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Abstract

This paper first establishes consistency of the exponential series density

estimator when nuisance parameters are estimated as a preliminary step. Con-

vergence in relative entropy of the density estimator is preserved, which in turn

implies that the quantiles of the population density can be consistently esti-

mated. The density estimator can then be employed to provide a test for the

specification of fitted density functions. Commonly, this testing problem has

utilized statistics based upon the empirical distribution function (edf), such as

the Kolmogorov-Smirnov or Cramér von-Mises, type. However, the tests of this

paper are shown to be asymptotically pivotal having limiting standard normal

distribution, unlike those based on the edf. For comparative purposes with

those tests, the numerical properties of both the density estimator and test are

explored in a series of experiments. Some general superiority over commonly

used edf based tests is evident, whether standard or bootstrap critical values

are used.
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1 Introduction

Testing whether a sample of data has been generated from a hypothesized distribu-

tion is one of the fundamental problems in statistics and econometrics. Traditionally

such tests have been constructed from the empirical distribution function (edf). Even

under the simplest of sampling schemes such tests are known to be not asymptotically

pivotal, e.g. see Stephens (1976), Conover (1999) and Babu and Rao (2004). More-

over, under more sophisticated sampling schemes such tests can become prohibitively

complex, see Bai (2003) and Corradi and Swanson (2006).

Instead, this paper provides tests based on a generalization of the consistent series

density estimator of Crain (1974) and Barron and Sheu (1991). Consistency is main-

tained when nuisance parameters are estimated as a preliminary step. This, when

applied to the infinite dimensional likelihood ratio test of Portnoy (1988) generalizes

the tests of Claeskens and Hjort (2004) and Marsh (2007) to test for specification.

The proposed procedure offers three advantages over those tests based on the edf.

First they are asymptotically pivotal, and numerical experiments are designed and

reported in support of this. This also implies automatic validity, including second-

order as in Beran (1988), of bootstrap critical values. Valid bootstrap critical values

for the non-pivotal edf based tests, e.g. as in Kojadinovic and Yan (2012), do not

benefit from this. Second, they are generally more powerful than the most commonly

used edf based tests. Again numerical evidence is presented to support this. Lastly,

because they are based on a consistent density estimator, in the event of rejection

the density estimator itself can be used to, for instance, consistently estimate the

quantiles of the underlying variable.

The plan for the paper is as follows. The next section presents the density estima-

tor and demonstrates that it converges in relative entropy to the population density.

A corollary provides consistent quantile estimation, with accuracy demonstrated in

numerical experiments. Section 3 provides the nonparametric test, establishes that

it is asymptotically pivotal and consistent against fixed alternatives. A corollary es-

tablishes validity of bootstrap critical values. Numerical experiments are presented

in support of these results as well as demonstrating some superiority over edf based

tests. Section 4 concludes while two appendices present the proofs of two theorems
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and tables containing the outcome of the experiments, respectively.

2 Consistent nonparametric estimation of possibly

misspecified densities

2.1 Theoretical Results

Suppose that our sample y= {Yi}ni=1 consists of independent copies of a random

variable Y having distribution, G (y) = Pr[Y ≤ y] and density g (y) = dG (y) /dy.

For this sample we fit the parametric likelihood, L =
∏n

i=1 f (Yi; β) for some chosen

density function f (y; β) , where β is an unknown k×1 parameter. Denote the (quasi)

maximum likelihood estimator for β by β̂n.

In this context the hypothesis to be tested is:

H0 : G(y) = F (y; β0) , (1)

where F (y; β) =
∫ y
−∞ f (z; β) dz and for some (unknown) value β0. Tests for H0 will

be detailed in the next Section. First, however, we assume the following, whether or

not H0 holds:

Assumption 1 :

(i) The density f (y; β) is measurable in y for every β ∈ B, a compact subset
of p−dimensional Euclidean space, and is continuous in β for every y.
(ii) G (y) is an absolutely continuous distribution function, E [log[g (y)] exists

and |log f (y, β)| < v (y) for all β where v (.) is integrable with respect to G (.) .

(iii) Let

I (β) = E

[
ln

[
g (y)

f (y, β)

]]
=

∫
y

ln

[
g (y)

f (y, β)

]
g (y) ,

then I (β) has a unique minimum at some β∗ ∈ B.
(iv) F (Y ; β) is continuously differentiable with respect to β, such that H (β) =

∂F (Yi, β) /∂β is finite, for all β in a closed ball of radius ε > 0, around β∗.

(v) Both log [g (y)] and log [f (y; β)] have r ≥ 2 derivatives in y which are

absolutely continuous and square integrable.
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Immediate fromWhite (1982, Theorems 2.1, 2.2 and 3.2) is that under Assumption

1(i-iii) β̂n exists and

β̂n = β∗ +O(n−1/2).

That is β̂n is a
√
n consistent Quasi maximum likelihood estimator for the pseudo-true

value β∗. Note that under H0 we have β∗ = β0. To proceed denote X̂i = F
(
Yi, β̂n

)
having mean value expansion,

X̂i = F (Yi, β∗) +
(
β̂n − β∗

)′
H
(
β+
)
,

where β+ lies on a line segment joining β̂n and β∗. As a consequence we can write

X̂i = X̄i + ei, (2)

where X̄i = F (Yi, β∗) and by construction and as a consequence of Assumption 1

(iv),

ei ∈ (−1, 1) & ei = Op

(
n−1/2

)
, (3)

that is ei is both bounded and degenerate.

Since the X̄i are IID denote their common distribution and density function by

U (x) = Pr
[
X̄ < x

]
and u (x) = dU (x) /dx, respectively. Here we will apply the

series density estimator of Crain (1974) and Barron and Sheu (1991) to consistently

estimate u (x) and thus quantiles of U (x) , from which the quantiles of G (y) can

be consistently recovered. Application of the density estimator requires choice of

approximating basis, here we choose the simplest polynomial basis, similar to Marsh

(2007).

We will approximate u (x) via the exponential family,

px(θ) = exp

{
m∑
k=1

θkx
k − ψm

}
, ψm (θ) = ln

∫ 1

0

exp

{
m∑
k=1

θkx
k

}
dx, (4)

where ψm (θ) is the cumulant function, defined so that
∫ 1

0
px(θ)dx = 1.

