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Abstract—Fuzzy logic has been widely used to model human
reasoning thanks to its inherent capability of handling uncer-
tainty. In particular, the introduction of Type-2 fuzzy sets added
the possibility of expressing uncertainty even on the definition of
the membership functions. Type-2 sets, however, don’t pose any
restrictions on the continuity or convexity of their embedded sets
while these properties may be desirable in certain contexts. To
overcome this problem, Constrained Type-2 fuzzy sets have been
proposed. In this paper, we focus on Interval Constrained Type-2
sets to see how their unique structure can be exploited to build a
new inference process. This will set some ground work for future
developments, such as the design of a new defuzzification process
for Constrained Type-2 fuzzy systems.

I. INTRODUCTION

One of the main characteristics of fuzzy sets (FS), intro-
duced in 1965 by Zadeh [1], was the possibility of using
them to build systems that could be designed in a way that
was very close to human reasoning. The introduction of the
membership degrees as values in [0, 1], made the modelling of
fuzzy systems (FSMs) easy even for non-computer scientists
nor logicians thanks to the possibility of “computing with
words” [2]. In fact, in many contexts, it is possible to model
membership functions (MFs) on the basis of concepts express-
ible with words. A typical example is given by the height,
from which we could extract MFs from human concepts such
as low, medium and high.

One of the things that makes “computing with words”
possible, is the fuzziness of the concepts that can be modelled
through the MFs. However, the amount of uncertainty that
can be handled by a Type-1 (T1) set, i.e. ‘standard’ fuzzy
logic, is limited. Specifically, there is no uncertainty about the
membership degrees at all, so in that sense, T1 fuzzy logic
is very crisp. For this reason, Zadeh himself [3] introduced
Type-2 (extendable to Type-n) fuzzy sets. They provide a
higher degree of fuzziness by taking the uncertainty to the
level of the definition of the MFs. In fact, in Type-2 FSMs,
the membership degree is no longer a (crisp) value in [0, 1]
but a T1 fuzzy set instead.

Unfortunately, the capability of handling more uncertainty
comes at a cost: T2 sets require three dimensions to be repre-
sented, which makes them hard to draw, and all of the main
operations on them have a higher computational cost compared
to their T1 counterpart. Recently, a specific kind of T2 sets
have been commonly used in real applications: interval T2
(IT2) [4] fuzzy sets. They pose some mathematical limitations
on the third dimension of a T2 set and therefore identify a
subset of all the possible general T2 sets. Specifically, the

value of the third dimension is set to be one for all the points in
the support set and zero for the others. By doing this, the third
dimension can be dropped and the IT2 set is fully identified
by its footprint of uncertainty (FOU), i.e. the area contained
between the lower-bound and upper-bound MFs. (Fig.1).

Fig. 1. Possible FOU for an IT2 Gaussian representing the concept of medium
height (picture from [5])

Another key notion in fuzzy set theory is the concept of
embedded set (ES). Intuitively, they represent (in the T2 case)
a possible path along the FOU of the set they belong to.
Even though they are widely used for many operations such as
the centroid defuzzification [6], there isn’t a clear relationship
between the shape of the embedded set and the upper-bound
or lower-bound functions.

In [5] the authors claim that the general definition of
a T2 or IT2 FS, is too generic in certain contexts since
there are no conditions on the MFs. As a consequence, the
resulting FOUs and ESs that can be completely unrelated to
the modelling of the concepts that they should represent. To
overcome these limitations, they introduce a new kind of set,
named Constrained Type-2 (CT2) fuzzy sets, by imposing the
concepts of shape coherency and explicit variability on the
FOU and the ES.

A similar concept was also introduced in [7]. In this paper
the author defines a new kind of T2 FS in which only the non-
convex and normal embedded sets are considered acceptable.
On the basis of that, a new constrained representation theorem
and defuzzification process is derived.

