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Abstract—Real world environments face a wide range of
sources of noise and uncertainty. Thus, the ability to handle
various uncertainties, including noise, becomes an indispensable
element of automated decision making. Non-Singleton Fuzzy
Logic Systems (NSFLSs) have the potential to tackle uncertainty
within the design of fuzzy systems. The firing strength has
a significant role in the accuracy of FLSs, being based on
the interaction of the input and antecedent fuzzy sets. Recent
studies have shown that the standard technique for determining
firing strengths risks substantial information loss in terms of the
interaction of the input and antecedents. Recently, this issue has
been addressed through exploration of alternative approaches
which employ the centroid of the intersection (cen-NS) and the
similarity (sim-NS) between input and antecedent fuzzy sets.
This paper identifies potential shortcomings in respect to the
previously introduced similarity-based NSFLSs in which firing
strength is defined as the similarity between an input FS and an
antecedent. To address these shortcomings, this paper explores
the potential of the subsethood measure to generate a more
suitable firing level (sub-NS) in NSFLSs featuring various noise
levels. In the experiment, the basic waiter tipping fuzzy logic
system is used to examine the behaviour of sub-NS in comparison
with the current approaches. Analysis of the results shows that
the sub-NS approach can lead to more stable behaviour in real
world applications.

Index Terms—Inference based, Firing strength, Subsethood
measure, Non-singleton Fuzzy Logic System, Uncertainty

I. INTRODUCTION

In broad terms, uncertainty can be interpreted as informa-
tion deficiencies in problem solving situations and it is an
inseparable component of most real world applications as it
depends on the variety of different circumstances [1]. Thus,
the ability to handle uncertainties becomes an indispensable
element of decision making. Fuzzy set (FS) theory was first
introduced by Zadeh [2] and provided the basis for Fuzzy
Logic Systems (FLSs) which are considered as robust systems
to handle uncertainty in decision making [3]. FLSs have
been successfully applied in a variety of areas, including data
mining, pattern recognition and time series predictions [4]-[6].

FLSs processes are completed in three essential steps; fuzzi-
fication, inferencing and defuzzification. In fuzzification, crisp
input values are transformed into FSs and this transformation
can be implemented as a singleton (SFLSs) or non-singleton
(NSFLSs). Due to simplicity and lower computational cost
of SFLSs, singleton fuzzification is the most commonly used

design in literature. However, due to the fact that inputs are
commonly corrupted by noise, non-singleton fuzzy sets have
the potential to specifically capture the noise in input data, and
so may provide better results than SFLSs for the same number
of rules [7]-[12].

In the inferencing step of FLSs, inputs are processed with
respect to the system rules through interaction between the
input and antecedent membership functions (MFs), resulting in
rule firing strengths which in turn determine the degree of truth
of the consequents of individual rules. In the most common
standard NSFLS technique, the maximum membership degree
grade of the intersection between the input and antecedent
MF determines the firing strength. However, adopting the
maximum point of the intersection to determine the firing
strength risks substantial information loss in terms of the
interaction of the input and antecedent MFs. For example,
different input MFs (e.g. with different standard deviations
I, and I, in Fig. 1) may intersect an antecedent at the same
membership grade, resulting in the same firing level, despite
the fact that these input MFs are clearly different.

Recent work, including Pourabdollah et al. ([13,14]) and
Wagner et al. ([11]) have attempted to address this issue by
introducing alternatives which employ the centroid of the in-
tersection (cen-NS) and similarity measures (sim-NS) between
input and antecedent FSs, respectively. In the case of the cen-
NS method, consider Fig. 2, in which two different input MFs
are shown, lying at the same point x on the universe — I3
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Fig. 1. An illustration of two distinct fuzzy sets having the same intersection
level with A
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Fig. 2. An illustration of firing level obtained using the cen-NS method for two different levels of uncertainty -I3 low and I4 high on the antecedent A.
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Fig. 3. An illustration of firing level obtained using the sim-NS method, of input z, in the case of two different levels of uncertainty, I3 (low) and I (high)

on the antecedent A.

having low uncertainty (expressed as the standard deviation,
SD, of the input MF) and I having more uncertainty (larger
SD). Even though the uncertainty in the input in the two
cases is quite different, they both result in the same firing
strength (one). Indeed, regardless of the level of uncertainty
in z, a firing strength of one is always obtained - this seems
counter-intuitive, perhaps. Consider now the case of the sim-
NS method. A similar situation featuring an input x with
two different levels of uncertainty, depicted by I5 and I;, is
shown in Fig. 3. In this situation, the sim-NS method gives
a firing strength of almost zero in the case of I5. Indeed, as
the uncertainty in x reduced further to the extreme situation
of a singleton input at x, the firing strength given by sim-NS
reduces to zero. Again, this seems counter-intuitive. Therefore
it can be said that the sim-NS may produce a non-intuitive
firing strengths when the input uncertainty levels are low.

