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Abstract 

This paper aims to improve the effectiveness of the replacement oscillator approach for soil-structure 

interaction (SSI) analysis of flexible-base structures on soft soil deposits. The replacement oscillator approach 

transforms a flexible-base single-degree-of-freedom (SDOF) structure into an equivalent fixed-base SDOF 

(EFSDOF) oscillator so that response spectra for fixed-base structures can be used directly for SSI systems. A 

sway-rocking SSI model is used as a baseline for assessment of the performance of EFSDOF oscillators. Both 

elastic and constant-ductility response spectra are studied under 20 horizontal ground motion records on soft 

soil profiles. The effects of frequency content of the ground motions and initial damping of the SSI systems 

are investigated. It is concluded that absolute acceleration spectra, instead of pseudo-acceleration spectra, 

should be used for EFSDOF oscillators in force-based design of SSI systems. It is also shown that using an 

EFSDOF oscillator is not appropriate for predicting the constant-ductility spectra when the initial damping 

ratio of the SSI system exceeds 10%. Based on the results of this study, a correction factor is suggested to 

improve the accuracy of the replacement oscillator approach for soft soil conditions.       
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1. Introduction 
The preliminary design of typical building structures in current seismic design codes and provisions is mainly 

based on elastic spectrum analysis, where the inelastic strength and displacement demands are estimated by 

using modification factors, such as the constant-ductility strength reduction factor R (i.e. reduction in strength 

demand due to nonlinear hysteretic behaviour) and inelastic displacement ratio C[1–3]. The spectral shapes 

of elastic response spectra and modification factors in most seismic design codes and provisions (e.g. [3,4]) 

are derived by averaging the results of response-history analyses performed on single-degree-of-freedom 

(SDOF) oscillators using a number of earthquake ground motions [5–7]. In engineering practice, the frequency 

content of a ground acceleration motion at a soft soil site is often characterized by a predominant period [8] as 

an influential parameter for estimating the seismic response of buildings.  

It is well known that spectral accelerations for soft soil sites attain their maximum values at specific periods 

TP, which correspond to the resonance between the vibration of buildings and the amplification of seismic 

waves travelling upwards through various soil deposits [9]. However, most current seismic codes adopt design 

acceleration spectra that are smoothed by the averaging of a number of spectra whose peak ordinates may 

occur at significantly different values of TP. As a consequence, averaging these dissimilar spectra leads to a 

flatter spectrum for soft soil profiles than for rock and stiff soil sites, while disregarding the frequency content 

of the ground motions [7].  

Xu and Xie [10] developed the concept of a Bi-Normalized Response Spectrum (BNRS) by normalizing the 

spectral acceleration Sa and the period of the structure T by the Peak Ground Acceleration (PGA) and the 

spectral predominant period TP of each ground excitation, respectively. Based on analyses performed using 

206 free-field records of the Chi-Chi earthquake (1999), they found that the BNRS curves were practically 

independent of site class or epicentre distance, and thus represented a good substitute for the code-specified 

design spectra that are based on simple averaging of spectral values. In a follow-up study, Ziotopoulou and 

Gazetas [7] demonstrated that BNRS can preserve the resonance between soil deposits and excitations, thereby 

reflecting more realistically the effects of the frequency content of the ground motion. 

Comprehensive studies have been carried out in the past three decades to calculate values of constant-ductility 

strength reduction factor R and inelastic displacement ratio C for fixed-base structures [11,12]. It has been 

shown that R and C usually reach their maximum and minimum values, respectively, at the predominant 

period of the ground motion Tg, which is defined as the maximum ordinate in the relative velocity spectrum 

calculated for an elastic SDOF system having a 5% damping ratio. It has also been observed that, in the vicinity 

of Tg, maximum inelastic displacements are sometimes smaller than the elastic displacement demands. It 

should be noted that the predominant period is mainly a characteristic of soft soils. 

The studies discussed above all assumed that the structures were rigidly supported, adopted a viscous damping 

ratio between 2 and 5%, and disregarded the effects of soil stiffness and damping within the soil domain, also 

known as soil-structure interaction (SSI) effects. However, it is well known that SSI can significantly affect 

the seismic response of superstructures, especially those on soft soil profiles [13,14]. Khoshnoudian et al [15] 

and Khoshnoudian and Ahmadi [16,17] investigated the effects of SSI on the seismic performance of nonlinear 

SDOF and multi-degree of freedom (MDOF) systems and proposed empirical equations to predict the inelastic 

displacement ratios. However, the results of their studies were mainly based on pulse-like near-field 

earthquakes, and therefore, may not be directly applicable for other types of earthquake ground motions. 

 

For design purposes, an SSI system is usually replaced by an equivalent fixed-base SDOF (EFSDOF) oscillator 

(also called replacement oscillator) having an elongated period of Tssi, an effective initial damping ratio of ssi 

and an effective ductility ratio of ssi. Inelastic and linear EFSDOF oscillators were adopted by Mekki et al. 