The aim of this work is to explore this new kind of
fuzzy sets, in order to establish some ground work for future



developments. Being an introductory paper, we focused on the
intuitive idea behind the generation, use and inference process
of CT2 sets rather than the formalization of their properties and
mathematical definitions, which will be carefully addressed in
future works.

II. PRELIMINARIES

In this section we will provide some formal definition of
fuzzy concepts that will be used throughout the paper.

Definition 1. A T1 FS is characterised by a T1 MF:

µÃ : X → [0, 1]
U

with X being the primary domain and U being the primary
membership of x.

Definition 2. A T2 FS is characterised by a T2 MF:

µ̃Ã : X × [0, 1]
U

→ [0, 1]
V

X still represents the primary domain while U is the secondary
domain and V the secondary membership of x.

Definition 3. An IT2 FS is characterised by an IT2 MF:

µI
Ã
: X → L([0, 1])

U

In this case, X still is the primary domain, L([0, 1]) denotes
the set of all the subset in the closed interval [0, 1] and U
denotes the primary membership of x.

Definition 4. A T2 ES is a path along the T2 set it belongs
to. It contains only one primary degree ux for each x, with
its associated secondary grade vx:

µ̃Ã(x, ux) = vx∀x ∈ X

Definition 5. A T1 ES represents a projection of a T2 ES, i.e.
its secondary degree has been dropped. Therefore it contains
one primary degree ux for each x:

µÃ(x) = ux; µ̃Ã(x, ux) = vx∀x ∈ X

Definition 6. A similarity relation δ : X × X → [0, 1] is a
fuzzy relation [8] with the following properties:
Reflexive: δ(x, x) = 1;∀x ∈ X
Symmetric: δ(x, y) = δ(y, x);∀x, y ∈ X
T-Transitive: T (δ(x, y), δ(y, z)) ≤ δ(x, z);∀x, y, z ∈ X with
T being a T-norm

III. CONSTRAINED TYPE-2

The main idea behind the introduction of CT2 sets is that a
general T2 FS has no constraints on the shape of its ES and
its boundary functions. However, in some contexts, imposing
some properties such as continuity or convexity is desirable.
Because of the unconstrained definition of general T2 sets, as
per definition 2, there is no relation between the ESs, FOU
and the concept they should model in some contexts.

For example, if we imagine designing a Gaussian T1 MF
to represent medium height, we might obtain something like
the MF shown in Fig. 2.

Fig. 2. Example of a T1 Gaussian modelling the concept of medium height
(picture from [5])

This T1 set can then be used to design a T2 set. One strategy,
would be to ask different people to take the T1 Gaussian and to
place it accordingly to their idea of medium height. The result
of this approach, would likely be something very similar to
the set of T1 sets shown in Fig. 3.

Fig. 3. Non-stationary Gaussian T1 set for the concept medium height (picture
from [5])

Using the left-most and right-most T1 Gaussians to shape
the FOU, however, would still generate a T2 set with no
relation with the original Gaussian shape. Additionally, an
ES such as the one shown in Fig. 4 would be acceptable
in the standard T2 representation even though it has very
little meaning for the concept of medium height that it is
representing.

The sets shown in Fig. 3 can actually be seen as a non-
stationary T1 set [9] (i.e. a set that is perturbed over time).
The intuitive idea is to use the non-stationary representation
to design a T2 set and by doing so, preserving the relation
with the T1 MF of the concept we are modelling.

Informally, a CT2 set can be seen as the union of an infinite
number of T1 sets obtained by shifting, in a finite interval, the
original T1 set we used to model the concept. The latter set



Fig. 4. An ES which is meaningless for the modelling of the concept of
medium height (picture from [5])

is called generator set (GS). The only acceptable embedded
sets (AES) of a CT2 set are represented by the ones obtained
by shifting the GS MF of a fixed amount over the x-axis. In
our example, the T1 set in Fig. 2 is the GS while the sets in
Fig. 3 are some of its AESs. The FOU of our CT2 is obtained
as the union of those AES and is therefore the one shown in
Fig. 1.