From Assumption 1 log [u (x)] has, at least, r−1 absolutely continuous derivatives

and its rth derivative is square integrable. According to Barron and Sheu (1991) there

exists a unique θ(m) = (θ1, .., θm)′ satisfying
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∫ 1

0

xkpx
(
θ(m)

)
dx = µk =

∫ 1

0

xku (x) dx for k = 1, 2, ...,m, (5)

and, as m → ∞, px
(
θ(m)

)
converges, in relative entropy, to u (x) at rate m−2r,

meaning that

EU

[
ln

(
u (x)

px
(
θ(m)

))] =

∫ 1

0

ln

(
u (x)

px
(
θ(m)

))u (x) dx = O
(
m−2r

)
,

as m→∞. Moreover, if a sample
{
X̄i

}n
1
were available then if m3/n→ 0 and letting

θ̄(m) be the unique solution to∫ 1

0

xkpx
(
θ̄(m)

)
dx =

∑n
i=1 X̄

k
i

n
for k = 1, 2, ...,m, (6)

then px
(
θ̄(m)

)
converges in relative entropy to u (x) ,

EU

[
ln

(
u (x)

px
(
θ̄(m)

))] =

∫ 1

0

ln

(
u (x)

px
(
θ̄(m)

))u (x) dx = Op

(m
n

+m−2r
)
,

see Theorem 1 of Barron and Sheu (1991).

Here, however, the sample
{
X̄i

}n
1
is not available, instead we only observe

{
X̂i

}n
1

and consequently have θ̂(m) as the unique solution to∫ 1

0

xkpx

(
θ̂(m)

)
dx =

∑n
i=1 X̂

k
i

n
for k = 1, 2, ...,m. (7)

Note that the equations (5), (6) and (7) define one-to-one mappings between the

sample space Ω(m) ∈ Rm and the parameter space Θ(m) ∈ Rm in the exponen-

tial family, see Barndorff-Nielsen (1978). We can therefore define three pairs of

m dimensional parameter and statistics, respectively as
{
θ(m) : µ(m)

}
,
{
θ̄(m) : X̄(m)

}
and

{
θ̂(m) : X̂(m)

}
, where µ(m) = {µk}

m
k=1, X̄(m) =

{
n−1

∑n
i=1 X̄

k
i

}m
k=1

and X̂(m) ={
n−1

∑n
i=1 X̂

k
i

}m
k=1

. Generically these mappings can be expressed via

{
θ∗(m) : {µ∗k}

m
1

}
where

∫ 1

0

xkpx
(
θ∗(m)

)
dx = µ∗k, k = 1, ..,m. (8)

The uniqueness of these mappings can be exploited in the following Theorem,

proved in Appendix A, to show that the density estimator px
(
θ̂(m)

)
converges in

relative entropy at the same rate as px
(
θ̄(m)

)
.
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Theorem 1 Let θ̂(m) denote the estimated exponential parameter determined by (7)

then under Assumption 1 and for m,n→∞ with m3/n→ 0,

EU

ln

 u (x)

px

(
θ̂(m)

)
 =

∫ 1

0

ln

 u (x)

px

(
θ̂(m)

)
u (x) dx = Op

(m
n

+m−2r
)
.

According to Theorem 1, in terms of the density estimator, at least, the effect

of observing
{
X̂1, .., X̂n

}
rather than {X1, .., Xn} is asymptotically negligible under

Assumption 1 and for either choice of basis. Moreover, if the goal were only nonpara-

metric estimation of the density, then the optimal choice of the dimension m is the

same as when no parameters are estimated, i.e. mopt ∝ n
1

1+2r (with a mini-max rate

of m∗n = O
(
n−1/5

)
, since r ≥ 2 by assumption). The optimal rate the rate of conver-

gence of the estimator remains of order Op

(
n−

2r
1+2r

)
. It should not be surprising that

the rate of convergence is unaffected when parameters are replaced by
√
n consistent

estimators. Theorem 1 thus generalises the results of Crain (1974) and Barron and

Sheu (1991), as summarized in Lemma 1 of Marsh (2007), by permitting estimation

of nuisance parameters as a preliminary step.

Additionally, we may recover the quantiles of Y from those implied by the approx-

imating series density estimator. This is captured in the following Corollary, which

follows immediately since convergence in relative entropy implies convergence in law.

Corollary 1 Let T̂n,m ∈ (0, 1) be a random variable having density function pt
(
θ̂(m)

)
where θ̂(m) is defined by (7), then

T̂n,m →
L
X̄,

as n,m → ∞,m3/n → 0. I.e. T̂n,m converges in law to the random variable

X̄.

2.2 Numerical Application of a Quantile Estimator

The consequence of Corollary 1 is that the quantiles associated with Tn,m converge

to those of Y, i.e. letting qA (π) , for 0 < π < 1, denote the quantile function of the

random variable A, we have

qF−1(T̂n,m;β̂n) (π) = qY (π) + op (1) . (9)
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The following set of experiments compare the Mean Square Errors (MSE) of es-

timators for the quantiles of Y based on those of T̂n,m for m = 3, 9 and for quantiles

calculated at the probabilities, π = .05, .25, .50, .75, .95. We also compare the accu-

racy of estimated quantiles when unknown parameters are estimated against cases

where they are not.

First suppose that Yi ∼ IID Y := t(4) but we estimate the Gaussian likelihood

implied by N (µ, σ2). Define

X∗i =
1

2
[1 + erf (Yi)] & X̂i =

1

2

[
1 + erf

(
Yi − ȳ
σ̂

)]
, i = 1, .., n,

the first obtained from the (misspecified) Gaussian model imposing zero mean and

unit variance, and the second from the Gaussian model with estimated mean and

variance.