In summary, adopting either the centroid of intersection or
similarity measure based firing, although having some advan-
tages over the standard approach, may not be the best option to
define firing strength levels. More details of these limitations
will be given in Section IV. This paper seeks to address these
in-sensitivities by means of a subsethood measure (named sub-
NS) which enables the more comprehensive capture of interac-
tions between uncertain inputs and antecedents. To the best of
our knowledge, this is the first time that a subsethood measure
has been applied in the context of defining firing levels in
NSFLSs. In order to enable a systematic comparison with the

various alternative previously introduced NSFLS approaches,
the paper follows the experimental strategy exploring the
well-known waiter tipping problem, showing the performance
obtained for all the methods.

The structure of this paper is as follows. Section II provides
background information on the previous approaches (standard,
cen-NS and sim-NS). In Section III, the subsethood measure is
introduced in the context of defining firing strength. In Section
IV, the behaviour of the introduced subsethood measure is
explored by comparing current NSFLSs approaches in some
specifically constructed cases. Section V provides details of
the waiter tipping problem as a practical decision making
context, presenting the experimental environment, the results
and discussion. The conclusions of these explorations, with
possible future work directions, are given in Section VI.

II. BACKGROUND

In this section, an overview of the previous firing strength
approaches (standard, cen-NS and sim-NS) will be provided.

In most real case scenarios, input data is usually corrupted
by noise. Therefore capturing the noise (uncertainty) becomes
critical, and this can be done by transforming input data (z)
into non-singleton MFs. Let us assume there are two given
fuzzy sets, A (for antecedent) and / (for input), on a universe
of X, ie.:

A= (z,pa(@)lr € X)

1
I= (e (@)l € X) M



A. Standard Firing Strength Definition

As the most common composition-based technique, in the
standard Mamdani inference method [15], the maximum mem-
bership degree grade of the intersection between the input
MF and antecedent MF is determined as the firing strength.
However, recent works [11,14], have shown that adopting the
maximum point of the intersection to determine the firing
strength risks substantial information loss in terms of the
interaction of the input and antecedent MFs. To address this
issue, the authors introduced alternatives which employ the
centroid of the intersection and similarity measures, between
input and antecedent MFs, respectively.

B. Centroid Based Firing Strength Definition

The centroid-based inferencing approach, known as cen-
NS, focuses on the area of intersection between input and
antecedent MFs [14]. Firstly, the centroid of intersection
between input MF ([) and antecedent MF (A) is calculated:

f xeX ‘T/’L(‘T)

where k is the number of discretisation levels in the intersec-

tion between the input FS (I) and the antecedent FS (A)
Then, the corresponding membership degree of the position

of the centroid (zcen, (I N A)) on the membership function of
the intersection is defined to be the firing strength:

,uIﬁA(xcen(I N A)) 3

C. Similarity Based Firing Strength Definition

ZTeen(INA) = 2)

A similarity measure on fuzzy sets is a function that deter-
mines to what degree (in the interval of [0,1]) two fuzzy sets
contain the same values with the same degree of membership
[16]. Wagner et al. [11] suggested that any similarity measure
between input MF and antecedent MF can be used to define
the firing strength. In the initial work [11], they focused on
the Jaccard similarity measure:

fxEX mzn(uA (1’)7 Ml(x))
Joex maz(pa(a), pr(z))
where the input FS is (I) and the antecedent FS is (A).

S(I,A) =

“4)

ITI. SUBSETHOOD MEASURE

The subsethood measure [2] determines a ratio degree to
which a fuzzy set is a subset of another fuzzy set. Various sub-
sethood measures have been extensively studied by researchers
over the years [17]-[20]. This paper will focus on one of the
early definitions of subsethood measure as given by Kosko
[17].

Perhaps the simplest way to express subsethood of set I in
set A can be expressed as the ration of the cardinality of the
intersection of the two sets over that of set I, i.e.:

IANT]|

SSH([,A)Z |I‘

&)

where || refers to cardinality. This ratio can be formulated as
follows:

fweX mzn(ﬂA(xl)v Mf(xz))d:r
fxeX :uf(xi)dx

Essentially, the subsethood ratio fits the following criteria:

ssp(l,A) = (6)

o it is bounded between 0 and 1, i.e. sgg € [0,1];
« the ratio is equal to 1 if and only if I is a proper subset
of A.