A CT2 set is formally defined as follows:

Definition 7. A CT2 set denoted by µ̃δ : X × [0, 1] → [0, 1]
where, given a µ : X → [0, 1] (i.e. generator set) and a
continuous similarity relation δ : X × X → [0, 1] and a
connected set X such that X ⊆ R:

µ̃δ(x, u) = sup
u=µ(y)

δ(x, y)

We will use the notation ÃCT2 to denote a CT2 set.

Definition 8. Given a CT2 set ÃCT2 and its T1 GS G̃, the
acceptable embedded sets (AES) of ÃCT2 are all and only the
T1 obtainable by shifting G̃ within the FOU of ÃCT2. More
formally, given an embedded set E:

E ∈ AESA ⇐⇒ ∃c ∈ R : ∀x ∈ X,µE(x) = µG(x− c)

With universe of discourse X being a connected subset of R

Note that CT2 sets can have secondary membership func-
tions of any form — i.e. general constrained type-2 sets
(GCT2) — or secondary membership values that are always
of height one — i.e. interval constrained type-2 sets (ICT2).
Consequently, the latter case poses a limitation on the sim-
ilarity relation, since it can only take 0 or 1 as values. The
CT2 sets describes so far, significantly differ from the ones
introduced in [7] in 2 key points:

• We generate the FOU as the union of the infinite T1
MFs obtained by horizontally shifting the T1 generator
set in a fixed interval over the x-axis. Consequently, the
FOU of a CT2 set can always be covered by the union of
the acceptable embedded sets given in our representation

even though all the acceptable embedded sets share the
same shape.

• In some contexts, just considering non-convex and normal
embedded sets may still be meaningless for the modelling
of a concept. With our CT2 sets, instead, by fixing the
shape of the acceptable embedded sets, we are keeping a
very clear relation between the concept that was modelled
by the T1 generator and its uncertain representation given
by the IT2 CT2 set.

In the next two sections, we will focus on the analysis of
ICT2 sets, exploring their structure to see how it can be used
to develop a new inference process, setting the base of a future
defuzzification algorithm that exploits the EASs of CT2 sets.

IV. BOUNDARY EVALUATION

Since the FOU of a CT2 set is obtained as the union of
all its AES (i.e. the T1 sets obtained by shifting the GS) it
would be useful to establish a relation between the GS and
the boundaries of the FOU in order to be able to evaluate the
upper-bound and lower-bound MFs of the FOU given the GS
function and the shifting steps.

Specifically, the upper-bound ÃCT2
u is obtained as the union

of all the AES, i.e.:

µÃCT2
u

(x) = sup
E∈AESÃCT2

µE(x) (1)

with AESÃCT2 being the set of all the AES for the ÃCT2

set. All the E ∈ AESÃCT2 share the same shape since they
are obtained by shifting the GS an infinite number of times
within the given interval [stepmin, stepmax], with stepmin and
stepmax being the minimum and maximum shifting steps used
to generate the FOU. Therefore, (1) can be written as follows:

µÃCT2
u

(x) = sup
stepmin≤k≤stepmax

µ
G̃S

(x− k) (2)

For triangular and Gaussian GSs, the evaluation of the
upper-bound is straightforward. In fact, we can separate the
evaluation of µÃCT2

u
(x) in 3 simple cases just by considering

the GS, the x-axis coordinate mx of the peak point m and the
interval [stepmin, stepmax]:

1) x− stepmax ≤ mx ≤ x+ stepmin
In this case, since by assumption mx is the x-axis
coordinate of the maximum point of the GS MF, from
2 we obtain:

µÃCT2
u

(x) = sup
stepmin≤k≤stepmax

µ
G̃S

(x− k) = µ
G̃S

(mx)

(3)
2) x− stepmax ≤ x+ stepmin < mx

That means that the MF, in the interval [stepmin,
stepmax], monotonically increases. Therefore
µÃCT2

u
(x2) ≥ µÃCT2

u
(x1), with x2 ≥ x1. From

(2), we deduce that the value of k that maximises the
argument of ÃCT2

u (x) is k = stepmin, i.e. the minimum
µE(x) is obtained when E is the left-most AES of
ÃCT2.



