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A popular model for a generic fat-cored vortex ring or eddy is Hill’s spherical vortex
(Phil. Trans. Roy. Soc. A vol. 185, 1894, p. 213). This well-known solution of the Eu-
ler equations may be considered a special case of the doubly-infinite family of swirling
spherical vortices identified by Moffatt (J. Fluid Mech. vol. 35(1), 1969, p. 117). Here
we find exact solutions for such spherical vortices propagating steadily along the axis
of a rotating ideal fluid. The boundary of the spherical vortex swirls in such a way as
to exactly cancel out the background rotation of the system. The flow external to the
spherical vortex exhibits fully nonlinear inertial wave motion. We show that above a crit-
ical rotation rate, closed streamlines may form in this outer fluid region and hence carry
fluid along with the spherical vortex. As the rotation rate is further increased, further
concentric ‘sibling’ vortex rings are formed.

1. Introduction

In 1894 Hill published his famous solution for the steady flow of a spherical vortex in
an ideal fluid (Hill 1894). The solution consists of an inner rotational spherical region
of fluid that matches onto an outer irrotational region of fluid that extends to infinity.
Hill’s solution was later shown to be the end member of a family of steadily propagating
vortex rings (Norbury 1973) of varying core thickness that includes ‘thin-cored’ rings (see
Fraenkel 1970, 1972) where the rotational fluid is confined within a narrow region that
does not extend to the axis. These solutions, in particular Hill’s, have been the focus of
a number of stability analyses (see e.g., Moffatt & Moore 1978; Pozrikidis 1986; Protas
& Elcrat 2016) that show that in time fluid may be detrained or entrained into the
vortex according as to whether it has a prolate or oblate deformation respectively. Hill’s
spherical vortex may also be viewed as a special non-swirling member of a doubly-infinite
family of swirling spherical vortices identified by Moffatt (1969) that may be matched
onto an oncoming irrotational stream. Here we show how this family of spherical vortices
may be matched onto an oncoming stream in a rotating fluid.
As part of his body of work on rotating fluids in the early twentieth century, Taylor

(1922) investigated the response of a rotating fluid to a sphere steadily translating along
the axis of rotation. His experiments showed that while the tank of fluid rotated but
the sphere was not towed, the sphere rotated with the fluid in solid body rotation. Yet,
when the sphere was towed along the axis of rotation it ceased precessing and had no
azimuthal velocity in the laboratory frame of reference. Taylor found an exact solution
to the Euler equations that supported fully nonlinear inertial waves satisfying a no-slip
boundary condition on a sphere that translated steadily along the axis of rotation of
the fluid but did not precess about this axis in the laboratory frame (though he noted
that it is not clear how such a flow could be realised). In the analysis of this solution
Taylor found that in the limit of the radius of the sphere tending to zero, a structure
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The oncoming free-stream in a frame of
reference moving with the spherical vortex

Outer region: the flow is described by the
modified Taylor (1922) solution

Boundary between the inner and outer flows.
Continuity of velocity and pressure is enforced

A closed streamline indicating a region of outer
fluid carried along with the spherical vortex

Stagnation points in the flow

Stagnation streamline

An overturning inertial wave

Inner region: the flow is described by the non-
precessing Hill (1894) or Moffatt (1969) solutions

Figure 1: Schematic of the flow in a frame of reference moving with the spherical vortex.
The grey inner region consists of either the non-precessing Hill (1894) or Moffatt (1969)
solutions. This inner region matches onto a rotating outer region that is given by a
modified version of the solution presented by Taylor (1922). At the boundary between
the inner and outer regions continuity of velocity and pressure is enforced.

that resembled Hill’s spherical vortex could be observed in the flow, though he described
this analogy between his flow and Hill’s spherical vortex as ‘only superficial’.
In the present work we combine the approach of Taylor (1922) (summarized briefly in

