 1. Spacetime diagram of the evolving boundary condi-
tions. The interpolation between θ ¼ π=2 and θ ¼ 0 at r ¼ a
occurs over 0 < t < λ−1, and the null cones of the events where
the boundary condition changes fill the regions ð−A < y < 1 −
A; r > aÞ and ðA < w < 1þ A; r < aÞ in the spacetime. The
triangular regions marked Pout, Pin, Fout and Fin indicate what
we will refer to as the early time (P) and late time regions (F),
outside and inside of the shell. The figure shows the case a > λ−1.
The blue dash-dotted line indicates that the energy density is
positively divergent, while red dashed line shows where the
energy density is negatively divergent.

CARRINGTON, KUNSTATTER, LOUKO, and ZHOU PHYS. REV. D 98, 024035 (2018)

024035-4



We note that the mode functions in the future regions Fin
and Fout, from the third lines of (2.18) and (2.19), are λ
independent. As we will see in the Sec. IV, this means that
the detector response in the future regions does not depend
on λ, which is the parameter that controls how fast the shell
evolves at r ¼ a.

III. TOTAL ENERGY

The expression for the energy density outside of the shell
in terms of the mode functions RKðyÞ has exactly the same
form as in Ref. [10]. We summarize the calculation and give
the result below. The renormalized energy density of the
quantized field in the state j0i is obtained by point-splitting
the field operators, taking the expectation value in j0i,
subtracting the corresponding expectation value in the
Minkowski vacuum j0iM, and taking the coincidence limit.
This gives

hT00i ¼ h0jT00j0iren
¼ lim

u1 ;u2→u
v1 ;v2→v

ð∂u1∂u2 þ ∂v1∂v2Þ

× ½h0jϕð1Þϕð2Þj0i − h0Mjϕð1Þϕð2Þj0Mi�

¼ 1

4π

�hð∂ufÞ2i
r2

þ hfð∂uf − ∂vfÞi þ c:c
2r3

þ hf2i
2r4

�
:

ð3:1Þ

Using Eq. (2.11) and the first line of (2.14) we obtain in the
outside region (r > a)

hT00i ¼
λ2

16π2r2

Z
∞

0

dK
K

½jR0
KðyÞj2 − K2�

−
1

32π2r2
∂
∂r

�
Goutðt; rÞ

r

�
ð3:2Þ

where Gout is defined as

Gout ¼
Z

∞

0

dK
K

½je−iKw þ RKðyÞj2 − je−iKw − e−iKyj2�:

ð3:3Þ

Using the second line of (2.14) gives for the inside region
(r < a)

hT00i ¼
λ2

16π2r2

Z
∞

0

dK
K

½jS0KðwÞj2 − K2�

−
1

32π2r2
∂
∂r

�
Ginðt; rÞ

r

�
ð3:4Þ

with the definition

Gin ¼
Z

∞

0

dK
K

½jSKðwÞ−e−iKyj2− je−iKw−e−iKyj2�: ð3:5Þ

In the early time regions, which are denoted Pout and Pin
in Fig. 1, hT00i vanishes by construction. In the late time
regions Fout and Fin, the first terms in (3.2) and (3.4)
vanish, as can be seen from (2.18), (2.19). The functions
Gout and Gin are easily calculated. We obtain

Gout future ¼ Gin future ¼ ln ½ðr − aÞ2� − lnðr2Þ ð3:6Þ

hT00ifuture¼
1

16π2r4
ðln jr−aj− lnðrÞÞ− 1

16π2r3

�
1

r−a
−
1

r

�
:

ð3:7Þ

This result shows that the energy density goes discontinu-
ously from positive infinity just inside the shell to negative
infinity energy just outside the shell. However, the spatial
integral of the energy density along a constant time hyper-
surface which crosses r ¼ a produces a finite energy, if
interpreted at r ¼ a in the principal value sense. In
Appendix D we consider the intermediate outside region
r > a and −A < y < 1 − A and consider the continuity of
the energy density as yþ A → 1−. We show that the energy
density is finite everywhere except to the immediate past of
the light cone of the pointwhere boundary condition finishes
changing, where it is positively divergent.

