
RESEARCH ARTICLE Open Access

Intra-operative spectroscopic assessment of
surgical margins during breast conserving
surgery
Dustin W. Shipp1, Emad A. Rakha2, Alexey A. Koloydenko3, R. Douglas Macmillan4, Ian O. Ellis2

and Ioan Notingher1*

Abstract

Background: In over 20% of breast conserving operations, postoperative pathological assessment of the excised
tissue reveals positive margins, requiring additional surgery. Current techniques for intra-operative assessment of
tumor margins are insufficient in accuracy or resolution to reliably detect small tumors. There is a distinct need for a
fast technique to accurately identify tumors smaller than 1 mm2 in large tissue surfaces within 30 min.

Methods: Multi-modal spectral histopathology (MSH), a multimodal imaging technique combining tissue auto-fluorescence
and Raman spectroscopy was used to detect microscopic residual tumor at the surface of the excised breast tissue. New
algorithms were developed to optimally utilize auto-fluorescence images to guide Raman measurements and achieve the
required detection accuracy over large tissue surfaces (up to 4 × 6.5 cm2). Algorithms were trained on 91 breast tissue
samples from 65 patients.

Results: Independent tests on 121 samples from 107 patients - including 51 fresh, whole excision specimens -
detected breast carcinoma on the tissue surface with 95% sensitivity and 82% specificity. One surface of each
uncut excision specimen was measured in 12–24 min. The combination of high spatial-resolution auto-
fluorescence with specific diagnosis by Raman spectroscopy allows reliable detection even for invasive
carcinoma or ductal carcinoma in situ smaller than 1 mm2.

Conclusions: This study provides evidence that this multimodal approach could provide an objective tool for
intra-operative assessment of breast conserving surgery margins, reducing the risk for unnecessary second
operations.
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Background
Breast conserving surgery (BCS), also referred to as lump-
ectomy or wide local excision, is currently the most widely
used surgical procedure for resection of breast cancer [1].
The goal of BCS is to remove the entire tumor while leav-
ing healthy breast tissue intact, providing better cosmetic
outcome. Nevertheless, this is challenging because of the
lack of tools available for intra-operative assessment of
margins to indicate complete tumor excision.

Postoperatively, typically over a period of 1–2 weeks, the
excised tissues are examined histologically to determine the
proximity of tumor to the surface of the excision. In more
than 20% of BCS procedures, positive margins are detected
(i.e. tumor close to the edge) and additional operations are
required to achieve complete excision [2, 3]. Nearly half of
these “re-excisions” are for “on-ink” margins [3], meaning
that tumor was found on the surface of the excised tissue.
Guidelines from the Society of Surgical Oncology and the
American Society for Radiation Oncology state that clear
on-ink margins are sufficient to remove tumor and more
widely clear margins did not significantly increase the risk
of recurrence [4, 5].
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Intra-operative resection of additional tissue (i.e.
cavity shaves) has been shown to reduce the need for
re-excisions [6]. However, cavity shaving can result in
excessive tissue loss and poor cosmetic outcomes.
Additional techniques are therefore needed to assess
the margins of BCS specimens within intra-operative
timescales (i.e. less than 30 min). Frozen section his-
topathologic assessment and cytologic imprint prepar-
ation (i.e. touch preparation) analysis can assess
margins within this time [7, 8], but are often consid-
ered impractical for BCS due to the large size of the
specimens, sampling errors [7, 9], and sample prepar-
ation artifacts [10] in addition to pathologist time and
cost implications. The MarginProbe device, which as-
sesses margins using radiofrequency spectroscopy, has
entered operating theaters, but with 75.2% sensitivity
and 46.4% specificity [11]. ClearEdge measures
tissue-specific electrical properties with preliminary
results indicating sensitivity of 84.3–87.3% and speci-
ficity of 81.9–75.6% [12]. Higher diagnostic accuracy
has been reported for techniques with higher molecu-
lar specificity, such as fluorescence lifetime imaging
(FLIm) [13] and mass spectrometry [14]. A recent
preliminary study using a FLIm probe on 2 × 2 cm2