As the number of elements from the set I, which are part
of the intersection, increases, the subsethood ratio will rise
and eventually reach one when [ is covered by A entirely.
Likewise, as the set I moves further from A, meaning the
non intersecting number of elements increases, the subsethood
ratio decreases, and reaches zero when there is no intersection
between the two sets at all. Based on above, in this paper,
this subsethood measure (sub-NS) is utilised in definition of
firing strength of fuzzy systems. The subsethood ratio between
antecedent and input MFs is directly taken as the firing level
of these two MFs.

IV. EXPLORATION OF SUBSETHOOD AS A DEFINITION OF
FIRING STRENGTH

In this Section, the previous firing strength definition ap-
proach will be examined and possible limitations will be
highlighted along with the advantages of using subsethood in
defining firing strength.

As mentioned in Section II, when systems contain different
levels of noise, inputs are fuzzified into non-singleton MFs
to capture uncertainty [5,11,12,14,21]-[26]. In this regard, it
is generally assumed that the received input x is the value
which is centred in the non-singleton MFs. Thereafter, the
width of the input MFs are determined based on the noise
level of systems. Based on this observation, there is usually
a direct correlation between the assumed (or known) noise
level and the width of the input MF used. As the Gaussian
MF is one of the mostly used designs in the literature it has
been chosen to be used in our investigation. Correspondingly,
the standard deviation of the Gaussian MFs is used to imply
different levels of noise.

In order to highlight limitations in the previous techniques
and the potential advantages of the subsethood approach, we
opted to select two different cases for analysis. In the first
case, an input value x is fixed and different noise levels (SDs)
are investigated in the firing strength definition aspect. In the
second analysis, the standard deviation is fixed and different
input values are processed over an antecedent to compare
different measures.

A. Analysis 1

In this analysis, the input value z is fuzzified to the non-
singleton Gaussian MF (/) and different levels of noise are
projected to the value = by means of adjusting standard
deviations (SDs). Throughout the analysis, different values
of standard deviation (uncertainty levels) in [ are defined
to examine firing strengths from different approaches. While
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Fig. 4. An illustration of increased SDs in the input MFs (I) over the defined antecedent A.
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Fig. 5. Comparison of different firing strength determining approaches in each intersection of I-A based on changes in standard deviations of inputs I.

maintaining the value xz, 50 different standard deviations (in
the range 0.006...0.300 in steps of 0.006) are tested on the
same antecedent (A).

1) Experiment 1: Firstly, the input value z is chosen as
the same value of the mean of A (0.20). In this way, this
experiment allows us to observe the behaviours of different
firing strength approaches, under different noise levels, when
the system input and antecedent are coincidental on the centre.
As mentioned above, 50 different SDs (from 0.005 to 0.030)
values are explored in the experiment and three samples of
these inputs I (with SD 0.024, 0.150 and 0.270) are illustrated,
together with the antecedent A, in Fig. 4. The firing strengths
from each of the four proposed methods (standard, centroid-
based, similarity-based and subsethood-based) is calculated for
each level of SD and illustrated in Fig. 5. For instance, the
dashed vertical line on the left-hand side of Fig. 5 represents
the produced firing strengths in the case when I has the SD
value of 0.024 as in Fig. 4a. Also, the middle and right-hand
side dashed vertical lines show the produced firing strengths
values for each approach from Fig. 4b and 4c, respectively.

Fig. 5 shows that as the uncertainty level increase (from the
left to right-hand side), the standard and cen-NS approaches
always produce the single firing strength (of one), regardless

of the standard deviation in the input /. From this, it can be
observed that the standard and cen-NS methods fail to take
into consideration noise levels in the systems.

When the produced firing strengths by sim-NS are scru-
tinised, we observe from Fig. 4 that even though the input
has a comparatively low uncertainty level, the produced fir-
ing strengths are close to zero and as the uncertainty level
increases (towards the right), the firing strength gradually
increases to reach a maximum of around 0.9 around the SD
value of 0.084. Below this value, then, the firing strength
gradually decreases as the uncertainty in the input I decreases;
for example, when the input I has an SD of 0.024 (the
dashed line on the left), the sim-NS generates a firing strength
around 0.3. We argue, therefore, that sim-NS does not produce
intuitive firing strengths, especially under low levels of noise.