Following the development above, as well as that of Barron and Sheu (1991), let

θ∗(m) and θ̂(m) and denote the estimated parameters for the exponential series density

estimators for the samples {X∗i }
n
1 and

{
X̂i

}n
1
, respectively. Let T ∗n,m have density

pt
(
θ∗(m)

)
(note that this is just straight forward application of the original set-up of

Barron and Sheu (1991)) and let T̂n,m have density pt
(
θ̂(m)

)
, as in Corollary 1. The

pairs of estimated quantiles for Y are then constructed as in

q∗Y (π) =
√

2 erf −1
(
2qT ∗n,m (π)− 1

)
and q̂Y (π) = ȳ + σ̂

√
2 erf −1

(
2qT̂n,m (π)− 1

)
.

The MSE of these quantiles, for each probability π, are presented in Appendix B,

Tables 1a for m = 3 and 1b for m = 9.

Next suppose that Yi ∼ IID Y := Γ (1.2, 1) and define

X∗i = 1− e−Yi & X̂i = 1− e−Yi/ȳ, i = 1, .., n.

Analogous to above let T ∗n,m and T̂n,m have densities pt
(
θ∗(m)

)
and pt

(
θ̂(m)

)
and so

pairs of estimated quantiles for Y are constructed via,

q∗Y (π) = − ln
(
1− qT ∗n,m (π)

)
and q̂Y (π) = −ȳn ln

(
1− qT̂n,m (π)

)
.

The MSE of these quantiles, for each probability π, are presented in Table 1c (m = 3)

and 1d (m = 9).
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The consistency of the quantiles obtained from, in particular, T̂m,n is illustrated

clearly in Table 1. More relevant, however, is that estimating the parameters of the

fitted model as a preliminary step produces quantile estimators that can be superior,

as the sample size becomes large, to those obtained by simply imposing parameter

values, as can be clearly seen by comparing the right and left panels in Table 1. Note

also that although the larger value of m yields more accurate quantile estimates in

these cases, this is at some computational cost and, in other cases, potential numerical

instability. Although this latter possibility is greatly mitigated, since the
{
X̂i

}n
i=1

are bounded.

3 Consistent, Asymptotically Pivotal Tests for Good-

ness of Fit

3.1 Main Results

Here we provide a test of the null hypothesis that the fitted likelihood is correctly

specified as in (1).The previous section generalized the Barron and Sheu (1991) series

density estimator and the resulting nonparametric likelihood ratio test then general-

izes the test of Marsh (2007).

To proceed note that when H0 is true then in Assumption 1, β∗ = β0 and in (2)

X̄i = F (Yi, β0) ∼ IIDU [0, 1] . Direct generalization of the principle in Marsh (2007)

means that (1) can be tested via,

H0 : lim
m→∞

θ(m) = 0(m), (10)

in the exponential family (4), where θ(m) is the solution to (5) and 0(m) is an m × 1

vector of zeros.

The likelihood ratio test of Portnoy (1988) applied via the density estimator of

Crain (1974) and Barron and Sheu (1991) obtained from the sample
{
X̂1, .., X̂n

}
is

λ̂m = 2
n∑
i=1

log

pX̂i
(
θ̂(m)

)
pX̂i
(
0(m)

)
 = 2n

[
θ̂
′
(m)X̂(m) − ψm

(
θ̂(m)

)]
,
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The null hypothesis is rejected for large values of λ̂m.

Under any fixed alternative H1 : G (y) 6= F (y; β0) the distribution of X̄i =

Fi (Yi; β∗) will not be uniform, i.e. θ(m) 6= 0(m). For every fixed alternative distribution

for Y there is a unique alternative distribution for X on (0, 1) and associated with

that distribution will be another consistent density estimator given by say, px(θ
1
(m)). In

practice, of course, θ1
(m) will be neither specified nor known. The following Theorem,

again proved in Appendix A, gives the asymptotic distribution of the likelihood ratio

test statistic both under the null hypothesis (10) and also demonstrates consistency

against any such fixed alternative.

Theorem 2 Suppose that Assumption 1 holds, we construct
{
X̂i

}n
i=1
as described in

(2), and we let m,n→∞ with m3/n→ 0, then:

(i) Under the null hypothesis, H0 : G (y) = F (y; β0) ,

Λ̂m =
λ̂m −m√

2m
→d N(0, 1).

(ii) Under any fixed alternative H1 : G (y) 6= F (y; β) , for any β, and for any finite

κ,

Pr
[
Λ̂m ≥ κ

]
→ 1.

Theorem 2 generalizes the test of Marsh (2007) establishing asymptotic normality

and consistency against fixed alternatives when β has to be estimated. Via Claeskens

and Hjort (2004) it is demonstrated that as n → ∞ with m3/n → 0, then the

test Λ̄m (i.e. the, here, unfeasible test based on the notional sample
{
X̄i

}n
1
) has

power against local alternatives parametrized by θ(m) − 0(m) = c
√√

m
n
with c′c = 1.

Heuristically, implicit from the proof of Theorem 2 the properties of the test follow

from; Λ̂m − Λ̄m = Op

(√
m
n

)
, and so Λ̂m has power against that same rate of local-

alternatives.

3.2 Testing for Normality or Exponentiality

The likelihood ratio test Λ̂m is asymptotically pivotal, specifically standard normal.

Competitor tests, such as KS, CM and AD (these tests are mathematically detailed
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in Stephens (1976) or Conover (1999)) are not pivotal, although asymptotic critical

values are readily available for all cases of testing for Exponentiality and Normality.

First we will demonstrate that indeed asymptotic critical values for nonparametric

likelihood tests do have close to nominal size for large values of n and m. We are

interested in testing the null hypotheses

HE
0 : Y ∼ Exp (1) & HN

0 : Y ∼ N (0, 1) ,

with nominal significance levels 10%, 5% and 1% and based on sample sizes n =

25, 50, 100 and 200. Letting ȳn and σ̂2
n be the estimated mean and variance (i.e.

β̂n = ȳn for HE
0 and β̂n =

(
ȳn, σ̂

2
n

)′
for HN

0 ) then the tests are constructed from the

mapping to (0, 1) ;

X̂i = 1− e−Yi/ȳn , (11)

to test HE
0 , and

X̂i =
1

2

[
1 + erf

(
Yi − ȳn
σ̂n

)]
, (12)

to test HN
0 .