[18] and Moghaddasi et al. [19], respectively, by using inelastic spectra and equivalent linearization to facilitate 

a design procedure for nonlinear flexible-base structures. Similarly, Seylabi et al. [20] developed a linear 

EFSDOF oscillator based on equivalent linearization. Since previous studies have shown that using inelastic 
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response spectra can provide more accurate design solutions for nonlinear systems compared to equivalent 

linearization (e.g. [21,22]), the current study is focused on inelastic EFSDOF oscillators.    

The effectiveness of the EFSDOF oscillator approach for seismic design of structures located on soft soil sites 

is evaluated in this paper. A sway and rocking SSI model, which provides sufficient accuracy for modelling 

the dynamic soil-structure interaction in engineering practice (e.g. [13,14]), is used as a reference to assess the 

accuracy of the results obtained using the EFSDOF oscillators. The effects of both SSI and frequency content 

of seismic excitations on elastic and inelastic response spectra are investigated using the adopted SSI models 

and the EFSDOF oscillators for 20 far-field earthquake ground motions recorded on soft soil sites. The results 

are then used to improve the EFSDOF oscillator for predicting constant-ductility spectra of flexible-base 

structures on soft soil profiles. The current study, for the first time, proposes improvements to the replacement 

oscillator approach and explicitly includes the effect of frequency content of ground motions on soft soils in 

SSI analysis. The paper provides a description of the adopted SSI model and key design parameters, as well 

as the EFSDOF oscillator. Limitations of the EFSDOF oscillator approach for highly damped SSI systems are 

identified and some modifications are suggested to improve predictions. The strengths and potential 

applications of the improved EFSDOF approach to SSI procedures in performance-based design are also 

addressed.    

2. Soil-structure interaction model 
For the SSI model adopted in this study, the superstructure is idealized as an equivalent SDOF oscillator having 

a mass ms, mass moment of inertia Js, effective height hs, and lateral stiffness ks. In response to seismic loading, 

the oscillator is assumed to exhibit elastic-perfectly plastic behaviour as an energy dissipation mechanism, in 

addition to having a viscous damping ratio of s in its elastic state. This nonlinear hysteretic model can simulate 

the seismic behaviour of non-deteriorating structural systems such as buckling-restrained braced frames and 

moment resisting steel frames. The superstructure represents either a single-storey or a multi-storey building 

corresponding to its fundamental mode of vibration.  

 

The dynamic behaviour of the shallow foundation is simulated using a discrete-element model, which is based 

on the idealization of a homogeneous soil under a rigid circular base mat as a semi-infinite truncated cone [23]. 

The accuracy of this model has been validated against more rigorous solutions [24,25]. Fig. 1 shows the SSI 

model used in this study, which consists of a superstructure and a foundation with sway and rocking 

components defined by Wolf [25] as follows: 
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where kh, k and ch, c correspond to the zero-frequency foundation stiffness and high-frequency dashpot 

coefficient for the sway and rocking motions, respectively. The circular foundation beneath the superstructure 

is assumed to be rigid, with a radius r, mass mf and centroidal mass moment of inertia Jf. For simplicity, the 

superstructure is assumed to be axisymmetric with its mass uniformly distributed over a circular area of radius 

r. Therefore, the moment of inertia J of either the superstructure or the foundation is equal to mr2/4, m being 

the corresponding mass of the foundation mf or the superstructure ms. The homogenous soil half-space is 

characterized by its mass density , Poisson’s ratio , as well as the shear and dilatational wave velocities vs 

and vp. An additional rocking degree of freedom , with its own mass moment of inertia M is introduced so 

that the convolution integral embedded in the foundation moment-rotation relation can be satisfied in the time 

domain. The matrix form of the equations of motion of the SSI model shown in Fig. 1, subjected to a ground 

acceleration time-history, is given in Appendix 1. The authors implemented the nonlinear dynamic analyses in 

MATLAB [26]; results were obtained in the time domain using Newmark’s time-stepping method. In order to 

solve the nonlinear equations, the modified Newton-Raphson’s iterative scheme was utilized. The performance 
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of the linear SSI model was verified against results obtained using the foundation impedance functions [27]; 

for inelastic structures the model was verified using the central difference numerical integration method [28].  
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Fig. 1. Soil-structure interaction model 

 

Note that soil incompressibility leads to a high value of vp (i.e. vp→∞ as →0.5), which consequently results 

in an unrealistic overestimation of the rocking damping at high frequencies (see Eq. (2)). To address this issue, 

an added mass moment of inertia M was assigned to the foundation rocking degree of freedom, while vp was 

replaced with 2vs for 1/3<≤0.5. The soil material damping g was evaluated at the equivalent frequency of 

the SSI system wssi and modelled by augmenting each of the springs and dashpots with an additional dashpot 

and mass, respectively.  