IV. DETECTOR RESPONSE

In this section we consider an inertial Unruh-DeWitt
(UDW) detector [11,12] that is linearly coupled to the
quantum field and at a fixed spatial location. Using first-
order perturbation theory, the probability that the detector
undergoes a transition from a state with energy 0 to a state
with energy ω is proportional to the response function
[7,8,11,12]

F ðωÞ ¼
Z

∞

−∞
dt1

Z
∞

−∞
dt2e−iωðt1−t2Þχðt1Þχðt2ÞWðt1; t2Þ;

ð4:1Þ

where the smooth real-valued switching function χ spec-
ifies how the detector’s interaction with the field is
turned on and off, and W is the pull-back of the field’s
Wightman function to the detector’s worldline. We consider
a detector located outside the spherical shell (r > a) and
operating only in the future region y > 1 − A. The response
function is

ΔF ðωÞ ¼
Z

∞

−∞
dt1

Z
∞

−∞
dt2e−iωðt1−t2Þχðt1Þχðt2ÞΔWðt1; t2Þ;

ð4:2Þ

where
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ΔWðt1; t2Þ ¼
1

4πr2

Z
∞

0

ðUkðt1 − r; t1 þ rÞUkðt2 − r; t2 þ rÞ

−UM
k ðt1 − r; t1 þ rÞUM

k ðt2 − r; t2 þ rÞÞdk:
ð4:3Þ

The functions Uk and Uk are obtained from the first line in
(2.14) with EkðuÞ ¼ RKðyÞ and RKðyÞ given by the last line
of (2.18); UM

k and UM
k are obtained in the same way except

using the first line of (2.18). Substituting these expressions
and collecting terms we find

16π2r2ΔWðt1; t2Þ ¼
Z

∞

0

dk
k
ðeikð2r−t1þt2Þ þ e−ikð2rþt1−t2Þ

− eikð2a−2r−t1þt2Þ − e−ikð2a−2rþt1−t2ÞÞ:
ð4:4Þ

Doing the k integral we get

16π2r2ΔWðt1; t2Þ ¼ ln

�j4ða − rÞ2 − ðt1 − t2Þ2j
j4r2 − ðt1 − t2Þ2j

�

þ iπsgnðt1 − t2Þθðr − jt1 − t2j=2Þ
× θða − rþ jt1 − t2j=2Þ: ð4:5Þ

The change in the Wightman function is λ independent, and
therefore one does not obtain a divergent response in the
limit λ → 0, which would correspond to instantaneous wall
creation. There is a divergence when jt1 − t2j ¼ 2r, but this
divergence is only logarithmic.

V. CONCLUSION

We have extended previous work on firewall creation via
time dependent boundary conditions by considering the
smooth and sharp creation of a fixed radius shell in (3þ 1)-
dimensional Minkowski space. This was implemented by
introducing at r ¼ a a one parameter family of self-adjoint
extensions of the three dimensional Laplacian operator that
interpolate between the condition that the values and
derivatives on the two sides of r ¼ a coincide for t ≤ 0
(no wall) and the two-sided Dirichlet boundary condition
for t ≥ 1=λ (fully-developed wall). Wall creation produces
null pulses of energy on either side of the shell, one ingoing
and the other outgoing. As in the previous two calculations,
[9,10], the boundary condition is being changed by an
external agent whose dynamics is not included in the field
action. The total energy of the field hence need not be
conserved on its own since the external agent may inject
energy into the field. Since we are primarily interested in
the detector response across the energy pulse, we have not
calculated all the contributions to the field energy on
hypersurfaces of constant Minkowski time, in particular
the contributions from inside the shell, and therefore have

not established whether the total energy of the field can be
unambiguously defined.
We found that the process of shell creation is signifi-

cantly more divergent than in (1þ 1)-dimensions [9], but
less divergent than for point-like source creation in (3þ 1)-
dimensions [10]. In the present case, the energy density
hT00i diverges to positive infinity in the outgoing energy
pulse, just outside the light cone of the fully-formed wall at
t ¼ 1=λ. Unlike in the 3þ 1 point source creation case,
there is no persistent memory cloud of energy. As in the
1þ 1 dimensional wall case, the response of the detector in
the post-shell region is independent of the time scale 1=λ
and finite, casting doubt once again on the viability of wall
creation as a possible mechanism for breaking entangle-
ment at the event horizon of an evaporating black hole.
Finally, we note that in order to determine how well

breaking correlations by changing boundary conditions
models the breaking of correlations in the proposed quantum
gravitational firewall scenario, one would need to address
the gravitational dynamics. This remains a question for
future work.
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APPENDIX A: SCALAR LAPLACIAN ON R3

WITH A SPHERICAL SHELL

Defining the short hand notation ⨍∞
0 dr ¼

R
a−
0 þ R∞

aþ and
scaling g ¼ f=r, we can map the 3 dimensional Laplacian
and the L2 inner product on a positive half line with a
spherical shell at r ¼ a to