Table 2 in Appendix B provides rejection frequencies for the tests constructed for

values of m = 3, 5, 7, 9, 11, 17. The left hand panel of numbers correspond to testing

HE
0 and the right to HN

0 , critical values at the 1%, 5% and 10% significance level

from the standard normal distribution are used throughout.

The purpose of these experiments is only to demonstrate that the finite sample

performance of the tests clearly improves as both n and m increase, as predicted by

Theorem 2(i). Note the use of three significance levels to better illustrate convergence

for large values of both m and n.

Although competitor tests are not asymptotically pivotal (and therefore no com-

parisons under the null are made) instead Table 3 compares the 5% size corrected

powers of two variants of the tests, with m = 3 and m = 9 with the three direct

competitors for a single sample size of n = 100. Tables 3a and 3b present rejec-

tion frequencies for these tests and the KS, CM and AD tests for testing HN
0 under

alternatives that the data is instead drawn from,

Ha
1 : Y ∼ t(v), Hb

1 : Y ∼ χ2
(v) − v.
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Tables 3c, 3d and 3e, consider alternatives where the moments of the data are not

correctly specified, i.e.

Hc
1 : Yi|Yi−1 ∼ N (vYi−1, 1) ,

Hd
1 : Yi|Yi−1 ∼ N

(
0, 1 + vY 2

i−1

)
,

He
1 : Yi ∼ N (v × 1 (i > bn/2c) , 1) ,

where 1 (.) denotes the indicator function. These latter three alternatives represent

simplistic variants of common types of misspecification in econometric or financial

data, i.e. misspecification of a conditional mean, variance or the possibility of a

break in the mean (here half way through the sample). Note that these models imply

that (2) will not be IID on (0, 1), but ergodicity implies the sample moments will still

converge. Finally, table 3f considers instead testing HE
0 against the alternative

Hf
1 : Y ∼ Γ (1, v) .

In each table the left hand panel corresponds to the case where we construct the

test imposing the parameter values specified in the null rather than estimating them

(i.e. using the, unfeasible, test of Marsh (2007)). The right hand panel has the

rejection frequencies for tests based on estimated values, i.e. using (11) and (12),

respectively.

The outcomes in Table 3 imply the following broad conclusions. The nonpara-

metric likelihood test based Λ̂3 is the most powerful almost uniformly, across all al-

ternatives and whether parameters are estimated or not. The observed lack of power

of the most commonly used test, KS, is particularly evident, it is consistently the

poorest performing test. The other edf based tests and Λ̂9 are broadly comparable in

terms of their rejection frequencies, although AD is perhaps on average slightly more

powerful and CM less powerful.

3.3 Bootstrap Critical Values

The proposed tests require a choice of dimension, m. The results presented in Tables

2 and 3 suggest an inevitable compromise, larger values of m imply tests having size

closer to nominal, while smaller values of m imply tests having greater power. In
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order to overcome this compromise we can instead consider the properties of these

tests when bootstrap critical values are instead employed.

For these tests the bootstrap procedure is as follows: On obtaining the MLE β̂n

and calculating Λ̂3, as described above;

1. Generate bootstrap samples Y b
i ∼ IID F

(
y; β̂n

)
for i = 1, .., n.

2. Estimate, via ML, β̂
b

n and construct X̂
b
i = F

(
Y b
i ; β̂

b

n

)
for i = 1, .., n.

3. Repeat 1 and 2 B times, obtaining bootstrap versions of the test Λ̂b
3.

4. Order the Λ̂b
3 so the bootstrap critical value at size α is κB = Λ̂

b(1−α)B/100c
3 .

5. Denote the indicator function ÎΛ
B =

{
1 if Λ̂3 > κBα

0 if Λ̂3 ≤ κBα

}
.

We then reject H0 if ÎΛ
B = 1. First, however, the required asymptotic justification for

the bootstrap is automatic given that Λ̂m →d N (0, 1) giving the following corollary

to Theorem 2.

Corollary 2 Under Assumption 1 and if n,m→∞ with m3/n→ 0, then

i) Pr
[
ÎΛ
B = 1 |H0

]
→ α,

ii) Pr
[
ÎΛ
B = 1 |H1

]
→ 1.

Here we will compare the performance of bootstrap critical values for Λ̂3 with those

of CM and AD by repeating many of the experiments of Kojadinovic and Yan (2012).

In this sub-section all experiments described in this sub-section are performed on the

basis of B = 200 bootstrap replications. All nuisance parameters were estimated via

maximum likelihood using Mathematica 8’s own numerical optimization algorithm.

The first set of experiments mimic those presented in Kojadinovic and Yan (2012,

Table 1). Specifically we define the following Normal, Logistic, Gamma and Weibull

Distributions;

N∗ ∼ N (10, 1) , L∗ ∼ L (10, 0.572) ,

Γ∗ ∼ Γ (98.671, 1/9.866) & W ∗ ∼ W (10.618, 10.452) . (13)

The specific parameter values for L∗,Γ∗ and W ∗ are chosen to minimize relative

entropy (I (β) in Assumption 1(iii)) for each family to the distribution of N∗. Sample

sizes of n = 25, 50, 100, 200 are used in the experiments described below.
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Table 4a contains the finite sample size of each test. It is clear that, under H0, the

parametric bootstrap provides highly accurate critical values for all of the tests. On

size alone there is nothing to choose between them. It is however, worth reporting,

the computational time of each bootstrap critical value. For the Λ̂3 test critical values

were obtained after 2.0 and 3.2 seconds for sample sizes n = 100 and 200, respectively.

The times for the other tests were similar to each other, taking around 0.9 and 2.9

seconds, respectively.

Table 4b and 4c contain the finite sample rejection frequencies under various

alternative hypotheses, covering all pairwise permutations of the distributions in (13).

As with the finite sample sizes it is not possible to pick a clear winner, moreover where

they overlap the results are in line with those of Kojadinovic and Yan (2012). There

is, of course, no uniformly most powerful test of goodness-of-fit so it is not surprising

that the power of Λ̂3 is not always the largest. However its performance over this

range of nulls and alternatives is far less volatile and in no circumstance is the test

dominated by any of the other two.