§ 2.1) with the solutions of Hill (1894) in § 2.2 and Moffatt (1969) in § 2.3 to find exact
solutions of the rotating Euler equations for a spherical vortex propagating steadily
along the axis of rotation where, like Taylor’s sphere, the boundary of the spherical
vortex does not precess in the laboratory frame. The flow, in a frame of reference moving
with the spherical vortex, is shown schematically in figure 1. The inner solution, given
by either Hill (1894) or Moffatt (1969), is shown in grey. This inner solution for the
spherical vortex is matched onto a modified Taylor (1922) solution in the outer region by
enforcing continuity of velocity and pressure across the boundary. The flow in the outer
region exhibits inertial waves that above critical rotation rates may overturn. In § 2.4 we
show that as the rotation rate of the system is increased above these critical rotation
rates, closed streamlines form in the outer fluid representing a series of thin-cored ‘sibling’
vortex rings, propagating with the spherical vortex. In § 3 we draw our conclusions.

2. Spherical Vortices in Rotating Fluids

We consider an inviscid, incompressible fluid with pressure field p, velocity field u

and constant density ρ in a frame of reference that is rotating with rotation vector Ω ẑ,
where ẑ is a fixed unit vector. The flow is described in terms of spherical polar coordinates
(σ, θ, φ) where σ > 0 is the radial distance from the origin, θ ∈ [0, π] is the polar angle
and φ ∈ [0, 2π) is the azimuthal angle. The spherical coordinate system is aligned such
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that θ = 0 is in the ẑ-direction. We seek to model a spherical vortex of constant radius a
and constant propagation velocity U ẑ, hence we nondimensionalize position as x = ax̃,
velocity as u = U ũ, and pressure as p = ρU2 p̃, where tildes indicate nondimensional
quantities. Dropping the tildes immediately the nondimensional steady rotating Euler
equations that govern the motion are

∇ · u = 0, (u · ∇)u = −∇p+
r

4Ro2
r̂ −

1

Ro
ẑ × u, Ro =

U

2aΩ
, (2.1a–c)

where: we have defined a Rossby number, Ro; r̂ = sin θ σ̂+cos θ θ̂ is a unit vector in the
cylindrical radial direction, and r = σ sin θ is the cylindrical radial position.

2.1. Taylor’s Solution

Taylor (1922) considered the axisymmetric flow around a non-precessing sphere (in the
laboratory frame) that is translating steadily with nondimensional velocity ẑ through a
fluid rotating steadily about ẑ. This flow may be described by defining an axisymmetric
streamfunction, ψ(σ, θ), as in Batchelor (1967), and writing the velocity in the radial,
polar and azimuthal directions respectively as

u =
1

σ2 sin θ

∂ψ

∂θ
, v = −

1

σ sin θ

∂ψ

∂σ
, w = −

1

Ro

(

ψ

σ sin θ
+
σ sin θ

2

)

. (2.2a–c)

(The second term in brackets in the expression for w is included here as we are working in
the non-inertial frame of reference of the rotating fluid.) The incompressibility condition
(2.1a) is automatically satisfied. Taylor (1922) proceeded by posing that the streamfunc-
tion be of the separable form ψ = f(σ) sin2 θ. Substitution into the curl of (2.1b), thus
removing the pressure gradient, leads to either the trivial solution f = 0 or that f must
satisfy

σ3f ′′′ − 2σ2f ′′ − 2σf ′ + 8f +
σ2

Ro2
(σf ′ − 2f) = 0, (2.3)

where a dash denotes differentiation with respect to σ. In the frame of reference rotat-
ing with the fluid, but translating with a sphere of radius δ that is not precessing in
the laboratory frame, the no-normal flow and no-precession boundary conditions on the
boundary of the sphere, together with the far-field velocity boundary condition, are

u(δ, θ) = 0, w(δ, θ) = −
δ sin θ

2Ro
, lim

σ→∞

u(σ, θ) = (− cos θ, sin θ, 0) . (2.4a)

Equivalently, in terms of f

f(δ) = 0, lim
σ→∞

f(σ)

σ2
= −

1

2
. (2.4b)