3. Modelling parameters 
In this study, the following dimensionless parameters were used to characterize the important features of SSI 

systems:  

1. Structure-to-soil stiffness ratio a0: 
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where ws=2/Ts is the circular frequency of the superstructure in its fixed-base condition, with Ts being the 

corresponding natural period.   

2. Slenderness ratio of a building s: 
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3. Structure-to-soil mass ratio m̅: 

 
2rh

m
m

s

s


                                                           (6) 

4. Ductility demand : 

 

y

m

u

u
                                                                        (7) 

where um is the maximum earthquake-induced displacement and uy the yield displacement (see Fig. 2). For an 

SSI system, either a global ductility ssi or a structural ductility s can be defined. The former corresponds to 

the SSI system with maximum and yield displacements specified at the top mass of the superstructure relative 

to the ground; the latter corresponds to the structural distortion that excludes foundation rigid-body sway and 

rocking motions.    
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Fig. 2. Elastic-perfectly plastic lateral force-displacement relation 

 

It has been shown that a0 and s are key parameters that control the severity of SSI effects [13]. In engineering 

practice, a0 generally varies from 0, for buildings that are rigidly supported, to 3 for buildings built on very 

soft soil profiles [28]. In the current study, all superstructures were assumed to have a slenderness ratio s less 

than or equal to 4, while the structure-to-soil mass ratio m̅ was set to 0.5 and the foundation mass was assumed 

to be ten percent of the structural mass (i.e. mf/ms=0.1). The Poisson’s ratio  was taken as 0.5 (for very soft 

soil in undrained conditions) and both elastic structural damping and soil hysteretic damping ratios were set to 

5% (i.e. s=g=0.05) unless stated otherwise. The stated parameter values are representative of those for 

common building structures (e.g. [13,28]). 

 

Considering an SDOF oscillator with a simple elasto-plastic force-deformation relation depicted in Fig. 2, the 

constant-ductility strength reduction factor R and inelastic displacement ratio C are defined as: 
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where Ve and ue are maximum base shear and displacement of an oscillator under seismic loading in its elastic 

condition, and um is the maximum displacement of a yielding oscillator with a reduced base shear strength Vy 

under the same loading condition. Given the definition of ductility demand given by Eq. (7), the inelastic 

displacement ratio can be calculated by: 
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Eq. (8) illustrates that Rand C link the strength and displacement demands of an inelastic system to its elastic 

counterpart, allowing the seismic demands of an inelastic SDOF oscillator to be determined directly from an 

elastic design acceleration Sa or displacement Sd spectrum. This will be explained in more detail in the 

following sections.   

4. EFSDOF oscillator  
The elastic response of a dynamic system under a specific ground motion is mainly dependent on its natural 

period and damping ratio. Replacement of an SSI system by an equivalent fixed-base SDOF (EFSDOF) 

oscillator with an equivalent period Tssi and an effective damping ratio ssi has been adopted by many 

researchers as a convenient way to simplify SSI analyses (e.g. [29]). This approach is based on the selection 

of Tssi and ssi for the EFSDOF oscillator so that its resonant pseudo-acceleration and the corresponding 

frequency are equal to those of the actual SSI system. Since EFSDOF oscillators in general can provide 

accurate estimations of the deformation demands of SSI systems, several studies have been devoted to the 

derivation of Tssi and ssi for flexibly-supported structures [30,31]. Notable examples include the Veletsos and 

Nair [31] simplified approximations, which have been coded in some of the current design provisions (e.g. 

[1]). More recently, Maravas et al. [32] developed exact solutions of wssi and ssi given by: 
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where  is defined by: 
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and the frequencies wh, w and damping ratios h, (including both radiation damping and soil material 

damping) are calculated according to: 
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in which w is the circular frequency of vibration. Closed-form expressions for h, , h, , defined as 

frequency-dependent coefficients associated with dynamic spring stiffness and dashpot damping, were 

proposed by Veletsos and Verbic [27]. These frequency-dependent springs and dashpots that characterize the 

dynamic foundation force-displacement relationships are termed “foundation impedance functions”. Fig. 3 

presents a comparison between cone and impedance models as well as the Maravas et al. [32] solutions by 

expressing the period lengthening ratio Tssi/Ts and the effective damping ratio ssi as functions of the structure-

to-soil stiffness ratio a0 and the slenderness ratio s. The procedures for determining Tssi/Ts and ssi using the 

cone and impedance models are explained in Appendix 1. 
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Fig. 3. Comparison of period lengthening ratio and effective damping of SSI systems (=0.5 and g=0.05) 

 

Due to the frequency dependence of wh, w, h and , the response parameters shown in Fig. 3 were obtained 

iteratively until the frequency of vibration w equalled wssi, within an acceptable tolerance of 0.1%. It should 

be mentioned that the Maravas et al. [32] method inherently assumes that the structural damping is frequency 

independent. Therefore, if viscous damping is used, as was done in this study, the damping ratios s in Eqs. 