4 Conclusions

This paper has generalized the series density estimator of Barron and Sheu (1991) to

cover the case where parameters are estimated in the context of misspecified models.

The nonparametric likelihood ratio tests of Marsh (2007) can be thus extended to

cover the case of estimated parameters. The general aim has been to provide a testing

procedure which overcomes the three main criticisms of edf based tests, i.e. that they

are not pivotal, have low power, and offer no direction in case of rejection.

Instead the tests of this paper are shown to be asymptotically standard normal and

they have power advantages over edf tests, whether critical values are size corrected

or obtained by a consistent bootstrap. This suggests the proposed tests will be much

simpler to generalize to the settings of Bai (2003) or Corradi and Swanson (2006).

Finally, in the event of rejection, the series density estimator upon which the tests

are built may be employed to consistently estimate the quantiles of the density from

which the sample is taken.
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A Appendix A: Proofs

In order to avoid any ambiguity throughout this appendix the order of magnitude

symbol O(.) is defined by,

an,m = O (bn,m)⇐⇒ lim
m,n→∞ ; m3/n→0

an,m
bn,m

≤ c1 <∞,

and analogously for the probabilistic versions Op(.) and op(.). If the quantity un-

der scrutiny does not depend upon the dimension m then the condition m3/n → 0

becomes redundant.

Proof of Theorem 1:

First recall the definitions note ,

X̂(m) =

{∑n
i=1 X̂

k
i

n

}m

k=1

, X̄(m) =

(∑n
i=1X

k
i

n

)′
and µ(m) = E

[
X̄(m)

]
.

The Euclidean distance between the two polynomial suffi cient statistics satisfies,∣∣∣X̂(m) − X̄(m)

∣∣∣ =

∣∣∣∣∣ 1n
(

n∑
i=1

(
X̂i − X̄i

)
, ...,

n∑
i=1

(
X̂m
i − X̄m

i

))′∣∣∣∣∣
≤

m∑
j=1

∣∣∣∣∣ 1n
n∑
i=1

(
X̂j
i − X̄

j
i

)∣∣∣∣∣ .
Taking the jth element and noting X̂i = Xi + ei,then

1

n

n∑
i=1

(
X̂j
i − X̄

j
i

)
=

1

n

n∑
i=1

((
X̄i + ei

)j − X̄j
i

)
=

1

n

n∑
i=1

j∑
s=0

(
j!

s!(j − s!)X̄
j−s
i esi − X̄

j
i

)

=
1

n

n∑
i=1

j∑
s=1

j!

s!(j − s)!X̄
j−s
i esi .

Since X̄i ∈ (0, 1) while, as in (3), ei = Op(n
−1/2) and ei ∈ (−1, 1) then,

j!

s!(j − s)!X̄
j−s
i esi ≤

js

s!
cj−s1 esi =

js

s!
cj−s1 Op

(
n−s/2

)
, (14)

where c1 < 1. For finite j (14) is Op

(
n−s/2

)
while as j → ∞ (14) is o (1)Op

(
n−s/2

)
and so,

sup
j∈N

j!

s!(j − s)!X̄
j−s
i esi = Op

(
n−s/2

)
,
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implying that
j∑
s=1

j!

s!(j − s)!X̄
j−s
i esi = Op(n

−1/2),

uniformly in j, and hence,

1

n

n∑
i=1

(
X̂j
i − X̄

j
i

)
=

1

n

n∑
i=1

(
j∑
s=1

j!

s!(j − s!)X̄
j−s
i esi

)
= Op(n

−1/2).

Consequently, and also from the definition of Euclidean distance, we have,

∣∣∣X̂(m) − X̄(m)

∣∣∣ =

√√√√ m∑
j=1

(
1

n

n∑
i=1

(
X̂j
i − X̄

j
i

))2

= Op

(√
m

n

)
. (15)

Consider now µ(m), then from the triangle inequality,∣∣∣X̂(m) − µ(m)

∣∣∣ ≤ ∣∣X̄(m) − µ(m)

∣∣+
∣∣∣X̂(m) − X̄(m)

∣∣∣ = Op

(√
m

n

)
, (16)

which follows from (15) and noting the same order of magnitude applies for the first

distance, as in Barron and Sheu (1991, eq. 6.5), which represents the distance in the

case that the sequence
(
X̄j
i

)n
1
were observed directly.

We thus have
∣∣∣X̂(m) − µ(m)

∣∣∣ = Op

(√
m
n

)
and

∣∣∣X̂(m) − µ(m)

∣∣∣ = Op

(√
m
n

)
, so that

utilizing the respective MLEs and extending the decomposition of the Kullback-

Leibler divergence of Barron and Sheu (1991, eq. 6.9) we obtain,

EU

[
ln

(
u(x)

px(θ̂(m))

)]
= EU

[
ln

(
u(x)

px(θ(m))

)]
+ EU

[
ln

(
px(θ(m))

px(θ̄(m))

)]

+EU

[
ln

(
px(θ̄(m))

px(θ̂(m))

)]
. (17)

Given that Assumption 1 assures the required conditions of Barron and Sheu (1991,

Theorem 1) are met then the first two terms in (17) are, respectively, O(m−2r) and

Op(m/n), noting that under Assumption 1, log[u(x)] ∈ W r
2 . Application of Barron

and Sheu (1991, Lemma 5), which holds for any two values in Ωm ⊂ Rm, here uniquely
defined by equations (6) and (7), implies that

O

(
EU

[
ln

(
px(θ̄(m))

px(θ̂(m))

)])
= Op

(∣∣∣X̂(m) − X̄(m)

∣∣∣2) = Op

(m
n

)
,
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and hence

EU

[
ln

(
u(x)

px(θ̂(m))

)]
= O(m−2r) +Op

(m
n

)
+Op

(m
n

)
= Op

(
m−2r +

m

n

)
,

as required.

Proof of Theorem 2:

Consider the problem of testing H0 : θ(m) = 0(m) against the alternative H1 :

θ(m) 6= 0(m) when n,m → ∞, but m3/n → 0. For notational convenience and com-

parisons with Portnoy (1988) and Barron and Sheu (1991), expressions involving θ(m)

will not be immediately resolved.