cut breast tissues indicted automated classification ac-
curacy greater than 97% [13]. For mass spectrometry
handheld devices, 93.4% sensitivity and 94.9% specifi-
city were reported, but with spatial resolution limited
to approximately 4 × 4 mm2 [15]. Limitations related
to spatial resolution and tissue sampling coverage
make hand-held technologies vulnerable to missing
small tumors (e.g. ductal carcinoma in situ (DCIS)
smaller than 1 mm2), which are responsible for a dis-
proportionate number of re-excisions [5].
Sampling errors may be overcome by optical imaging

techniques that can provide diagnosis with microscopic
spatial resolution [16–22]. While diagnoses with sensi-
tivity and specificity as high as 93% have been reported,
structure-based imaging diagnoses rely on specially
trained pathologists and are therefore subject to
inter-observer and intra-observer variability, especially if
large, detailed images need to be viewed [19, 21].
Attempts to avoid subjectivity through automated diag-
nosis by diffuse reflectance spectroscopy (DRS) [23, 24],
elastic scattering spectroscopy (ESS) [25], and spatial fre-
quency domain imaging (SFDI) [26] have been proposed.
However, DRS and SFDI have insufficient spatial reso-
lution to detect small tumors (< 1 mm2) and ESS was
shown to have 69% sensitivity and 85% specificity [25].
Furthermore, of these imaging techniques, only light
sheet microscopy using fluorescent labels [22] and SFDI
[26] have been demonstrated on tissue areas ap-
proaching that of most BCS specimens (i.e. larger than
2 × 2 cm2). Extending these techniques to large breast

tissue surfaces (e.g. 4 × 6 cm2) results in measurement
times unacceptable for intra-operative use.
Raman spectroscopy is a highly sensitive optical tech-

nique that can provide a medical diagnosis based on
quantitative molecular attributes of the tissue [27, 28].
Raman spectroscopy achieves molecular specificity by
measuring the vibrational frequencies of tissue molecules
excited by the laser. Basing the diagnosis on quantitative
properties instead of human interpretation of structural
images has been shown to reduce inter-observer variabil-
ity [29]. Raman spectroscopy has been applied to the as-
sessment of breast cancer with 94% sensitivity and 96%
specificity [30], including hand-held fiber-probes for in
vivo point-measurements [31, 32], albeit with no imaging
capability and low spatial accuracy. Spatially offset Raman
spectroscopy (SORS) was also proposed for tumors em-
bedded within resected tissue [33, 34], but has thus far
demonstrated only limited spatial resolution.
Spontaneous Raman spectroscopy alone is slow to

image typical BCS specimens with sufficient spatial accur-
acy to allow accurate detection of small residual tumors
that are of particular clinical interest. One approach for
reducing the acquisition time is surface-enhanced Raman
spectroscopy (SERS). A recent study by Wang et al. de-
tected tumor at the excision surface with 89% sensitivity
and 92% specificity by using gold nanoparticles functional-
ized with reporter SERS labels and monoclonal antibodies
targeting biomarkers including epidermal growth factor
receptor (EGFR), human epidermal growth factor receptor
2 (HER2), estrogen receptor (ER), or CD44 [35].
An alternative approach to reduce analysis time is

selective-sampling Raman spectroscopy, which uses spatial
information from the sample to guide Raman measure-
ments [36–39]. This approach has the advantage that no
exogenous labels are required. In a previous study, we have
demonstrated the feasibility of multimodal spectral histo-
pathology (MSH), a selective-sampling technique that com-
bines high-resolution wide-field auto-fluorescence (AF)
microscopy and Raman spectroscopy to detect ductal car-
cinomas in frozen breast micro-sections (5 × 5 mm2) [38].
This method acquires sensitive and specific Raman mea-
surements while preserving the spatial resolution of AF im-
ages (10–20 μm), enabling MSH to identify small tumors.
However, previous MSH studies were optimized for mea-
surements of small tissue samples (less than 0.5 × 0.5 cm2)
cut from surgical specimens. Extending these measure-
ments to large breast tissue surfaces resulted in timescales
unacceptable for intra-operative use (i.e. longer than 3
hours).
In this study, we have integrated an MSH instrument