(10) to (12) should be multiplied by ws/w.  

 

In general, Fig. 3 shows good agreement between the three sets of results, which validates the use of the cone 

model as the baseline for evaluating the EFSDOF oscillator results. It is observed that slender buildings always 

have a greater period lengthening and a lower effective damping when compared with short squatty structures. 

Softer soil profiles (i.e. higher a0 values) also lead to greater period lengthening and higher effective damping 

ratios for less slender structures (i.e. s=1, 2). For SSI systems with slender superstructures (i.e. s=3, 4), an 

increase in the structure-to-soil stiffness ratio a0 can significantly increase the period lengthening, while it has 
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a negligible influence on the effective damping ratio. Note that these observations are based on the parameters 

considered in this study, which represent common building structures located on soft soil profiles.  

 

Fig. 4 schematically illustrates how the EFSDOF oscillator can be used to design flexible-base structures. For 

elastic systems, an SSI system shown in Fig. 4 (a) can be replaced by a fixed-base oscillator with Tssi and ssi 

shown in Fig. 4 (b). As a result, the base shear and displacement demands of the flexible-base system can be 

obtained from a response spectrum derived for fixed-base structures with an effective damping ratio ssi and 

an elongated period Tssi (or a reduced initial stiffness kssi). 
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Fig. 4. Equivalent fixed-base SDOF (EFSDOF) oscillator approach to design flexible-base structures 

 

If the superstructure exhibits nonlinear deformation, the maximum seismic lateral force imposed on the SSI 

system will be equal to the base shear strength Vy of the superstructure. To measure the level of inelastic 

deformation, either the global ductility ssi=ussi,m/ussi,y or the structural ductility s=us,m/us,y can be used. Based 

on the assumption that the energy dissipated by yielding of the SSI system (Fig. 4 (c)) is equal to that of the 

EFSDOF oscillator (Fig. 4 (d)), the following relation between the global and structural ductility ratios, with 

reference to Fig.4 (e), can be obtained [33]: 
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It should be mentioned that the energy dissipation due to elastic damping was not accounted for in the 

derivation of Eq. (14). The EFSDOF oscillator used in this study enables both global and structural ductility 

demands to be determined simultaneously. Therefore, displacement demands relating to either an SSI system 

(including the rigid-body motions of the foundation) or the structural deformation can be estimated using Eq. 

(14). 

5. Response Parameters 
In this study, the linear and nonlinear dynamic response of around 10,000 fixed-base and flexible-base SDOF 

structures (around 200,000 response-history analyses) with a wide range of fundamental periods, target 

ductility demands and damping ratios were obtained under a total of 20 ground motions, as listed in Table 1. 

The selected ground motions were all recorded on soft soil profiles with relatively high surface wave 

magnitudes (Ms>6.1). These records were carefully chosen by FEMA [4] and are provided in Appendix C of 

that report. While the maximum response of an SSI system is strongly dependent on the characteristics of the 

ground motion, it will be shown in this paper that using appropriate normalizing parameters can significantly 

reduce the sensitivity of the results to the design ground motions. The suite of records in Table 1 has been used 
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to study the inelastic displacement ratio for SSI systems where foundations were either bonded to the soil [14] 

or allowed to separate (uplift) [34]. However, the effect of the spectral predominant period was disregarded in 

those studies.  

 

Table 1. Ground motions recoded on very soft soil profiles 

Date Event 
Magnitude 

(Ms) 
Station 

Component 

(degree) 
PGA (cm/s2) 

10/17/89 Loma Prieta 7.1 
Foster City (APEEL 1; Redwood 

Shores) 
90, 360 278, 263 

10/17/89 Loma Prieta 7.1 Larkspur Ferry Terminal 270, 360 135, 95 

10/17/89 Loma Prieta 7.1 Redwood City (APEEL Array Stn. 2) 43, 133 270, 222 

10/17/89 Loma Prieta 7.1 
Treasure Island (Naval Base Fire 

Station) 
0, 90 112, 98 

10/17/89 Loma Prieta 7.1 Emeryville, 6363 Christie Ave. 260, 350 255, 210 

10/17/89 Loma Prieta 7.1 San Francisco, International Airport 0, 90 232, 323 

10/17/89 Loma Prieta 7.1 Oakland, Outer Harbor Wharf 35, 305 281, 266 

10/17/89 Loma Prieta 7.1 Oakland, Title & Trust Bldg. 180, 270 191, 239 

10/15/79 Imperial Valley 6.8 El Centro Array 3, Pine Union School 140, 230 261, 217 

04/24/84 Morgan Hill 6.1 
Foster City (APEEL 1; Redwood 

Shores) 
40, 310 45, 67 

 

The current study investigates the accuracy of the EFSDOF oscillator by comparing results with those of the 

corresponding SSI model illustrated in Fig. 1. Note that for squatty buildings (e.g. s=1), the effective damping 

ratio ssi can increase up to 25% (see Fig. 3), whereas it is usually around 5% for typical fixed-base structures. 