The pressure field is given by

p(σ, θ) =

(

2ff ′′ − f ′2 +
f2

Ro2

)

sin2 θ

2σ2
−

2f2

σ4
+

1

2
, (2.5)

where the pressure p→ (8Ro2)−1σ2 sin2 θ, the hydrostatic pressure field, as σ → ∞. The
vorticity field, ω ≡ ∇× u, is

ω = −
1

Ro

[

cos θ

(

2f

σ2
+ 1

)

σ̂ − sin θ

(

f ′

σ
+ 1

)

θ̂

]

−
sin θ

σ

(

f ′′ −
2f

σ2

)

φ̂. (2.6)
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Figure 2: (a) Streamlines around a unit sphere translating steadily along the axis of
rotation (r = 0) of a rotating fluid in the reference frame of the sphere. Closed streamlines
show that fluid is being transported with the sphere. (b) Streamlines around a sphere of
vanishing size (white circle at the origin) translating steadily along this axis of rotation
of a rotating fluid in the frame of reference of the main body of fluid. Taylor (1922)
observed that the streamlines near the origin resemble those of a Hill’s spherical vortex
(Hill 1894) but described the analogy between the flow and a spherical vortex as ‘only
superficial’.

The solution to (2.3) that satisfies (2.4b) may be written as

f(σ) = −
σ2

2
+

1

2σ

{

[

δ3 + c (σ − δ)
]

cos

(

σ − δ

Ro

)

+

[

δ3σ − c
(

δσ +Ro2
)]

Ro
sin

(

σ − δ

Ro

)

}

, (2.7)

for an arbitrary constant c. The remaining no-slip boundary condition in the polar direc-
tion, v(δ, θ) = 0, is satisifed when f ′(δ) = 0 forcing c = δ2−3Ro2, and this together with
(2.7) can be shown to be equal to Taylor’s solution. The no-precession condition and
the no-slip boundary condition in the polar direction are physically motivated choices to
close the system. The conditions are no-slip conditions applied to an inviscid fluid in the
expectation that the inviscid solution will closely approximate the full viscous solution
where no-slip conditions would be rigorously valid.
The streamlines for δ = 1, Ro = (2π)−1 are shown in figure 2a. The nonlinear wavefield

in the fluid can be observed (cf. figure 2 Taylor 1922) as can the closed streamlines that
show that fluid is carried with the sphere. Taylor observed that it is not clear how such a
flow may be set up; indeed the radiation condition is not everywhere satisfied throughout
the wavefield which prohibits the wavefield being created by the towing of the sphere
alone. This observation is consistent with the later findings of Stewartson (1958) and
Lighthill (1967) who both considered the wavefields built up by motion due to localized
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forcing along the axis of a rotating fluid into initially quiescent fluid and concluded that
only columnar modes could exist ahead of the forcing.
Taylor (1922) observed that his analytical solution still exhibited waves even in the limit

that the sphere has a vanishingly small radius, i.e., in the limit δ → 0. Figure 2b shows
this solution, in the laboratory frame of reference. The sphere is instantaneously located
at the origin, indicated by a white circle. Taylor (1922) observed that the streamlines
near the origin resemble those of a Hill’s spherical vortex (Hill 1894). Here the rotation
rate has been chosen such that this apparent spherical vortex has a unit radius (given by
the largest Ro that satisfies Ro sin(Ro−1) = cos(Ro−1), i.e., Ro ≈ 0.223). The boundary
of the apparent spherical vortex is shown in bold. Taylor (1922) describes this analogy
with Hill’s spherical vortex as superficial as the vortex can only exist when the flow is
rotating and a vanishingly small sphere is translating steadily, without precession, along
the axis of rotation.