Part (i): To proceed we have defined,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))]
,

where θ̂(m) solves (7), or equivalently,

ψ′m

(
θ̂(m)

)
=
∂ψm

(
θ(m)

)
∂θ(m)

∣∣∣∣∣
θ(m)=θ̂(m)

= X̂(m).

Similarly the value 0(m) defines,

ψ′m
(
0(m)

)
= µ(m) = E(X̄(m)).

The exponential log-likelihood is strictly convex so that the mapping, ψ′m
(
θ(m)

)
=

µ(m) is one-to-one between the parameter space Θm ⊂ Rm and sample space Ωm ⊂
Rm, similar to (8). Application of Barron and Sheu (1991, eq. 5.6) and also (16) thus
gives,

Op

(∣∣∣θ̂(m) − 0(m)

∣∣∣) = Op

(∣∣∣X̂(m) − µ(m)

∣∣∣) = Op

(√
m

n

)
. (18)

As a consequence of both (18) and (16) we have that,

Op

(∣∣∣θ̂(m) − 0(m)

∣∣∣) = Op

(∣∣θ̄(m) − 0(m)

∣∣) & Op

(∣∣∣X̂(m) − µ(m)

∣∣∣) = Op

(∣∣X̄(m) − µ(m)

∣∣) ,
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and note that the expansions provided in the provided in the proofs of Theorems 3.1

and 3.2 of Portnoy (1988) apply for any two pairs of values, here
(
θ̄(m), 0(m)

)
and(

X̄(m), µ(m)

)
.

To continue, noting expectations under the null hypothesis can be written here

as EU [.] since X̄ ∼ U := U [0, 1], the uniform distribution with density p0(m)
(x) = 1,

we then have expansions analogous to Portnoy (1988, eq. 3.5 and 3.6),

|θ̂(m) − 0(m)|2 =
(
θ̂(m) − 0(m)

)′
x̂(m) −

1

2
EU0

[(
θ̂(m) − 0(m)

)′
U

]2

+Op

(
m2

n2

)
,

and (19)(
θ̂(m) − 0(m)

)′
x̂(m) = |X̂(m)|2 −

1

2
EU0

[((
θ̂(m) − 0(m)

)′
U

)2

X̂ ′(m)U

]
+Op

(
m2

n2

)
.

(20)

Subtracting (20) from (19) and applying arguments identical to those given below

Portnoy (1988, Theorem 3.1, eq. 3.7) yields,

|θ̂(m) − θ(m) − X̂(m)| = Op

(m
n

)
.

From the definition of the likelihood ratio test we therefore have,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))]
= n

[
|X̂(m)|2 − |θ̂(m) − θ0

(m) − X̂(m)|2 +
1

6
Eθ0

((
θ̂(m) − 0(m)

)′
U

)3
]

+Op

(
m2

n

)
,

(21)

as in Portnoy (1988, eq. 3.12). Let ē = X̂(m)− X̄(m) then from the proof of Theorem

1, we have

|X̂(m)|2 = |X̄(m) + ē|2 = |X̄(m)|2 +Op

(m
n

)
. (22)

Now define the m× 1 random variable Vm = ψ
′′

m

(
0(m)

)−1/2 (
x̄− ψ′m

(
0(m)

))
, hav-

ing density pV
(
θV(m)

)
, so that E [V ] = 0(m) and V ar[Vm] = Im. Since the likelihood

ratio statistic is parameterization invariant the likelihood ratio test based on obser-

vations on Vm would be identical to that based on X̄(m). Rather than defining a

new triple of values, analogous to those in (5), (6) and (7) , in both the parameter
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space Θm (note that in particular the hypothesized value would no longer satisfy

θ(m) = 0(m)) and sample space Ωm we will instead, and without any loss of generality

assume a parameterization in which both E
[
X̄(m)

]
= 0 and V

[
X̄(m)

]
= Im. Note,

however, that it is the unobserved X̄ which is assumed to be standardized not the

observed X̂(m).

In this parameterization the asymptotic distribution of first |X̄(m)|2 and hence
|X̂(m)|2 (via (22)) and then via (21) for Λ̂m = λ̂m−m√

2m
follows exactly as in Portnoy

(1988, Theorem 4.1).

Part (ii): Under any fixed alternative the density of X̄i = F (Yi; β∗) is

u1 (x) =
g (F−1 (x; β∗))

f (F−1 (x; β∗))
,

and so let θ1
(m) be the unique solution to,∫ 1

0

xj ph
(
θ1

(m)

)
dx =

∫ 1

0

hj u1 (x) dx ; j = 1, ..,m. (23)

The uniqueness of solutions to (23) imply θ1
(m) 6= 0(m).

To take the least favorable case, define

θ1
(m) =

(
θ1

1, .θ
1
2, .., θ

1
m

)′
and suppose that θ1

k 6= 0 for some finite k but that θ1
j = 0 for all j 6= k. The series

density estimator is consistent for θ1
(m), under H1, in that

∣∣∣θ̂(m) − θ1
(m)

∣∣∣ = Op

(√
m
n

)
,

analogous to (18) above, and so we can write,

n
(
θ̂(m) − 0(m)

)′
X̂(m) = n

[(
θ̂(m) − θ1

(m)

)′
x̂(m) +

(
θ1
k

) 1

n

n∑
i=1

φk

(
X̂i

)]
.

We can therefore write the likelihood ratio as

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))]
= 2n

[(
θ̂(m) − θ1

(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
θ1

(m)

))]
+2n

[(
θ1
k − θ0

k

) 1

n

n∑
i=1

X̂k
i −

(
ψm
(
θ1

(m)

)
− ψm

(
0(m)

))]

= λ̂
1

m + 2n

[(
θ1
k − θ0

k

) 1

n

n∑
i=1

X̂k
i −

(
ψm
(
θ1

(m)

)
− ψm

(
0(m)

))]
,
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where λ̂
1

m is the likelihood ratio for testing H1 : θ(m) = θ1
(m).