∇2 ⇒ ∇2 ¼ ∂2
r þ

1

r2
∇2

S2 ;

ðg1; g2Þ ⇒ ðf1; f2Þ ¼
Z
S2
dΩ⨍∞

0
drf̄1f2: ðA1Þ

We consider only the spherically symmetric case [see
Eq. (2.3)], and Hermiticity of ∇2 requires

ðf1;∇2f2Þ − ð∇2f1; f2Þ

¼ ⨍∞

0
dr∂r½f1ð∂rf2Þ − ð∂rf1Þf2� ¼ 0: ðA2Þ

Taking f1 ¼ f2 ≡ f, the square bracket ½f1ð∂rf2Þ −
ð∂rf1Þf2� can be written
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Sðt; xÞ ¼ 1

ð2iLÞ ðjL∂rf − ifj2 − jL∂rf þ ifj2Þ: ðA3Þ

Following the method in [13], we find that the boundary
conditions are given by

0
B@

Lf0þ − ifþ
Lf0− þ if−
Lf00 − if0

1
CA ¼ U

0
B@

Lf0þ þ ifþ
Lf0− − if−
Lf00 þ if0

1
CA ðA4Þ

where we have used the shorthand notation fðt; 0Þ ¼ f0,
fðt; a−Þ ¼ f− and fðt; aþÞ ¼ fþ, and the choice of a
unitary 3 × 3 matrix U specifies the boundary condition.
Generally, the matrix U would be decomposed by Gell-
Mann matrices. We choose an expression of U that ensures
no flow of probability through the origin and depends on
one free parameter which is a time dependent function
chosen to model the formation of the wall at r ¼ a. We use

U ¼

0
B@ e−iθðtÞ

�
cos θðtÞ i sin θðtÞ
i sin θðtÞ cos θðtÞ

�

1

1
CA ðA5Þ

and Eq. (A4) gives the conditions

fð0Þ ¼ 0 ðA6Þ
f− ¼ fþ ðA7Þ

2

L
cot θðtÞ ¼ f0þ

fþ
−
f0−
f−

ðA8Þ

We note that the continuity of the wave function at r ¼ a is
a result of our choice of UðθÞ, and does not have to be
imposed as an extra condition.

APPENDIX B: MODE FUNCTION REGULARITY

In this Appendix we show that the mode function RKðyÞ
is C26 at y ¼ 1 − A. We follow closely Appendix B of [10].

1. Smoothness of 1=BðyÞ
First we show that 1=BðyÞ and all its derivatives go to

zero as y → 1−. We write gðyÞ ≔ tanðhðyÞÞ and from
Eq. (2.9) we see that gðyÞ > 0, and gðyÞ and all its
derivatives approach 0 as y → 1−.
Using (2.16) we obtain

BðyÞ ¼ exp

�Z
y

0

dz
gðzÞ

�
ðB1Þ

B0ðyÞ ¼ BðyÞ=gðyÞ: ðB2Þ

Defining BinðyÞ¼1=BðyÞ, we have B0
inðyÞ¼−BinðyÞ=gðyÞ.

For n ∈ N, induction gives

BðnÞ
in ðyÞ ¼ ð−1ÞnPnðyÞfnðyÞ; ðB3aÞ

fnðyÞ ¼
BinðyÞ
ðgðyÞÞn ; ðB3bÞ

where each Pn is a polynomial in g and its derivatives and
PnðyÞ → 1 as y → 1−. We show below that fnðyÞ → 0þ as

y → 1−, and therefore BðnÞ
in ðyÞ → 0. From (B3b) we have

lnðfnðyÞÞ ¼ −
�Z

y

0

dz
gðzÞ

��
1þ n lnðgðyÞÞR y

0
dz
gðzÞ

�
: ðB4Þ

As y → 1−, the first parentheses in (B4) tend to ∞, while
the second parentheses tend to 1 by l’Hôpital. Hence
lnðfnðyÞÞ → −∞ as y → 1− and therefore fnðyÞ→ 0þ
as y → 1−.

2. Differentiability of RKðyÞ
We make the definitions

JKðyÞ ¼
Z

y

0

BðzÞe−iKzdz ðB5Þ

FKðyÞ ¼ JKðyÞ=BðyÞ ðB6Þ

HKðyÞ ¼ JKðyÞ=ðgðyÞBðyÞÞ; ðB7Þ

and rewrite the mode function (2.20) as

RKðyÞ¼−e−iKð2AþyÞ−
2isinðAKÞ

B
−2K sinðAKÞFKðyþAÞ:

ðB8Þ

We will show that RKðyÞ is C26 at yþ A → 1− by showing
that FKðyÞ is C26 as y → 1−. We outline the steps below.
(1) Calculate derivatives F ðnÞ

K ðyÞ using (B2) to remove
factors of B0ðyÞ, so that the result does not contain
derivatives of BðyÞ.