2.2. Hill’s spherical vortex in a rotating fluid

The classical Hill’s spherical vortex is a spherical region of rotational fluid that propagates
through an irrotational ambient fluid. The flow is found by constructing solutions inside
and outside the spherical vortex and enforcing pressure and velocity continuity across
the boundary of the two regions. As with the no-slip conditions enforced on the solid
sphere in Taylor’s solution, continuity of velocity is enforced across the boundary of the
two inviscid solutions, even though this is not a strict requirement, in the expectation
that the solution will closely approximate the behaviour of a real viscous fluid. In a frame
of reference moving with the spherical vortex, Hill’s solution is given by

u =











3 cos θ

2
(1− σ2)σ̂ −

3 sin θ

2
(1− 2σ2)θ̂ σ 6 1

−
cos θ

σ3
(σ3 − 1)σ̂ +

sin θ

2σ3
(2σ3 + 1)θ̂ σ > 1.

(2.8a)

p =















−
9σ2(3− 2σ2)

8
sin2 θ +

9σ2(2− σ2)

8
−

5

8
σ 6 1

−
3(4σ3 − 1)

8σ6
sin2 θ +

2σ3 − 1

2σ6
σ > 1.

(2.8b)

where the arbitrary pressure constant has been chosen without loss of generality such
that p → 0 as σ → ∞. The solution is in the frame of reference of the spherical vortex
and so the velocity in the far-field tends to −ẑ. The solution is axisymmetric and swirl-
free and the velocity can be represented by a streamfunction, ψ, of the form of (2.2a–b),
where

ψ =















3σ2(1− σ2)

4
sin2 θ σ 6 1

−
(σ3 − 1)

2σ
sin2 θ σ > 1

(2.9)

and w = 0. The arbitrary constant that may be added to the streamfunction is chosen
such that ψ = 0 on the boundary of the spherical vortex. The pressure and velocity fields
are continuous across the boundary of the spherical vortex, σ = 1.
We now make the following observation; if u(σ, θ) together with a corresponding pres-

sure field, p(σ, θ), solves the non-rotating Euler equations and u can be represented by
a streamfunction ψ(σ, θ) in the form of (2.2a–b) with w = 0, then

u =

(

1

σ2 sin θ

∂ψ

∂θ
,−

1

σ sin θ

∂ψ

∂σ
,−

σ sin θ

2Ro

)

, (2.10)
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solves the rotating Euler equations with the same pressure field p. This is because the
swirling component in (2.10), w = −(2Ro)−1σ sin θ, exactly cancels the background ro-
tation of the fluid. Thus, we have that (2.10) with ψ given by Hill’s inner non-rotating
solution ((2.9) for σ 6 1), and the pressure, p ((2.8b) for σ 6 1) automatically satisfies
the incompressibility condition and the rotating equations of motion (2.1a–b). The solu-
tion is Hill’s non-rotating spherical vortex described in a rotating frame of reference. To
distinguish this solution from the classical solution we refer to it as the ‘swirling’ Hill’s
spherical vortex, even though the azimuthal component of the velocity field exactly can-
cels the background rotation of the fluid. The observation that Taylor’s sphere in his
experiments did not precess about the axis of rotation gives rise to the possibility that
there may exist a form of Taylor’s solution that can be matched onto the swirling Hill’s
spherical vortex by enforcing a different choice of polar velocity boundary condition to
Taylor’s no-slip condition when setting c in (2.7).

To match a solution of the form (2.2) onto the swirling Hill’s spherical vortex such that
the velocity field is continuous across the boundary σ = 1, we require a solution to (2.3)
that satisfies, for δ = 1, the conditions (2.4b) and yields v(1, θ) = 3

2 sin θ. We therefore
require f ′(1) = − 3

2 and hence the solution is given by (2.7) with δ = 1, c = 1, so that

f(σ) = −
σ2

2
+

1

2σ

{

σ cos

(

σ − 1

Ro

)

− Ro sin

(

σ − 1

Ro

)}

. (2.11)

Substitution of this solution at σ = 1 into (2.5) shows that the pressure on the boundary
is given by p(1, θ) = 1