2) Experiment 2: As a further experiment, another input
value x was determined arbitrarily (x = 0.3) and 50 different
standard deviations (in the same range 0.006 . ..0.300 in steps
of 0.006) were explored on the same antecedent A whilst
maintaining the chosen input value x. Again, three arbitrary
samples from those standard deviations of 0.024, 0.150 and
0.270 are illustrated in Fig. 6 and for each standard deviation
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Fig. 7. Comparison of different firing strength determining approaches in each intersection of I-A based on changes in standard deviations of inputs I.

level in I, the firing strengths are calculated using the four
different approaches. All the produced firing strengths can be
seen in Fig. 7.

Fig. 7 shows a clear trend for the standard and cen-NS that
the firing strengths for both approaches gradually increases, as
the uncertainty levels in the inputs increases. These trends fur-
ther strengthen the conviction that these approaches may tend
to neglect the uncertainty levels under some circumstances.
The firing strengths for the sim-NS shows that the lower
uncertainty levels generate a relatively low firing strength
which may also not be intuitively correct. For instance, the
dashed vertical line on the left-hand of Fig. 7 represents the
produced firing strengths in the case when the SD is 0.024
as shown in Fig. 6a. Also, the middle and right-hand dashed
vertical lines show the firing strengths values for Fig. 6b and
6¢, respectively.

To recapitulate, as illustrated in Fig. 5 and Fig. 7, on the
left-hand sides, the input x has a low level of noise and
as move towards to the right, the uncertainty for the x is
increased. Therefore, it would be reasonable to expect that the
firing strengths would decrease when the system uncertainty

is increased. However, when Fig. 5 and Fig. 7 are examined,
a clear trend can be seen that firing strengths of all standard
(circle) and cen-NS (triangle) are increased. In addition, it can
be seen that sim-NS tend to produce lower firing strength under
low level of noise, which is not reasonably to be expected.
On the other hand, the subsethood measures (diamond) are
reduced as the uncertainty level increases in the fixed input
x values. Therefore it may be concluded from Analysis 1
that this is compelling evidence for the usefulness of the
subsethood measure in defining firing strength.

B. Analysis 2

In this analysis, the standard deviation of input MFs are
fixed and different input values are examined over the an-
tecedent A. In order to demonstrate the behaviours of sim-
NS and sub-NS, the term Firing Strength Map is introduced
and comparison between sim-NS and sub-NS is provided by
means of the introduced Firing Strength Map. The generation
of a Firing Strength Map is implemented as follows:

o Firstly, the input (x1) is defined as Gaussian MF ([;)
and the firing strength (which is 0 in this case) of the
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Fig. 8. The implementation procedures of the Firing Strength Map by using sim-NS and sub-NS over the defined antecedent (A)

input-antecedent is calculated by using sim-NS, sub-NS
(See Fig. 8a). The produced firing strengths are marked
on the figure as the shape of square for sim-NS and the
diamond for the sub-NS (see Fig. 8a).

e Then the following input x5 is fuzzified into /> and the
firing strength calculations are implemented and marked
on the figure as well. For each x4, (the input MF toward to
the right) the firing strength of the input-antecedent MFs
are marked each time (while the previous firing strengths
marks remain on the Figure). For instance as samples,
I, I35 can be seen in Fig. 8b and 8c respectively.

o The iteration procedure is continued for all ¢ by marking
each firing strengths for sim-NS and the sub-NS. In this
manner, all the possible firing strengths, for the inputs
and the antecedent, are visualised.

All the possible firing strengths, for sim-NS and sub-
NS, between the defined inputs I and the antecedent A are
illustrated in Fig. 9. It is apparent that the sim-NS (square)
never produce the firing strength value 1, in fact, it only
increases to reach a maximum around 0.4 when the z value
is equal to the mean of A.

Based on the analyses and the experiments above, it may be
concluded that the main weakness in the current approaches
is that they make no attempt to consider different uncertainty
levels in the inputs which may result in misleading firing
strength values under some circumstances. Therefore, the cur-
rent approaches may not be the best option to be used because
of the lack of sensitivity to width of input MFs in NSFLSs.
Considering the fact that firing strength has a significant role in
the system accuracy, a viable solution can enhance uncertainty
capturing in NSFLSs. Hence, as subsethood measure is utilised
to define firing strength, as can be seen in Fig. 5, 7 and 9, the
changes in input values or uncertainty levels can be captured
in a more sensitive and reasonable way.

V. EXPERIMENTS AND RESULTS

In this section, the previous sim-NS and the proposed sub-
NS approaches are evaluated on a well known waiter-tipping
problem and the result comparison will be discussed.