(2) Define denðyÞ ¼ BðyÞðgðyÞÞn and numðyÞ ¼
F ðnÞ

K ðyÞdenðyÞ. In order to use l’Hôpital n times,
calculate numðnÞðyÞ and denðnÞðyÞ, again using (B2)
after taking each derivative.

(3) Define numðnÞðyÞ ¼ numðnÞðyÞ=BðyÞ and
denðnÞðyÞ ¼ denðnÞðyÞ=BðyÞ and replace all remain-
ing factors of JKðyÞ by FKðyÞBðyÞ. The limit of the
nth derivative of F ðyÞ as y → 1− now has the form

lim
y→1−

F ðnÞðyÞ ⟶
l’Hôpital

lim
y→1−

numðnÞðyÞ
denðnÞðyÞ : ðB9Þ

Using computer algebra we have verified up to order
n ¼ 26 that the quantities numðnÞðyÞ and denðnÞðyÞ have
the form
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numðnÞðyÞ ¼ PðyÞ; denðnÞðyÞ ¼ 1þQðyÞ

where PðyÞ and QðyÞ are polynomials of gðyÞ and its
derivatives, F ðyÞ, and factors e−iKy, and each term contains
at least one power of F ðyÞ or gðjÞðyÞj ∈ ð0; nÞ. This means
that both PðyÞ and QðyÞ go to 0 as y → 1−. We therefore
have from (B9) that F ðyÞ is C26 at y ¼ 1. We stopped the
calculation at n ¼ 26 because of limitations of computing
time and memory. If the proof extends to n ∈ N, we would
have that RKðyÞ is smooth at y ¼ 1.

APPENDIX C: LEMMA AND CONDITIONS ON g

Lemma C.1.
(i) For a complex-valued function fðy; zÞ that is

bounded for y ∈ ½0; 1� and z ∈ ½0; 1þ A�, we have

lim
yþA→1−

1

Bðyþ AÞ
Z

yþA

0

BðzÞfðy; zÞdz ¼ 0: ðC1Þ

(ii) If in addition ∂yfðy; zÞ is bounded for y ∈ ½0; 1� and
z ∈ ½0; 1þ A�, we have

lim
yþA→1−

∂y

�
1

Bðyþ AÞ
Z

yþA

0

BðzÞfðy; zÞdz
�

¼ 0:

ðC2Þ

Proof.
(i) By boundedness of f, there is a positive constant

C such that jfðy; zÞj ≤ C. For 0 < yþ A < 1, using
the triangle inequality and the positivity of B,
we have

���� 1

Bðyþ AÞ
Z

yþA

0

BðzÞfðy; zÞdz
����

≤
C

Bðyþ AÞ
Z

yþA

0

BðzÞdz: ðC3Þ

When yþ A → 1, the rightmost expression in (C3)
goes to zero, using l’Hôpital and (B2).

(ii) For 0 < yþ A < 1, we expand out the derivative in
(C2) using (B2) and make some cancellation. After
repeatedly applying l’Hôpital as yþ A → 1 and
using lemma (C1), the proof is done. ▪

Conditions C.2. We introduce the technical assumption
that g000ðyÞ < 0 for 0<y<1. It follows that g00ðyÞ > 0 and
g0ðyÞ<0 for 0 < y < 1. For 0 < z ≤ yþ A < 1, this implies

g0ðzÞ ≤ gðyþ AÞ − gðzÞ
yþ A − z

≤ g0ðyþ AÞ; ðC4Þ

g00ðyþ AÞ ≤ g0ðyþ AÞ − g0ðzÞ
yþ A − z

≤ g00ðzÞ; ðC5Þ

where the quotients are understood at z ¼ yþ A in the
limiting sense. (C4) can be verified bywriting the numerator
as the integral of g0 and using the monotonicity of g0, and
(C5) can be verified similarly bewriting the numerator as the
integral of g00. We will derive three consequences which are
used in Secs. D 2 and D 3.

(i) First consequence: limyþA→1−

g0ðyþAÞ
gðyþAÞ ¼ −∞.