2 − 9
8 sin

2 θ, exactly matching the pressure on the boundary of the
swirling Hill’s spherical vortex (see (2.8b) at σ = 1). The solution has the property that
Hill’s classical solution is recovered in the limit Ro → ∞. Thus, we have a complete
steady solution to the nonlinear rotating Euler equations whose inner solution is Hill’s
spherical vortex with an additional swirling component in the azimuthal direction that
cancels out the background rotation of the fluid. This inner solution matches onto an
outer solution, with continuous velocity and pressure across the boundary of the vortex.
In the far-field the velocity tends to the free-stream velocity −ẑ and pressure tends to the
hydrostatic pressure field p = (8Ro2)−1σ2 sin2 θ. We observe that ψ is even in the Rossby
number and so the waves that form in a meridional plane (φ = const.) oscillate according
only to the magnitude of the rotation of the system, and not the sign of the direction of
rotation, as might be expected on physical grounds. Similarly, as a result of (2.2c) and
(2.11), the azimuthal velocity is odd in the Rossby number and so the azimuthal flow
field is reversed if the sign of the direction of rotation of the system is reversed. We see
from (2.11) that the wavelength of the inertial waves in the outer fluid is 2πRo as in
Taylor (1922).

Figure 3(a)–(c) shows streamlines in the (r, z) meridional plane of Hill’s spherical
vortex and the flow outside the spherical vortex for three different values of the Rossby
number. The streamlines represent the flow relative to the translating spherical vortex.
The meridional velocity components are always zero at r = 2−1/2, z = 0, indicated by
black circles. Plot (a) is of the non-rotating Hill’s spherical vortex that corresponds to
the limit Ro → ∞. As the rate of rotation is increased, and the Rossby number reduces
from Ro = 1

4 in plot (b) to Ro = 1
10 in plot (c), inertial waves can be observed in the outer

fluid. Below a critical Rossby number it can be seen that these waves begin to overturn.
We also observe that closed streamlines appear in the outer fluid in plot (c). These closed
streamlines show that above a critical rotation rate, regions of fluid are transported with
the spherical vortex, externally to the spherical vortex in the form of concentric vortex
rings.
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Figure 3: (a)–(c): Plots of the streamfunction for Hill’s spherical vortex for Ro = ∞,
1
4 ,

1
10 for (a)–(c) respectively. The meridional stagnation point in the spherical vortex

is indicated by a small black circle and is located at r = 2−1/2, z = 0. In plot (c)
the formation of closed streamlines externally to the spherical vortex may be observed,
indicating regions of fluid that are transported with the spherical vortex. (d)–(f): Plots
of the streamfunction for swirling spherical vortices for Ro = 1

10 . The parameters shown
are: (d) α = 0, λ = 15

2 (Hill’s spherical vortex); (e) α = π
2 , λ = 15

2 ; (f) α = π
2 , λ = 15.

2.3. Swirling spherical vortices in a rotating fluid

We now generalize the method of § 2.2 for the family of swirling spherical vortices iden-
tified by Moffatt (1969). The spherical vortex, for σ 6 1, is described in terms of a
streamfunction by

u =
1

σ2 sin θ

∂ψ

∂θ
, v = −

1

σ sin θ

∂ψ

∂σ
, w = −

αψ

σ sin θ
−
σ sin θ

2Ro
. (2.12)

As with Hill’s solution, the streamfunction has the same separable form as Taylor’s
streamfunction, specifically ψ = F (σ) sin2 θ, where for (λ, α) ∈ R

2 we have the doubly-
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infinite family of spherical vortices given by

F (σ) =
λ

α2

[

σα cos(σα) − sin(σα)

σ (α cosα− sinα)
− σ2

]

. (2.13)

The corresponding pressure field is given by (2.5) with f replaced by F and Ro replaced
by α−1. It follows from (2.12) that α is a measure of the degree of swirl in the spherical
vortex. The special case of Hill’s spherical vortex ring is recovered in the limit α → 0,
λ = 15

2 . No-normal flow and no-precession conditions are satisfied on the boundary
of the swirling spherical vortices as F (1) = 0, and hence u(1, θ) = 0 and w(1, θ) =
−(2Ro)−1 sin θ. The conditions of continuity of pressure and polar velocity across the
boundary are satisfied if a solution for f , given by (2.7) with δ = 1, can be found such
that f ′(1) = F ′(1) and this condition is satisfied when

c = 1 + 2Ro2
[

λ

α2

(

3 +
α2 sinα

α cosα− sinα

)