Thus, under H1, we can write

Λ̂m =
λ̂m −m√

2m
=
λ̂

1

m −m√
2m

+
2n
[(
θ1
k − θ0

k

)
1
n

∑n
i=1 X̂

k
i −

(
ψm
(
θ1

(m)

)
− ψm

(
0(m)

))]
√

2m
.

Immediate from Part (i) of this theorem is that as m,n→∞, with m3/n→ 0,

λ̂
1

m −m√
2m

→d N (0, 1) ,

i.e.
(
λ̂

1

m −m
)
/
√

2m is Op (1) . However, since ψm (.) is a uniquely defined cumulant

function then

ψm
(
θ1

(m)

)
− ψm

(
θ0

(m)

)
6= 0,

and since 0 < X̂i < 1 then 1
n

∑n
i=1 X̂

k
i = Op (1) and positive. Consequently,

Λ̂m = Op (1) +Op

(
n√
m

)
→∞,

since m3/n→ 0 and hence Pr
[
Λ̂m > κ

]
→ 1, as required.
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B Appendix B: Tables

Table 1: Mean Square Errors of Quantiles

Table 1a: MSE of estimated quantiles for Y ∼ t(4), m = 3.

q∗Y T q∗Y T q∗Y T q∗Y T q̂Y T q̂Y T q̂Y T q̂Y T

n

π
25 50 100 200 25 50 100 200

0.05 .1266 .0906 .0774 .0718 .1309 .0731 .0506 .0389

0.25 .0450 .0227 .0127 .0066 .0446 .0218 .0119 .0058

0.50 .0397 .0183 .0101 .0049 .0348 .0159 .0087 .0042

0.75 .0442 .0222 .0126 .0074 .0445 .0215 .0117 .0066

0.95 .1293 .0976 .0768 .0693 .1333 .0806 .0505 .0375

Table 1b: MSE of estimated quantiles for Y ∼ t(4), m = 9.

q∗Y T q∗Y T q∗Y T q∗Y T q̂Y T q̂Y T q̂Y T q̂Y T

n

π
25 50 100 200 25 50 100 200

0.05 .1408 .1270 .1179 .1159 .1060 .0551 .0354 .0240

0.25 .0308 .0187 .0139 .0116 .0513 .0244 .0138 .0064

0.50 .0175 .0089 .0053 .0023 .0411 .0182 .0105 .0052

0.75 .0313 .0194 .0138 .0113 .0512 .0253 .0123 .0065

0.95 .1441 .1271 .1186 .1155 .1077 .0599 .0344 .0228
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Table 1c: MSE of estimated quantiles for Y ∼ Γ (1.2, 1), m = 3.

q∗Y Γ q∗Y Γ q∗Y Γ q∗Y Γ q̂Y Γ q̂Y Γ q̂Y Γ q̂Y Γ

n

π
25 50 100 200 25 50 100 200

0.05 .0025 .0014 .0012 .0012 .0035 .0012 .0005 .0004

0.25 .0157 .0083 .0046 .0027 .0202 .0099 .0049 .0022

0.50 .0451 .0235 .0127 .0077 .0563 .0246 .0120 .0061

0.75 .0890 .0487 .0279 .0188 .1381 .0601 .0348 .0172

0.95 .3088 .2109 .1644 .1449 .0538 .2364 .1378 .0709

Table 1d: MSE of estimated quantiles for Y ∼ Γ (1.2, 1), m = 9.

q∗Y Γ q∗Y Γ q∗Y Γ q∗Y Γ q̂Y Γ q̂Y Γ q̂Y Γ q̂Y Γ

n

π
25 50 100 200 25 50 100 200

0.05 .0006 .0004 .0003 .0003 .0002 .0001 .0001 .0000

0.25 .0094 .0065 .0051 .0042 .0033 .0017 .0009 .0004

0.50 .0494 .0375 .0335 .0310 .0156 .0073 .0037 .0019

0.75 .2085 .1676 .1583 .1532 .0626 .0276 .0146 .0078

0.95 .4456 .3352 .2380 .1395 .2180 .1093 .0527 .0267
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Table 2: Sizes of tests for both HE
0 and HN

0 for different m and n.

n = 25

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .035 .016 .003 .030 .013 .003

5 .050 .025 .004 .041 .019 .002

7 .062 .033 .006 .049 .024 .004

9 .064 .034 .006 .051 .023 .004

13 .069 .037 .006 .050 .028 .009

17 .063 .031 .005 .055 .023 .003

n = 50

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .044 .019 .003 .034 .017 .005

5 .047 .023 .005 .041 .023 .004

7 .063 .030 .005 .051 .027 .004

9 .067 .032 .006 .059 .028 .004

13 .074 .035 .004 .065 .031 .005

17 .069 .029 .006 .066 .029 .006
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n = 100

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .051 .026 .004 .035 .019 .003

5 .056 .028 .006 .043 .021 .004

7 .068 .035 .008 .056 .028 .005

9 .073 .040 .007 .065 .031 .005

13 .085 .047 .008 .075 .038 .007

17 .091 .043 .009 .081 .041 .009

n = 200

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .051 .023 .005 .045 .021 .004

5 .061 .037 .006 .053 .029 .007

7 .071 .043 .008 .063 .031 .006

9 .081 .045 .011 .078 .040 .006

13 .095 .047 .009 .086 .045 .009

17 .097 .048 .011 .095 .049 .011
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Table 3: Rejection frequencies under various alternatives. The left hand pan-

els corresponds parameter values imposed, while for the right had panels they are

estimated.

Table 3a: Power H0 : Y ∼ N (0, 1) vs. H1 : Y ∼ t(v).

v 4 6 8 10 12 4 6 8 10 12

Λ̂3 .935 .705 .386 .267 .114 .605 .294 .166 .127 .097

Λ̂9 .856 .563 .254 .159 .087 .494 .241 .133 .111 .081

KS .614 .206 .091 .055 .049 .217 .114 .075 .059 .052

CM .722 .309 .165 .092 .061 .296 .132 .087 .075 .066

AD .767 .361 .182 .115 .065 .530 .240 .139 .103 .090

Table 3b: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ χ2
(v) − v.

v 12 20 28 36 44 12 20 28 36 44

Λ̂3 .859 .660 .577 .476 .422 .572 .274 .189 .146 .114

Λ̂9 .796 .641 .546 .427 .377 .388 .189 .158 .111 .096

KS .717 .568 .443 .388 .350 .238 .151 .106 .093 .075

CM .837 .663 .563 .463 .403 .274 .176 .131 .100 .091

AD .843 .647 .529 .439 .388 .286 .165 .117 .098 .083

Table 3c: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N (vYi−1, 1) .