For 0 < yþ A < 1, using the monotonicity of g0,
we have

gðyþ AÞ ¼ −
Z

1

yþA
g0ðzÞdz ≤ −g0ðyþ AÞ

×
Z

1

yþA
dz ¼ −ð1 − y − AÞg0ðyþ AÞ:

ðC6Þ

Hence g0ðyþAÞ=gðyþAÞ≤−1=ð1−y−AÞ, which
implies limyþA→1−

g0ðyþAÞ
gðyþAÞ ¼ −∞.

(ii) Second consequence: limyþA→1−
CðyÞ ¼ 0

For 0 < yþ A < 1, we define

CðyÞ ¼ 1

Bðyþ AÞ
Z

yþA

0

dz cosðyþ A − zÞB0ðzÞ

×
gðyþ AÞ − gðzÞ

yþ A − z
; ðC7Þ

C−ðyÞ¼
1

BðyþAÞ
Z

κ

0

dz

�
gðyþAÞB0ðzÞ
yþA−z

−
BðzÞ

yþA−z

�
;

ðC8Þ

CþðyÞ ¼
1

Bðyþ AÞ
Z

yþA

κ
dzB0ðzÞ gðyþ AÞ − gðzÞ

yþ A − z
;

ðC9Þ

C̃−ðyÞ ¼ −
1

Bðyþ AÞ
Z

κ

0

dz
BðzÞ

yþ A − z
; ðC10Þ

C̃þðyÞ ¼
1

Bðyþ AÞ
Z

yþA

κ
dzB0ðzÞg0ðzÞ; ðC11Þ

where 0 < cosðyþ A − zÞ ≤ 1, B0ðzÞ > 0 and
g0ðzÞ < 0 for 0 < z < yþ A, and we have intro-
duced a constant κ with 0 < κ < yþ A < 1. We
have C̃−ðyÞ < C−ðyÞ and C̃þðyÞ ≤ CþðyÞ using (C4).
Therefore

C̃þðyÞþ C̃−ðyÞ< CþðyÞþC−ðyÞ< CðyÞ< 0 ðC12Þ

As yþ A → 1−, both integral C̃−ðyÞ and integral
C̃þðyÞ tend to 0. From (C12) it then follows
that limyþA→1−

CðyÞ ¼ 0.

CARRINGTON, KUNSTATTER, LOUKO, and ZHOU PHYS. REV. D 98, 024035 (2018)

024035-8



(iii) Third consequence: limyþA→1−
DðyÞ ¼ 0

We define

DðyÞ ¼ 1

B

Z
yþA

κ
dzB0ðzÞ cosðαÞ

α

×

�
gðAþ yÞ − gðzÞ

α
− g0ðAþ yÞ

�
; ðC13Þ

D2ðyÞ ¼
1

B

Z
yþA

κ
dzB0ðzÞ 1

α

×

�
gðAþ yÞ − gðzÞ

α
− g0ðAþ yÞ

�
; ðC14Þ

D3ðyÞ ¼
1

B

Z
yþA

κ
dzB0ðzÞ 1

α
ðg0ðzÞ − g0ðAþ yÞÞ;

ðC15Þ

D4ðyÞ ¼ −
1

B

Z
yþA

κ
dzB0ðzÞg00ðzÞ; ðC16Þ

where α ≔ yþ A − z, 0 < cosðyþ A − zÞ ≤ 1 and
B0ðzÞ > 0 for 0 < z < yþ A. Using Eqs. (C4) and
(D.2), there is

D4ðyÞ ≤ D3ðyÞ ≤ D2ðyÞ < DðyÞ < 0: ðC17Þ

Further use of l’Hôpital on D4ðyÞ we find
limyþA→1−

D4ðyÞ¼0, whichmeans limyþA→1−
DðyÞ¼0.

APPENDIX D: BEHAVIOR OF hT00i OUTSIDE
THE SHELL IN THE INTERMEDIATE REGION

In this section we study the behavior of the energy
density outside the shell (r > a) in the intermediate region
(−A ≤ y ≤ 1 − A), which is given in Eq. (3.2) with the
function Gout defined in (3.3), and RKðyÞ given in the
middle line of (2.18). We rewrite these expressions as

hT00i ¼
λ2

16π2r2
½FðyÞ þ F̃ðyÞ� ðD1Þ

FðyÞ ¼
Z

∞

0

dK
K

½jR0
KðyÞj2 − K2� ðD2Þ

F̃ðyÞ ¼ −
1

w − y

�
∂w − ∂y −

2

w − y

�
Gout; ðD3Þ

where the notation suppresses the dependence of FðyÞ and
F̃ðyÞ on w. We comment that the denominators in (D3) are
produced by the factor 1=r in Eq. (3.2), and the action of
the derivative ∂r on this factor.