−
3

2

]

. (2.14)

(Note that the result of § 2.2, c = 1, is recovered in the limit α → 0, λ = 15
2 .) Hence, any

swirling spherical vortex given by (2.12) and (2.13) may be matched onto an oncoming
stream in a rotating fluid whose far-field velocity tends to −ẑ with continuous pressure
and velocity across the boundary of the spherical vortex at σ = 1. We also see that the
outer flow is a singly-infinite family given by (2.14) and is equal to the outer flow of the
swirling Hill’s spherical vortex solution for all solutions with c = 1, i.e., for all (λ, α) ∈ R

2

such that the quantity in square brackets in (2.14) is zero.
Figure 3(d)–(f) shows streamlines in the (r, z) meridional plane of the swirling spherical

vortices for Ro = 1
10 and: (d) α = 0, λ = 15

2 Hill’s swirling spherical vortex; (e) α = π
2 ,

λ = 15
2 ; (f) α = π

2 , λ = 15. It can be seen that the stronger of the two swirling Moffatt
solutions (f) corresponds to a larger amplitude wavefield in the outer fluid, with three
closed streamlines in the image shown.

2.4. Sibling vortices

The critical rotation rate at which the onset of overturning is observed may be found
by considering the turning points of the streamlines. If a given streamline, ψ = const.
for σ > 1, is parameterized by θ = θ(σ) then a necessary condition for overturning is
dθ(σ)/dσ = 0, that is, when

2Ro2σ3 +
{

Ro2σ + (c− 1)
[

σ2 +Ro2(σ − 1)
]}

cos

(

σ − 1

Ro

)

+
{

σ2 − Ro2 − (c− 1)
[

Ro2 − σ(σ − 1)
]}

sin

(

σ − 1

Ro

)

= 0. (2.15a)

This expression has a different number of branches of solution for a given Rossby number,
Ro, as is shown in figure 4a for c = 1. There is therefore in this case a minimum rate
of rotation below which no closed streamlines in the outer fluid are formed and no fluid
is carried along with the spherical vortex. The first critical rotation rate occurs when
dRo(σ)/dσ = 0 where Ro = Ro(σ) is determined by (2.15a). This condition is given by

6Ro3σ +Ro [σ + (c− 1)(σ + 1)] cos

(

σ − 1

Ro

)

+
[

Ro2 + (c− 1)(Ro2 − σ)
]

sin

(

σ − 1

Ro

)

= 0. (2.15b)
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Figure 4: (a) Zeros of (2.15a) for c = 1; as the rotation rate increases the Rossby number,
Ro, decreases and new branches of the solution are found. The critical rotation rates at
which new branches of solution are found are given by zeros of the system (2.15), indicated

by circles. The fifth critical Rossby Ro = Ro(5)c ≈ 0.114 is indicated by the black circle.

(b) The streamfunction for θ = π/2 and Ro = Ro(5)c . This plot corresponds to the z = 0
transect of figure 5. The black circles that occur at local minima in ψ correspond to
black stagnation points in figure 5. The white circles that occur at local maxima in ψ
correspond to the white stagnation points in figure 5. For ψ lying between pairs of black
and white turning points, indicated by the grey regions, the function σ(ψ) is multi-valued
and this corresponds to closed streamlines in the flow. At the chosen Rossby number the
fifth set of closed streamlines is about to appear at the inflection point indicated by the
dashed line, corresponding to the cusp at r ≈ 4.39 (black-white circle) in figure 5.

The critical points determined by simultaneous solutions of (2.15a) and (2.15b) are shown
for c = 1 as circles in figure 4a and we denote the critical Rossby numbers as Ro =

Ro(n)c and the corresponding critical radii as σ = σ
(n)
c for n = 1, 2, 3, . . .. The first

critical rotation rate, Ro(1)c , that represents the minimum rotation rate for which a closed

streamline forms in the flow is found numerically, for Hill’s spherical vortex, to be Ro(1)c ≈

0.239. This rotation rate lies between those shown in figure 3b and 3c. The corresponding

radius, σ
(1)
c ≈ 2.07 and θ = π/2 gives the location at which the overturning first occurs.