3) mx < x− stepmax ≤ x+ stepmin
Here, the MF, in the interval [stepmin, stepmax],
monotonically decreases, i.e. µÃCT2

u
(x2) ≤ µÃCT2

u
(x1),

with x2 ≥ x1. From that, we deduce that the value of k
that maximises (2) is k = stepmax, i.e. the membership
value obtained from the right-most AES of ÃCT2.

We can then conclude that to evaluate the upper-bound of a
triangular or Gaussian CT2 set, we only need to consider the
left-most and right-most AES, together with the peak point of
the GS and the shifting steps.

For the evaluation of the lower-bound MF, (1) becomes:

µÃCT2
l

(x) = inf
E∈AESÃCT2

µE(x) (4)

Therefore:

µÃCT2
l

(x) = inf
stepmin≤k≤stepmax

µ
G̃S

(x− k) = µ
G̃S

(mx) (5)

Now, we can apply the same reasoning we used for the
upper-bound MF and obtain the same 3 different cases as for
the upper-bound MF. Case 2) and 3) would be analogous to
the case 2) and 3) of the upper-bound MF and this proves that
in those scenarios we only need the left-most and right-most
AES. The case 1), however, is slightly different.

Specifically, if we have x− stepmax ≤ mx ≤ x+ stepmin,
we can split the interval [x− stepmax, x+ stepmin] in 2 sub-
intervals:

(i) [x− stepmax,m]
In this interval, the MF of our GS is increasing, therefore
the value of k that minimizes 5 is k = x− stepmax, i.e.
the minimum µE(x) is obtained when E is equal to the
left-most AES EL.

(ii) ]m,x− stepmin]
In this interval, the MF of our GS is decreasing, therefore
the value of k that minimizes 5 is k = x− stepmax, i.e.
the minimum µE(x) is obtained when E is equal to the
right-most AES ER.

We can then compute the MF values of these two minimizing
points to evaluate the lower-bound, by taking the minimum of
the two.

We can now individuate the minimum of the interval [x−
stepmax, x+stepmin] by taking the minimum of the two sub-
intervals and then selecting the minimum of them as the global
minimum:

µÃCT2
l

(x) = min(µEL
(x), µER

(x)) (6)

where EL and ER are respectively the left-most and right-most
AES.

This proves that we can fully determine the lower-bound of
a CT2 set ÃCT2 just by using the sets EL and ER. These
demonstrations can be easily extended to trapezoidal MFs,
by considering the set of its peakpoint M instead of m.
Additionally, we speculate that just the knowledge of the left-
most and right-most AES together with the maximum and
minimum points of the GS are sufficient to fully determine
the FOU of a CT2 set with a GS of arbitrary shape.

V. INFERENCE MODEL

A. Discretization

Given the constrained structure of a CT2 and its unique
definition of what an AES is, here we propose a new inference
model that exploits their structure and sets some groundwork
for future developments such as the design of a CT2 defuzzi-
fication algorithm. We define a CT2 fuzzy rule as a fuzzy rule
in which all the MFs involved are CT2 MFs. A CT2 fuzzy
system (CT2 FSM) instead, is a fuzzy system composed only
by CT2 fuzzy rules.

Having defined what rules and systems are, we can now
move to the inference process by considering a generic CT2
rule:

IF x1 IS Ĩ MF
CT2

1 AND x2 IS Ĩ MF
CT2

2 AND ...

AND xn IS Ĩ MF
CT2

n THEN y1 IS Õ MF
CT2

1 AND y2 IS

Õ MF
CT2

2 AND ... AND ym IS Õ MF
CT2

m

Each of these Ĩ MF
CT2

i and Õ MF
CT2

j have an infinite
number of AES. However, to represent them in a computer,
the continuous CT2 MF they belong to must be discretized.
Hence, we propose a discretization that selects a fixed number
of AES so that, for each discretization point x:

sup
E∈AESCT2

Ã

µE(x) = µÃCT2(x) (7)

with ÃCT2 being the CT2 set to discretize and AESCT2
Ã

being
the set of the selected AES with a finite cardinality.