1. Preliminaries

From (2.20) we have for fixed y ∈ ð−A; 1 − AÞ the small
K estimates

RKðyÞ ¼ −1þOðKÞ; ðD4Þ

jR0
KðyÞj2 ¼ OðK2Þ; ðD5Þ

and the large K estimates

jRKðyÞj2 ¼ 1þ 2B0

B
sinð2AKÞ

K
þOðK−2Þ; ðD6Þ

jR0
KðyÞj2 ¼ K2 þ 2B0

B
K sinð2AKÞ þOðK−1Þ: ðD7Þ

Using these results it is straightforward to show that the
integrals in Eqs. (D2) and (D3) are well defined
for y ∈ ð−A; 1 − AÞ.
At y ¼ −A both integrands vanish. At y ¼ 1 − A the

integrand in (D2) vanishes, and a straightforward calcu-
lation gives Goutjy¼1−A ¼ 2½lnðr − aÞ − ln r� in agreement
with (3.6). In the remainder of this Appendix we study the
continuity of FðyÞ and F̃ðyÞ in Eqs. (D2) and (D3)
as yþ A → 1−.

2. Term FðyÞ
We divide the integral in (D2) into two pieces defined as

F−ðyÞ ¼
Z

1

0

dK
K

½jR0
Kj2 − K2�; ðD8Þ

FþðyÞ ¼
Z

∞

1

dK
K

½jR0
Kj2 − K2�: ðD9Þ

To show that F−ðyÞ is finite, we use the form of RKðyÞ in
Eq. (2.20). Differentiating and substituting into (D8), we
get an expression with HK as defined in Eq. (B7) and fi ≔
fiðyþ AÞ as defined in Eq. (B3b). It is then straightforward
to show with l’Hôpital that limyþA→1−

F−ðyÞ exists and is
finite.
Now we study the second term FþðyÞ. Our strategy is as

follows:
(1) Integrate by parts in z, taking the antiderivative of

the factor e�iKz, until we have enough powers of
1=K so that the K-integral is convergent.

(2) Switch the order of the z and K integrals and do the
K integral.

(3) Integrate by parts again so that derivatives are
removed from factors BðzÞ.

(4) Analyse the behavior of the remaining integrals.
Defining

VK ¼ 1

B

Z
yþA

0

dzB00ðzÞe−iKz; ðD10Þ

SMOOTH AND SHARP CREATION OF A SPHERICAL … PHYS. REV. D 98, 024035 (2018)

024035-9



the result of step (1) is

FþðyÞ ¼
Z

∞

1

dK

�
4VKVKsin2ðAKÞ

K3g2
−
4sin2ðAKÞðVKeiKðAþyÞ þ VKe−iKðAþyÞÞ

K3g3
þ 4isin2ðAKÞðVKeiKðAþyÞ − VKe−iKðAþyÞÞ

K2g2

þ 2i sinðAKÞðVKeiKy − VKe−iKyÞ
Kg

þ 4sin2ðAKÞ
K3g4

þ 2 sinð2AKÞ
g

�
: ðD11Þ

The integral over large K has terms of the formR∞
1 dK sinð2AKÞ which is regularized with a factor e−δK

to obtain a finite result in the limit δ → 0. The other K
integrals can be done usingZ

∞

1

dK
K

ðeiKα þ e−iKαÞ ¼ −2CiðαÞ ðD12Þ
Z

∞

1

dK
K2

ðeiKαþe−iKαÞ¼ 2cosðαÞþ2αSiðαÞ−πα ðD13Þ
Z

∞

1

dK
K3

ðeiKαþe−iKαÞ¼ cosðαÞ−αsinðαÞþα2CiðαÞ

ðD14Þ

where α > 0 and Ci and Si are the cosine and sine integrals
in the notation of [14].
First, for terms that include VK as defined in (D10), we

interchange the integration by the absolute convergence of
multiple integral, and we evaluate the integration over K to
reach an expression containing elementary functions and
expressions like (D12). Many terms would contain factor
B0 or B00, but we simply integrate by part to reduce them to
combinations involving (C1) and (C2).
Next we introduce the parameters α ≔ Aþ y − z,