For a given Rossby number, the associated number of branches of solutions of (2.15a)
corresponds to the number of closed streamlines in the flow outside the spherical vortex,
and hence corresponds to the number of regions of fluid that are advected with the
spherical vortex.

The value of the streamfunction on the closed streamlines and the location of stagnation
points in the flow can be found by considering ψ on θ = π/2. Figure 4b shows ψ(σ, π/2)

for σ > 1 and Ro = Ro(5)c ≈ 0.114, the fifth critical rotation rate (indicated by the
black circle in figure 4a). The turning points in ψ can be seen to appear in pairs of local
minima (black circles) and local maxima (white circles). For values of ψ between the local
minima and maxima, indicated by the grey bands, the function σ(ψ) is multi-valued and
this corresponds to closed streamlines in the flow. As the flow considered is exactly at
the fifth critical rotation rate, the fifth pair of local minima and maxima coincide at the
inflection in ψ where σ ≈ 4.39 and ψ ≈ −9.65.

Figure 5 shows streamlines of the flow for a swirling Hill’s spherical vortex in a rotating
fluid at Ro = Ro(5)c corresponding to the rotation rate in figure 4b. The stagnation point
in the spherical vortex is, as in the classical solution, at σ = 2−1/2, θ = π/2. In the outer
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Figure 5: A meridional slice through the flow field in the frame of reference moving with
a swirling Hill’s spherical vortex ring for Ro = Ro(5)c ≈ 0.114. This is the fifth critical
Rossby number, we can see four sibling vortex rings (bold lines) have been created in the
outer fluid and there is a cusp that has formed (black-white circle at r ≈ 4.39, z = 0) on

a streamline that will form the next sibling vortex ring when Ro < Ro(5)c .

flow there can be seen to be four closed streamlines, indicated in bold. We observe that the
direction of advection around these closed streamlines (anti-clockwise) is opposite to that
in the spherical vortex (clockwise), though the vorticity in the closed streamlines may
change sign (see (2.6)). The black stagnation points in the closed streamlines correspond
to the black local minima in figure 4b. The white stagnation points, on the boundary of
the closed streamlines, correspond to the local maxima in 4b. A fifth ‘closed streamline’
is about to form at the cusp indicated by the black-white circle at σ ≈ 4.39. This
corresponds to the inflection in ψ in figure 4b.

3. Conclusions

Following Taylor’s (1922) observation that his analytical solution for streamlines around
a steadily translating, vanishingly small, sphere on the axis of rotation of a rotating fluid
resemble those of a Hill’s spherical vortex (Hill 1894), we have derived explicit solutions
of the rotating Euler equations that support steadily propagating spherical vortices. The
inner solution comprises spherical vortices that are members of a doubly-infinite family
of solutions whose boundary swirls in such a way as to exactly cancel the background ro-
tation of the fluid, in that way mimicking the behaviour of the sphere towed through the
rotating tank in Taylor’s experiments (see also experimental observations in developed
vortex rings in rotating fluids (e.g., Eisenga 1997; Verzicco et al. 1996)). This inner so-
lution matches onto an outer free-stream solution that exhibits nonlinear inertial waves.
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As the rotation rate is increased the amplitude of the waves is observed to grow until, at
a critical rotation rate wave-overturning may be observed and closed streamlines form in
the outer fluid. The closed streamlines represent vortex rings that are concentric to the
spherical vortex on the axis and which propagate with the spherical vortex. As the ro-
tation rate is increased beyond subsequent critical Rossby numbers, new ‘sibling’ vortex
rings are added to the vortex ring family propagating along the axis of rotation.

The authors would like to thank an anonymous referee for drawing our attention to
the solutions of Moffatt (1969).
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