It is required by seismic provisions [1] that the effective damping ratio of a linear SSI system is higher than 5% 

but does not exceed 20%. Therefore, in the current study, the damping ratios ssi of the selected SSI systems, 

which were achieved using various combinations of a0 and s, were restricted to the range of 5-20%. In the 

following sections, the response obtained using the SSI models and their EFSDOF oscillators are illustrated 

using elastic acceleration spectra, constant-ductility strength reduction factor, and inelastic displacement ratio 

spectra. 

 

6. Elastic acceleration response spectrum 
The average acceleration response spectra of the 20 selected ground motions (Table 1) were calculated for the 

EFSDOF oscillators and their corresponding SSI models considering different effective damping ratios, as 

shown in Fig. 5. To account for the frequency content of the ground motions, the results are also presented 

using Bi-Normalized Response Spectrum (BNRS) curves where the predominant period TP was measured for 

each acceleration record at its maximum spectral ordinate value. It was found that the period TP was almost 

unaffected by the initial damping level in the range of interest (i.e. =5-20%); a value of TP corresponding to 

5% damping was therefore used for normalizing spectra with higher damping ratios.  
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Fig. 5. Elastic acceleration spectra for flexible-base structures: (a) conventional format and (b) bi-normalized 

format  

 

In Figs. 5 (a) and (b), the solid lines represent the SSI models, whereas the dashed lines are the results obtained 

using the EFSDOF oscillators, both of which were obtained by averaging the peak absolute acceleration of the 

structure (including ground accelerations) under the 20 ground acceleration records. The dotted lines 

correspond to the average pseudo-acceleration spectra of the EFSDOF oscillators. Fig. 5 shows that for SSI 

systems with low initial damping ratios of ssi≤10%, using either absolute or pseudo-acceleration spectra of 

the EFSDOF oscillators can provide an accurate prediction of the peak absolute accelerations of the structural 

mass in the SSI models. However, the spectral accelerations of SSI models having higher initial effective 

damping ratios (i.e. ssi=15% and 20%) are generally higher than those of the EFSDOF oscillators, especially 

when spectral pseudo-accelerations are compared. The difference between absolute and pseudo-acceleration 

spectra is negligible in typical fixed-base building structures due to their low structural damping s [35]. 

Therefore, the pseudo-acceleration spectra adopted by seismic codes can provide accurate seismic design of 

fixed-base buildings. In addition, damping in soil serves to dissipate external energy to a structure, which is 

usually designed on the basis of a pseudo-acceleration spectrum. However, using the spectral pseudo-

acceleration of EFSDOF oscillators with high effective damping ssi may result in a severely underestimated 

design base shear for the actual flexible-base structures (explained in detailed in Appendix 1). Therefore, for 

the force-based seismic design of SSI systems, the absolute acceleration spectra should be used in EFSDOF 

oscillators. This implies that for SSI analyses, damping reduction factors compatible with absolute acceleration 

spectra should be adopted [36].   

 

Fig. 5 also shows that the conventional acceleration response spectra exhibit two subsequent peaks, whereas 

the BNRS curves reach a distinct peak value at Tssi/TP≈1. As discussed earlier, a BNRS accounts for the 

frequency content of the ground motions in the averaging process. The peak spectral ordinates of the BNRS 

for initial effective damping ratios of ssi=0.05, 0.1, 0.16 and 0.21 are, respectively, 1.22, 1.17, 1.13 and 1.11 

times higher than those of the conventional spectra. By using more ground motion records, the spectral shape 

in Fig. 5 (a) would become more similar to those adopted by seismic codes, where a flat segment is expected 

due to averaging and smoothing. In that case, the difference between the peak values for the conventional and 

bi-normalized spectra would be even more significant. In Fig. 5 (b), the curves associated with ssi=0.05 

coincide with the shaded area that envelops the 5% damped BNRS obtained by Xu and Xie [10] and 

Ziotopoulou and Gazetas [7], demonstrating the consistency of the BNRS.  

 

7. Constant-ductility strength reduction factor and inelastic displacement ratio 

According to the definitions of the modification factors used for SSI systems (shown in Fig. 4), R and C 

were calculated based on the displacements of the structural mass relative to the ground, which included the 

foundation rigid-body motions. The spectral predominant period for a specified ground motion Tg is defined 

as the period at which the maximum ordinate of the relative velocity spectrum (for a damping ratio of ssi) 

occurs. 
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Fig. 6 compares the R and C spectra derived using the SSI models and EFSDOF oscillators. The a0 and s 

values of the SSI systems were chosen so that the effective damping ratio ssi was approximately equal to 5%, 

which was then assigned to the EFSDOF oscillators. The results in Fig. 6 are the averaged R and C spectra 

obtained for all 20 ground motions and are presented in both conventional and normalized formats. Similar to 

previous studies (e.g. [5,37]), the peaks and valleys are more noticeable when using the normalized format 

(Figs. 6 (b) and (d)). For instance, the normalized response spectrum curves indicate that, at a period ratio 

Tssi/Tg≈1, the peak displacement of an inelastic system is on average smaller than its elastic counterpart (i.e. 