β ≔ A − yþ z, γ ≔ 3Aþ y − z, which will be used in
2nd, 3rd and 4th terms of (D11) for which we have
z ∈ ð0; yþ AÞ; and ρ ≔ 2A − xþ z, σ ≔ 2Aþ x − z and
τ ≔ x − z for the 1st term of (D11) where x ∈ ð0; yþ AÞ
and z ∈ ð0; xÞ. Using our original assumption A > 1 these
parameters are all positive over the full range of the
corresponding integrals. We therefore find out that single
integrals not having factors CiðαÞ and double integrals not
having CiðτÞ can be easily proven to be bounded
when yþ A → 1−.
Third, we consider the remaining contributions to (D9)

which contain factors CiðαÞ and CiðτÞ. These are the
difficult terms and we label them Ihard. The terms contain-
ing CiðτÞ are double integrals of variable x and z, we handle
them by first integrating by part in z then x and then
integrating by part in x then z. This two different ways of
integration by parts generate two equivalent expressions of
the double integral. A lot of terms cancel out when we
represent the double integral using its two equivalent expres-
sions, further use of Lemma C.1, limyþA→1−

CþðyÞ ¼ 0 and
limyþA→1−

DþðyÞ ¼ 0 inAppendixC.2 eventually reduce the
result to

lim
yþA→1−

Ihard ¼ − lim
yþA→1−

g0

g2
: ðD15Þ

Therefore FðyÞ is divergent as yþ A → 1−.

3. The term F̃ðyÞ
The integral in (D3) can be divided into two pieces

G−
out¼

Z
1

0

dK
K

½je−iKwþRKðyÞj2− je−iKw−e−iKyj2�; ðD16Þ

Gþ
out ¼

Z
∞

1

dK
K

½je−iKw þ RKðyÞj2 − je−iKw − e−iKyj2�:

ðD17Þ

We use two different forms for RKðyÞ: in G−
out we use

Eq. (2.20), and in Gþ
out we use Eq. (2.18).

First we look at the easy piece (D16). We define the
factors

l1ðzÞ¼
cosðzÞ−1

z
; l2ðzÞ¼

cosðzÞ−1

z2
þ sinðzÞ

z
; ðD18Þ

and in addition to the definitions α; β; γ; ρ; σ; τ, we use
μ≔ 2A− z, ν≔ 2Aþ z, ξ ≔ Aþ w − z and χ ≔ w − z − A.
It is straightforward to show that the parameters μ, ν, ξ,
and χ are all non-negative for A > 1, z ∈ ð0; yþ AÞ and
y ∈ ð−A; 1 − AÞ. We also note that l1ðzÞ and l2ðzÞ and their
derivatives are bounded on z ∈ ð0; yþ AÞ. Using this
notation the result after doing theK integral can be expressed
in compact form, where the integrands can be expressed
using factors l1ðzÞ; l1ðαÞ; l2ðρÞ � � � etc. Further use of results
fromAppendix B 1, l’Hôpital’s rule and LemmaC.1 renders

lim
yþA→1−

G−
out ¼ lim

yþA→1−

�
2 ln

�
w − y − 2A

w − y

�

− 2Ciðw − y − 2AÞ þ 2Ciðw − yÞ
�
: ðD19Þ

Nextwe considerGþ
out. Interchanging the order of integration

and performing the K integrals we obtain
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Gþ
out¼

2

B

Z
yþA

0

dzB0ðzÞCiðαÞ

þ 2

B

Z
yþA

0

dzB0ðzÞðCiðχÞ−CiðβÞ−CiðξÞÞ

−
4

B2

Z
yþA

0

dxB0ðxÞ
Z

x

0

dzB0ðzÞCiðτÞ

þ 2

B2

Z
yþA

0

dxB0ðxÞ
Z

x

0

dzB0ðzÞðCiðρÞþCiðσÞÞ:

ðD20Þ

We pass the lengthy procedures of carefully manipulating
the double integrals using Lemma C.1 and l’Hôpital and
point out that the nonvanishing terms in Gþ

out cancel out the
cosine integrals in (D19). Final result is

lim
yþA→1−

Gout ¼ lim
yþA→1−

�
2 ln

�
w − y − 2A

w − y

��
ðD21Þ

which is in agreement with (3.6).

APPENDIX E: INSIDE REGION

In this section we look at the energy density in the region
r < a. The idea is to see if there is a symmetry between the
inside and outside regions that would allow us to extract the
final result for the inside region from the results we have
already calculated which are valid outside the shell. We
consider each of the four pieces: F−, Fþ, G−, and Gþ.