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂3 .694 .592 .386 .161 .093 .902 .736 .510 .271 .101

Λ̂9 .688 .483 .351 .141 .071 .847 .683 .461 .235 .091

KS .592 .458 .254 .091 .053 .579 .359 .207 .122 .058

CM .690 .585 .362 .140 .066 .648 .448 .273 .162 .083

AD .691 .580 .371 .138 .057 .866 .704 .471 .242 .089
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Table 3d: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
0, 1 + vY 2

i−1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂P
3 .722 .514 .276 .116 .079 .869 .729 .493 .225 .106

Λ̂9 .704 .503 .263 .113 .074 .864 .740 .460 .225 .094

KS .568 .361 .161 .063 .052 .509 .350 .201 .112 .080

CM .709 .497 .255 .109 .075 .511 .352 .185 .115 .073

AD .708 .494 .246 .088 .054 .849 .721 .451 .215 .088

Table 3e: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
v1t>bT/2c, 1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂3 .754 .563 .349 .196 .079 .653 .495 .274 .141 .080

Λ̂9 .738 .525 .311 .173 .064 .592 .442 .256 .139 .066

KS .256 .189 .127 .088 .052 .542 .349 .185 .078 .059

CM .362 .291 .164 .103 .066 .601 .445 .260 .130 .078

AD .750 .539 .321 .185 .075 .625 .467 .258 .111 .067

Table 3f: Power H0 : Yi ∼ Exp [1] vs. H1 : Yi ∼ Γ (v, 1) .

v 1.10 1.15 1.20 1.25 1.30 1.10 1.15 1.20 1.25 1.30

Λ̂3 .115 .121 .238 .305 .428 .191 .298 .585 .769 .866

Λ̂9 .103 .106 .179 .277 .398 .177 .285 .550 .712 .825

KS .066 .069 .136 .200 .252 .096 .193 .404 .616 .747

CM .094 .099 .179 .237 .343 .174 .280 .551 .732 .853

AD .097 .109 .227 .303 .419 .182 .299 .589 .770 .884
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Table 4a: Rejection Frequencies at 5% level under

the respective null hypotheses

i) HN
0 : Y ∼ N∗

n 25 50 100 200

Λ̂3 .064 .065 .058 .044

CM .064 .058 .057 .054

AD .060 .059 .062 .058

ii) HΓ
0 : Y ∼ Γ∗

n 25 50 100 200

Λ̂3 .062 .056 .049 .046

CM .068 .060 .065 .061

AD .065 .055 .052 .061

iii) HW
0 : Y ∼ W ∗

n 25 50 100 200

Λ̂3 .067 .055 .055 .047

CM .063 .058 .056 .058

AD .055 .066 .065 .057

iv) HL
0 ∼ L∗

n 25 50 100 200

Λ̂3 .065 .062 .050 .042

CM .071 .066 .059 .055

AD .062 .054 .055 .055
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Table 4b: Rejection Frequencies at 5% level under various alternatives

i) H0 : Y ∼ N∗ vs. H1 : Y ∼ Γ∗

n 25 50 100 200

Λ̂m .069 .088 .116 .175

CM .078 .094 .123 .185

AD .069 .090 .108 .161

ii) H0 : Y ∼ Γ∗ vs. H1 : Y ∼ N∗

n 25 50 100 200

Λ̂m .068 .085 .099 .129

CM .055 .066 .079 .088

AD .076 .085 .092 .113

iii) H0 : Y ∼ N∗ vs. H1 : Y ∼ W ∗

n 25 50 100 200

Λ̂m .196 .364 .584 .897

CM .094 .192 .465 .776

AD .183 .315 .550 .806

iv) H0 : Y ∼ W ∗ vs. H1 : Y ∼ N∗

n 25 50 100 200

Λ̂m .101 .164 .351 .690

CM .107 .233 .388 .580

AD .098 .164 .334 .602

v) H0 : Y ∼ N∗ vs. H1 : Y ∼ L∗

n 25 50 100 200

Λ̂m .173 .249 .393 .458

CM .111 .152 .212 .358

AD .131 .190 .246 .417

vi) H0 : Y ∼ L∗ vs. H1 : Y ∼ N∗

n 25 50 100 200

Λ̂m .046 .055 .065 .101

CM .036 .054 .073 .109

AD .041 .046 .070 .108
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Table 4c: Rejection Frequencies at 5% level under various alternatives

i) H0 : Y ∼ Γ∗ vs. H1 : Y ∼ L∗

n 25 50 100 200

Λ̂m .091 .122 .188 .253

CM .078 .081 .122 .193

AD .105 .128 .174 .257

ii) H0 : Y ∼ Γ∗ vs. H1 : Y ∼ W ∗

n 25 50 100 200

Λ̂m .285 .448 .709 .937

CM .320 .476 .781 .970

AD .155 .306 .638 .938

iii) H0 : Y ∼ W ∗ vs. H1 : Y ∼ Γ∗

n 25 50 100 200

Λ̂m .197 .355 .719 .945

CM .200 .315 .534 .836

AD .117 .219 .482 .851

iv) H0 : Y ∼ W ∗ vs. H1 : Y ∼ L∗

n 25 50 100 200

Λ̂m .172 .327 .620 .867

CM .215 .343 .542 .797

AD .159 .277 .500 .816

v) H0 : Y ∼ L∗ vs. H1 : Y ∼ Γ∗

n 25 50 100 200

Λ̂m .059 .082 .120 .152

CM .059 .081 .130 .161

AD .051 .059 .101 .148

vi) H0 : Y ∼ L∗ vs. H1 : Y ∼ W ∗

n 25 50 100 200

Λ̂m .243 .343 .592 .892

CM .124 .241 .519 .882

AD .204 .325 .583 .912
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