C< while the constant-ductility strength reduction factor R is always maximum. This important behaviour 

is not obvious from the conventional response spectra shown in Figs. 6 (a) and (c). 
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Fig. 6. Conventional (a, c) and normalized (b, d) R and C spectra for SSI models and EFSDOF oscillators 

(5% damping ratio)  

 

Fig. 6 illustrates that the use of the EFSDOF oscillator is, in general, able to provide a reasonable estimate of 

R and C for SSI systems. However, for slender structures (e.g. a0=3, s=4) where period lengthening becomes 

higher, the oscillator approach slightly underestimates R, which consequently leads to an overestimation of 

C, especially when global ductility demands become higher. Since the EFSDOF oscillators work perfectly 

well for predicting the elastic response of the SSI system with a0=3 and s=4 (see Fig. 5 (b)), the underestimation 

of R could be a result of a higher strength predicted by the EFSDOF oscillators than that required by the SSI 

models to satisfy a target ductility demand. As will be discussed in the following sections, due to a large period 

lengthening effect, a global ductility ratio ssi=4 for an SSI system with a0=3 and s=4 corresponds to an 

unexpectedly high structural ductility ratio s>10, which is not used in common practice. Therefore, the results 

for higher global ductility demands are not seen to be important for practical design purposes. Note also that 

it may not be practical for a common flexible-base slender building to have a short elastic fundamental period 

(e.g. a0=3, s=4, Tssi<0.5 in Fig. 6). These systems were mainly used to show that the damping ratio values due 

to the combination of a0 and s (rather than their individual values) result in constant-ductility spectral shapes. 
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For a higher effective damping ratio ssi=10%, the performance of the EFSDOF oscillators is still excellent, as 

shown in Fig. 7. However, in general, values of R calculated by the oscillator approach are slightly higher 

than those from the SSI models. Fig. 7 also includes results for SSI systems with a larger soil material damping 

g=10%; R and C predictions by the EFSODF oscillators for these cases are very good. Therefore, it can be 

concluded that an EFSDOF oscillator is a viable substitute for a lightly-to-moderately damped SSI system. 
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Fig. 7. Conventional (a, c) and normalized (b, d) R and C spectra for SSI models and EFSDOF oscillators 

(10% damping ratio)  

 

Fig. 8 presents results for a much higher initial damping ratio ssi=20%, which is the upper limit of the overall 

damping of an SSI system suggested in seismic provisions [1]. It is shown that the EFSDOF oscillators, on 

average, over-predict the constant-ductility strength reduction factor R, and underestimate the inelastic 

displacement ratio C of the corresponding SSI systems. For the normalized R spectra shown in Fig. 8 (b), 

this over-prediction, which is up to 26%, is more pronounced when the Tssi/Tg ratio is smaller than 1.5.  
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Fig. 8. Conventional (a, c) and normalized (b, d) R and C spectra for SSI models and EFSDOF oscillators 

(20% damping ratio)  

 

It can be concluded from the above observations that the EFSDOF oscillators, over a wide range of normalized 

period, over- and under-estimate, respectively, R and C values for SSI systems with a high initial damping 

ratio. Therefore, a correction factor can be introduced to improve predictions of the EFSDOF oscillators for 

highly damped SSI systems. Note that for common building structures having a slenderness ratio s greater than 

2, the effective damping ratio is always lower than 10%, regardless of a0 values (see Fig. 3), which means that 

the EFSDOF oscillator approach can be directly applied to these structures without any modification.  

To improve the prediction of the seismic response of SSI systems, a correction factor  is defined in this study 

as the ratio of R predicted by an EFSDOF oscillator to that of the SSI model. According to Eq. (9),  can also 

be used to modify the inelastic displacement ratio C predicted by an EFSDOF oscillator: 
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The constant-ductility strength reduction factor ratios R,EFSDOF/R,ssi were calculated for each of the SSI 

systems which had initial effective damping ratios varying from 11-20% at a 1% interval. Fig. 9(a) is an 

example of the results for SSI systems with a global ductility ratio ssi=5. As expected, the correction factor 

becomes greater for higher initial effective damping levels, and the averaged data exhibits, approximately, an 

ascending, a constant, and a descending trend, respectively, in spectral regions Tssi/Tg<0.4, 0.4≤Tssi/Tg<0.9, 

and Tssi/Tg≥0.9. Mean R,EFSDOF/R,ssi ratios for ductility values from 2 to 5 are compared in Fig. 9 (b), which 

shows that, in general, greater correction factor values should be applied to more ductile systems. Fig. 9 (b) 

also illustrates the mean  spectra derived using both ratios of R,EFSDOF/R,ssi and C,ssi/C,EFSDOF, which are 

fairly similar and may be approximated using the following simplified piecewise expression:  
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Fig. 9. (a)-(b) Correction factor  obtained from response-history analyses, and (c)-(d) proposed analytical 

values of  as a function of period of vibration, effective ductility ratio and effective damping ratio of an SSI 

system  

 