We have already outlined how to calculate Fout
− in the

outside region, doing the same calculation in the inside
region we find out

Fin
−ðy; wÞjA→−A − Fout

− ðy; wÞ ¼ 0: ðE1Þ
Here, Fin

−ðy; wÞjA→−A is the inside expression transformed
by making sign change on A → −A and switches ðy; wÞ →
ðw; yÞ. A similar expression holds for G−

inðw; yÞ through
transformation ðy; w; AÞ → ðw; y;−AÞ

G−
inðw; yÞjA→−A − G−

outðy; wÞ ¼ 0: ðE2Þ
Defining positive definite variables throughout the inside
region

α̂¼−Aþw− z; γ̂¼Aþw− z; β̂¼ 3A−wþ z;

σ̂¼ 2Aþx− z; ρ̂¼ 2A−xþ z;

we transform the inside result again and find

Finþðw; yÞjA→−A − Foutþ ðy; wÞ ¼ imaginary: ðE3Þ
With additional definitions χ̂ ¼ Aþ y − z, η̂ ¼ A − yþ z,
we obtain

Gþ
inðw; yÞjA→−A − Gþ

outðy; wÞ ¼ imaginary: ðE4Þ
From Eqs. (E1)–(E4) we see that the energy density inside
the shell can be obtained from the outside results by
performing the transformation ðy; w; AÞ → ðw; y;−AÞ and
dropping any imaginary parts that are produced.

[1] S. W. Hawking, Breakdown of predictability in gravitational
collapse, Phys. Rev. D 14, 2460 (1976).

[2] For recent reviews see: D. Marolf, The black hole informa-
tion problem: Past, present, and future, Rep. Prog. Phys. 80,
092001 (2017); W. G. Unruh and R. M. Wald, Information
loss, Rep. Prog. Phys. 80, 092002 (2017).

[3] S. D. Mathur, The information paradox: A pedagogical
introduction, Classical Quantum Gravity 26, 224001
(2009).

[4] S. D. Mathur, The information paradox and the infall
problem, Classical Quantum Gravity 28, 125010 (2011).

[5] S. L. Braunstein, Black hole entropy as entropy of entan-
glement, or it’s curtains for the equivalence principle,
arXiv:0907.1190v1; S. L. Braunstein, S. Pirandola, and
K. Źyczkowski, Better Late than Never: Information
Retrieval from Black Holes, Phys. Rev. Lett. 110,
101301 (2013).

[6] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Black
holes: Complementarity or firewalls?, J. High Energy Phys.
02 (2013) 062; A. Almheiri, D. Marolf, J. Polchinski,

D. Stanford, and J. Sully, An apologia for firewalls, J. High
Energy Phys. 09 (2013) 018.

[7] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[8] R. M. Wald, Quantum Field Theory in Curved Spacetime
and Black Hole Thermodynamics (University of Chicago
Press, Chicago, 1994).

[9] E. G. Brown and J. Louko, Smooth and sharp creation of a
Dirichlet wall in 1þ 1 quantum field theory: How singular
is the sharp creation limit?, J. High Energy Phys. 08 (2015)
061.

[10] L. J. Zhou, M. E. Carrington, G. Kunstatter, and J. Louko,
Smooth and sharp creation of a pointlike source for a
(3þ 1)-dimensional quantum field, Phys. Rev. D 95,
085007 (2017).

[11] W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D
14, 870 (1976).

[12] B. S. DeWitt, Quantum gravity: The new synthesis, in
General Relativity: An Einstein centenary survey, edited

SMOOTH AND SHARP CREATION OF A SPHERICAL … PHYS. REV. D 98, 024035 (2018)

024035-11

https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1088/1361-6633/aa77cc
https://doi.org/10.1088/1361-6633/aa77cc
https://doi.org/10.1088/1361-6633/aa778e
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1088/0264-9381/28/12/125010
http://arXiv.org/abs/0907.1190v1
https://doi.org/10.1103/PhysRevLett.110.101301
https://doi.org/10.1103/PhysRevLett.110.101301
https://doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1007/JHEP09(2013)018
https://doi.org/10.1007/JHEP09(2013)018
https://doi.org/10.1007/JHEP08(2015)061
https://doi.org/10.1007/JHEP08(2015)061
https://doi.org/10.1103/PhysRevD.95.085007
https://doi.org/10.1103/PhysRevD.95.085007
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870


by S. W. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1979).

[13] G. Bonneau, J. Faraut, and G. Valent, Self-adjoint exten-
sions of operators and the teaching of quantum mechanics,
Am. J. Phys. 69, 322 (2001).

[14] NIST Digital Library of Mathematical Functions, http://
dlmf.nist.gov/, Release 1.0.15 of 2017-06-01, edited by
F.W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and
B. V. Saunders.

CARRINGTON, KUNSTATTER, LOUKO, and ZHOU PHYS. REV. D 98, 024035 (2018)

024035-12

https://doi.org/10.1119/1.1328351
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/