To obtain such AESCT2
Ã

, we include enough AES to be
able to correctly solve all the 3 cases described in the Section
IV for the boundaries evaluation.
We satisfy the cases 2) and 3) by including the left-most and
right-most AES. For the case 3), instead, for each discretized
value x such that exists a peak-point m of the GS that satisfies
x − stepmax ≤ mx ≤ x + stepmin, we add a new AES
E so that it’s peak-point mE = x. This process generates a
finite number of AES within its FOU (Fig. 5), at most one per
discretization point. Being a finite number, we can enumerate
them from left to right by giving them an index.

Fig. 5. Discretized triangular CT2 MF



B. Rule Conversion

We now propose a novel inference model that exploits the
CT2 structure and its AES. Informally, the goal is to convert
each CT2 rule into a set of T1 rules by substituting each CT2
set with one of its AESs at a time, generating all the possible
combinations.

Supposing we are converting the generic rule mentioned
above, we obtain the following set of T1 rules (the apex
notation specifies the index of the current AES of the CT2
set is belongs to):

IF x1 IS I MFa1 AND x2 IS I MFb2 AND ... AND xn
IS I MFcn THEN y1 IS O MFd1 AND y2 IS O MFe2 AND ...
AND ym IS O MFfm

with a, b, c, d, e, f going from 1 to the number of AES
the specific CT2 set they belong to contains. In other words,
we are expanding one CT2 rule into a set of T1 rules by
considering all the possible combinations of the AES of
the CT2 sets. The inference result sets of each of these T1
rules can then be used to determine the upper-bound and the
lower-bound functions of the new set resulting from the CT2
rule evaluation. An example of the output of this process is
shown in Fig. 6.

Fig. 6. Example of the inference output of the T1 rule sets generated from
a CT2 fuzzy rule.

To obtain the FOU of the result of the CT2 inference,
we need to evaluate the upper-bound and lower-bound MFs.
We do so by preforming the union and the intersection,
respectively, of all the T1 results of the inference. The result
of this operation on the sets in Fig. 6 is shown in Fig. 7.

VI. ANALYSIS

Now that we have defined how to carry out the CT2
inference, we focus on the analysis of the shapes this process

Fig. 7. Example of the upper-bound and lower-bound MFs obtained from the
sets plotted in Fig. 6

produces on Gaussian, triangular and trapezoidal CT2. The
first thing to notice is that none of the T1 sets obtained as
described in the previous section is an AES of the inference
result. In other words, no one of them could be used as a
GS and be shifted by a given amount to obtain the full FOU.
At the same time, also GS of the CT2 consequent MF before
it was truncated by the inference process, doesn’t keep the
shape coherency concept that was expressed in the original
formulation of the CT2 sets.

Even though they are not valid AES, by looking at Fig.6
it seems clear that there is some kind of relationship between
them. By analyzing the conversion from a single CT2 rule
to a set of T1 rules, we can see they all share the same
shape, up to a certain point. In fact, by generating all the
possible T1 rules from the combinations of the acceptable
AES of the CT2 sets involved in a rule, each AES of the
CT2 set used in the consequent part is paired with all the
possible combinations of the AES of the antecedent CT2 sets.
Therefore, each T1 inference output set, is simply obtained
from an AES of the CT2 consequent set, cut at one of the
possible heights computed by evaluating the antecedent part
of the rule.

For example, suppose we have the following CT2 rule with
2 AES (indexes 1 and 2) per triangular CT2 set:

IF x1 is ÃCT2 AND x2 is B̃CT2 THEN y IS C̃CT2

From this, we would obtain a total of six T1 rules. Three of
them would have C1 as a consequent T1 MF, while the other
three rules would have C2 instead. That means that each of
these Ci sets will be cut at (a maximum of) three different
heights, obtained from the evaluation of the antecedent part
of the three different rules. Additionally, the set of heights



at which every AES of the CT2 consequent MF is cut, is the
same for all the AES, since all the consequent AESs get paired
with all the possible antecedent AEs combinations.