Figs. 9 (c) and (d) illustrate the proposed correction factor  for different ductility levels and initial effective 

damping ratios calculated using Eq. (16). It is shown that higher modification factors are required for SSI 

systems with higher ductility demands and initial effective damping ratios. Comparing Fig. 10 with data in Fig. 

8 demonstrates that R and C spectra derived using modified EFSDOF oscillators are in much better 

agreement with those of the SSI models. Note that Eq. (16) is applicable to SSI systems having an initial 

damping ratio ranging from 11% to 20% and a global ductility ratio less than 5. 
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Fig. 10. Improved performance of the modified EFSDOF oscillators 

 

8. Structural and global ductility ratios 

Although the global ductility ssi relates the displacement demand of an inelastic SSI system to its yielding 

displacement, the structural ductility s is sometimes more important since it directly reflects the expected 

damage in a structure. By using the global ductility ssi, the structural ductility ratio s can be calculated 

according to Eq. (14). In order to evaluate the effectiveness of this equation, the actual structural ductility ratios 

s obtained by response-history analysis using the SSI model (points) are compared with those calculated using 

Eq. (14) (lines) in Fig. 11. The presented results are the averaged values for the 20 records (Table 1) considering 

four global ductility values ssi= 2, 3, 4, and 5; the shaded areas illustrate the practical range of the design 

structural ductility demands s.  

 

In general, Fig. 11 shows good agreement between Eq. (14) and the results of response-history analyses, 

especially for lightly-damped SSI systems with equivalent natural periods close to those of their fixed-base 

systems (e.g. Fig. 11(a)). For highly nonlinear structures, on the other hand, using Eq. (14) leads to an 

overestimation of s. This is particularly obvious for systems with a higher period lengthening effect, as shown 

in Figs. 11 (b), (c) and (e). However, it may not be important for common buildings that are usually designed 

for a structural ductility ratio of less than 8. Note that for a given global ductility ratio, the period lengthening 

effect is greater for structures with a higher structural ductility ratio (see Eq. (14)). The results illustrated in 

Fig. 11 generally demonstrate very good agreement between structural ductility ratios s obtained from the 

SSI model response-history analysis and those calculated by Eq. (14). This is especially evident within the 

shaded areas that represent practical design scenarios.  
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Fig. 11. Structural ductility ratios s: response-history analysis using SSI model (points) versus results using 

Eq. (14) (lines) 

9. Discussion 
In the present study, elastic and constant-ductility response spectra for soil-structure interaction systems were 

derived through response-history analyses performed using a selection of ordinary ground motions recorded 

on very soft soil sites. The structure was modelled by an SDOF oscillator having an elastic-perfectly plastic 

hysteretic behaviour. The elasto-dynamic response of the soil-foundation system was simulated using the cone 

model. The results of this study highlighted the importance of spectral predominant periods for soft soil 

conditions and were used to improve the efficiency of the EFSDOF oscillator approach. Compared to existing 

SSI procedures based on EFSDOF oscillators, the improved EFSDOF oscillator has the following advantages: 

1) the model explicitly includes the effect of frequency content of ground motions on the seismic response of 

structures on soft soils through the use of spectral predominate periods, and 2) the model provides improved 

estimation of constant-ductility strength reduction factor and inelastic displacement ratio of SSI systems with 

high initial effective damping ratios. The improved EFSDOF can be easily implemented in either force-based 
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(using R) or displacement-based (using C) design for SSI systems. The effects of near-fault directivity, the 

structural hysteretic model, and higher modes were not considered in this study and require further evaluation.     

10. Conclusions 
Around 200,000 response-history analyses were carried out using fixed-base and soil-structure interaction 

models to study the elastic and inelastic response spectra of buildings on soft soil profiles. Based on results for 

20 ground motions recorded on very soft soil deposits, it was shown that normalizing the equivalent period of 

an SSI system Tssi by the corresponding predominant period resulted in more rational spectra for seismic design 

purposes. In the elastic response spectra, Tssi is normalized by the spectral predominant period TP 

corresponding to the peak ordinate of a 5% damped elastic acceleration spectrum, while for nonlinear structures 

Tssi should be normalized by the predominant period of the ground motion Tg at which the relative velocity 

spectrum reaches its maximum value.  