A. Experimental Design and Results

In the experiment, the NSFLS consists of two inputs vari-
ables (Food and Service) and one output variable (7ip). Both
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Fig. 9. The comparison of sim-NS and sub-NS by means of the generated
Firing Strength Map

the Food and Service inputs are composed of two shoulder
antecedents: while Food comprises the terms Bad and Good,
the Service comprises as Slow and Fast. The output variable
(Tip) of the system is mapped as two shoulder MFs Low (left
shoulder) and High (right shoulder). On account of simplicity,
the following two rules are created:

1) IF Food is Good AND Service is Fast THEN Tip is High
2) IF Food is Bad AND Service is Slow THEN Tip is Low

As a result of the design choices above, the experimental
FLS is formed as shown in the Fig. 10.

INPUTS OUTPUTS
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Fig. 10. The basic waiter tipping Fuzzy Logic systems with two defined rules.



For further evaluation, we construct the synthetic input
values, with different uncertainty levels, which are fuzzified
into Non-Singleton Gaussian MFs. Let us assume that a
customer opinion is 7 out of /0 for both the (Food) and
(Service) and also we assume that as a first step of the
experiment, the customer has a relatively high confidence
about these decisions. Therefore, the input values are fuzzified
with a relatively low standard deviation value which is set as
0.1. The customer decision on the FLS is illustrated as in
Fig. 11. When sim-NS is implemented, the 7ip is obtained
as 7.5 and when sub-NS is used, the Tip is calculated as 6.5
approximately.

INPUTS
1.0 10
0.8 0.8
206 Z 0.6
0.4 04
0.2 0.2
0.0 0.0
. 2 4 8 10 2 4 8 10
0 X0 0 Y °
IF Food is Good AND Service is FAST
1.0 1.0
0.8 0.8
206 g o6
04 0.4
0.2 0.2
0.0: 0.0;
0 2 4 8 10 0 2 4 8 10
X 6 x 6
IF Food is Bad AND Service is Slow

Fig. 11. Customer input with low level of uncertainty on the waiter tipping
Fuzzy Logic System with the two defined rules.

The experiments are then repeated with the same customer
value (7 out of 10) by the uncertainty of the customer (standard
deviation) is gradually increased from 0.7 to /. Corresponding
to different uncertainty levels, a subset of these input MFs
is illustrated in Fig. 12. For each uncertainty level, the Tip
is calculated for both sim-NS and sub-NS and for the each
corresponding 7ip output is shown in Fig. 13.

INPUTS

1.0
0.8

1.0
0.8
0.6
0.4
0.2

0.6
0.4
0.2

0.0 0

0. ()(] 5

10

IF Food is Bad AND Service is Slow

Fig. 12. Different uncertainty level input MSs on the waiter tipping Fuzzy
Logic Systems with the two defined rules.

As can be seen in Fig. 12, when the customer uncertainty
is increased, the input value covers/interacts more with the
second rule which captures Bad Food and Slow Service.
However, contrary to the intuitive expectation, based on sim-
NS, the Tip is getting higher and higher as the uncertainty of
the customer is increased (Fig. 13). This underlines the fact
that sim-NS approach may produce unintuitive firing strengths
which may mislead the NSFLSs results. On the other hand,
when the proposed sub-NS is utilised, it is observed that the
Tip is decreased as it would be expected. Therefore, in some
applications - such as the waiter tipping example above, the
sub-NS approach can be considered to be a more appropriate
technique to define firing strengths in NSFLSs.

‘H Jaccard (Sim-NS) +—+ Subsethood (sub-NS)
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Fig. 13. The generated Tip values with both sim-NS and sub-NS under
different uncertainty levels.

VI. CONCLUSION

In the paper we have considered the behaviour of the
NSFLSs with different firing strength determining approaches
(standard, cen-NS, sim-NS using the Jaccard similarity ratio
and sub-NS) which shows that in some cases one may be less
intuitive than the another. To the best of our knowledge, this is
the first time that a subsethood measure has been proposed to
be used as the mechanism for determining firing strength. The
evidence from this study points towards the idea that the sub-
NS could be a suitable approach to be used in FLSs. However,
it should be noted that it is an initial evaluation of the approach
which explores the value and utility of the subsethood measure
in firing strength definition.

Future work will explore the sub-NS applicability and
utility in real-world experiments, for using on robotic case
studies. Further, due to the increased modelling capabilities of
type-2 fuzzy logic in handling uncertainty, the application of
subsethood in Type-2 fuzzy systems will be explored.
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