Having noticed this, we can now introduce the definition of
layers (Fig.9) in the CT2 inference output:

Definition 9. A layer is the set of T1 sets obtained in the CT2
inference result that are generated by T1 rules with the same
antecedent component.

Fig. 8. Highest layer of the the inference result in Fig. 6

In Fig. 8 the highest layer of the inference output in Fig.
6 is shown. Since they are all obtained from the AESs of the
same CT2 set and have been truncated at the same height, they
all share the same shape. The only difference between them is
the displacement on the x-axis. Therefore, they can be seen as
AESs of a CT2 set, making each layer of the inference result
a CT2 set.

We also notice that, for the shapes analyzed, the highest
and the lowest layers share respectively the upper-bound and
lower-bound MFs with the FOU of the whole inference result.

Furthermore, we anticipate that the concept of layers can
be exploited for a new defuzzification process that is currently
being developed.

A. Comparison with Standard IT2 Inference

After developing the CT2 inference, we compared it to the
standard IT2 one, to see if they gave different results. To do
so, we converted both CT2 MFs and rules into standard IT2
representation. Given a CT2 FS ÃCT2 we can convert it to an
IT2 set AI by evaluating the upper-bound and lower-bound
MFs of ACT2 as described in Section IV, and then use those
boundaries to define the FOU of ÃI .

We can now convert a CT2 fuzzy rule into an IT2 fuzzy
just by replacing every CT2 set with the IT2 obtained from

Fig. 9. The red lines indicate all the cuts that regenerate the layers shown in
Fig.7

Fig. 10. CT2 inference result set with a Gaussian MF

the CT2 to IT2 conversion. In the experiments we ran with
triangular, trapezoidal and Gaussian MFs, the CT2 inference
proposed here and the standard IT2 inference process produced
the same FOU, i.e. the same upper-bound and lower-bound
MFs. Fig. 11 shows the IT2 inference result obtained from
the conversion of the CT2 rules that generated the T1 MF in
Fig. 10.

However, we believe that the additional information pro-
vided by the layers (especially by the highest and the lowest
one), can be exploited for the defuzzification operation.

VII. CONCLUSION

In this paper, we explored Interval CT2 sets and their con-
strained structure, focusing on MFs with Gaussian, trapezoidal



Fig. 11. IT2 inference result from the IT2 rule obtained from the Ct2 rules
that generated Fig. 6

and triangular shape and establishing some groundwork for a
future defuzzification method and practical use.

By analysing the definition of CT2s and their AESs, we
showed how the upper-bound and lower-bound MFs (and
therefore the FOU) can be obtained just by taking into account
the left-most and right-most AES, together with the maximum
points of the GS and the shifting steps used to generate the
FOU. We also described a possible discretization method,
based on the selection of a fixed number of the AES from
the infinite amount that generate the FOU.

We then moved to the introduction of a new inference
process (CT2 inference) that uses the AES obtained from the
discretization. This novel model, is based on the conversion
of CT2 rules into a set of T1 rules that generates the inference
result boundaries. We pointed out how none of those T1
rules, however, generates valid GS for the inference result set.
We also introduced the definition of layers, and showed how
each one of them represents a valid CT2 set. Additionally,
we anticipated that the concept of layers can be exploited
for a new defuzzification method that is currently under
development.

Finally, we showed how both the standard IT2 inference
process and the CT2 one proposed here, generated the same
FOU for CT2 sets with Gaussian, triangular and trapezoidal
GS.

In future work, we plan on developing a novel defuzzifi-
cation algorithm that can be used for CT2 system and we
also plan on extending and generalizing the preliminary work
showed here so that in can be applied to MFs of arbitrary
shape.
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