 

It was shown that an actual SSI system could be replaced by an equivalent fixed-base oscillator having a natural 

period of Tssi, a viscous damping ratio of ssi, and a ductility ratio of ssi. It was concluded that the absolute 

acceleration spectra, instead of the pseudo-acceleration spectra, should be used for EFSDOF oscillators in 

force-based design of SSI systems. The EFSDOF oscillator approach provided an excellent estimate of 

acceleration and inelastic spectra for lightly-to-moderately damped SSI systems. However, it was shown that 

the EFSDOF oscillators, in general, overestimate the constant-ductility strength reduction factor R of SSI 

systems with high initial damping ratio (e.g. squatty structures founded on very soft soil profiles), which 

consequently leads to an underestimation of inelastic displacement ratio C. Based on the results of this study, 

a correction factor was proposed to improve the efficiency of the EFSDOF oscillators to predict the R and C 

spectra of SSI systems having initial effective damping ratios greater than 10%.  

 

Finally, it was demonstrated that for any ground motion, the structural ductility demand of a nonlinear flexible-

base structure can be calculated, with good accuracy, from the global ductility demand of the whole SSI system. 

The improved EFSDOF oscillator can thus be easily implemented in the performance-based design of 

structures on soft soil with a target ductility ratio which is defined either for an SSI system or for the structure 

alone. 
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Appendix  
The equation of motion of an SSI system subjected to a ground acceleration time-history üg(t)  can be 

expressed in the following matrix form: 

                   tuRMtuKtuCtuM g
                                                 (A1) 
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For nonlinear structures, the term “[M]{u(t)}” is replaced with restoring forces “{F(t)}”. In the frequency 

domain where the system is subjected to a harmonic motion having a frequency w and an amplitude Üg, Eq. 

(A1) can be written as: 

              wwww gURMUKCiM  2                                           (A2) 

where i is the imaginary unit satisfying i2=-1.  

 

For the cone model shown in Fig. 1, the mass, damping coefficient, and stiffness matrices are given by:     
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where the frequency w0 equals w and wssi in the frequency and time domains, respectively. The displacements 

and influence coefficients are defined as: 

    TT

hssi Ruuu ]0,0,1,1[,],,,[                                                    (A6) 

where uh is the foundation swaying displacement, and the displacement of the structural mass relative to the 

ground ussi= uh+hs+us, with reference to Fig. A1. 

 

For the impedance model depicted in Fig. A1(a): 
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where closed-form expressions for h, , h and  were proposed by Veletsos and Verbic [27] as frequency-

dependent dynamic modifiers to the foundation swaying and rocking stiffness. These dynamic modifiers are 

also functions of the soil Poisson’s ratio  and hysteretic soil damping ratio g. 

    TT

hssi Ruuu ]0,1,1[,],,[                                                    (A10) 
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Fig. A1. (a) SSI impedance model; and (b) equivalent fixed-base SDOF (EFSDOF) oscillator 

 

Unlike the pseudo-acceleration spectra for design of fixed-base buildings with external energy dissipation 

systems, the absolute acceleration spectra for EFSDOF oscillators should be used for flexible-base structures. 

This point can be addressed by comparing the equations of motion for the structural mass in both the SSI 

system and the EFSDOF oscillator shown in Fig. A1: 

  02 2  sssssgssi uuuu ww                                                 (A11) 

  02 2  sdofnsdofngsdof uuuu ww                                                 (A12) 

where the elastic dynamic properties of the EFSDOF oscillator are characterized by its circular frequency of 

vibration ωn=√ksdof/ms and a viscous damping ratio of . Provided that usdof of the EFSDOF oscillator is an 

accurate estimation of ussi of the SSI system, the absolute acceleration of the EFSDOF oscillator  gsdof uu    

equals that of the SSI system  gssi uu   . Due to a low structural damping ratio of s=5%, the base shear demand 

of the flexible-base structure can be calculated using either the pseudo-acceleration 
max,s

2

s uω or the absolute 

acceleration  gssi uumax    which equals the spectral absolute acceleration of the EFSDOF oscillator 

 gsdof uumax   . If, however, the spectral pseudo-acceleration of the EFSDOF oscillator maxsdof,

2

nuω  is used, the 

design base shear may be underestimated, due to high damping effects =ssi >>5%. 

 

For the SDOF oscillator illustrated in Fig. A1(b), Eqs. (A1) and (A2) reduce to the corresponding single 

equation of motion. The resonant response of this SDOF oscillator subjected to the harmonic motions Üg(ω) 

satisfies the following expressions [43]: 
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                                                (A13) 

where Ures is the resonant amplitude of the displacement usdof. 

 

Similarly, it may be assumed that Eq. (A13) also holds for the SSI systems shown in Figs. 1 and A1(a), whereby 

wssi, ssi, and ussi correspond, respectively, to wn, , and usdof of the SDOF oscillator. With this assumption, the 

equivalent natural frequency wssi and the effective damping ratio ssi can be solved by Eq. (A13) at the resonant 

response of the interacting system. 