(combined confocal AF and Raman microscope, see
Fig. 1a) and optimized the sampling and data processing
algorithms combining spatial and spectral information
for measuring the surface of large tissues (4 × 6.5 cm2
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area) such as BCS specimens. The large-scale MSH tech-
nique reduces the number of required Raman measure-
ments and allows analysis of the radial aspect of greatest
concern in 12–24 min (see Fig. 1b), a timeframe consid-
ered appropriate for intra-operative use.
New data acquisition and analysis techniques were also

automated to account for patient-to-patient variations
and provide reliable, user-independent diagnosis across a
broad range of tumor types and sizes. The segmentation
and sampling algorithms were optimized to ensure con-
sistent, thorough sampling of tumors on the surface of
tissues with varying properties. The Raman spectral clas-
sifier was trained to distinguish between malignant and
healthy tissues, even for difficult cases of hypercellular
tissues. These spatial and molecular measurements were
integrated into a final diagnosis image showing the pres-
ence or absence of tumor on the tissue surface. Through
independent tests of these algorithms and measurement
protocols on breast tissue samples and real, whole BCS
specimen surfaces, we show that MSH has great poten-
tial for objective, intra-operative assessment of the exci-
sion surface of BCS specimens immediately after
excision without requiring any sample preparation (sec-
tioning or labeling).

Methods
Sample collection
Two sets of breast tissue samples were used in this study.
Smaller samples of breast tissue cut from mastectomy sam-
ples were used for training (91 samples from 65 patients)
and validation (70 samples from 56 patients) of MSH

procedures and diagnosis algorithms. The mastectomy
samples varied from 4 × 6 mm2 to 32 × 28 mm2 and were
approximately 2–10 mm thick. These samples were frozen
in liquid nitrogen and stored at − 20 °C until being thawed
for measurement of one tissue surface. Principal compo-
nent analysis (PCA) showed no differences between Raman
spectra acquired from fresh and thawed samples.
Samples known to contain confounding tissue types
(e.g. fibroadenoma, fibrocystic change) were preferen-
tially included in the training set to broaden the
scope of the Raman spectroscopy classifier. After
measurements, the samples were submitted for histo-
logical processing and hematoxylin and eosin (H&E)
sections were obtained for each measured surface.
Two validation samples in which conditions not in-
cluded in the training set (e.g. metaplastic carcinoma)
were discovered on histopathologic assessment were
excluded from analysis. Future studies will target the in-
clusion of these rarer tissue types in the training set.
Fresh, uncut BCS specimens from 51 patients were

measured as they arrived from the operating theater,
without any preparation or processing. One surface
was chosen for scanning based on proximity to palp-
able or visible lesions and to avoid high concentra-
tions of surgical dyes. Following measurement, the
scanned surface was colored with yellow ink and the
specimen was evaluated by standard histopathological
processes and protocols. This included cutting the
specimen in a cruciate fashion and recovering H&E sections
radially from the tumor to the tissue surface. Thus, these
H&E sections were perpendicular to the surface measured

Fig. 1 Instrument and procedure for multimodal spectral histopathology (MSH). a The MSH instrument consists of an inverted optical microscope
with integrated Raman spectrometer (excitation 785 nm, detection Raman shift range 600–1800 cm− 1) and confocal auto-fluorescence (AF)
module (excitation 405 nm, detection range 450–520 nm). b The MSH measurement procedure can be completed in 12–24 min, depending on
tissue size (up to 4 × 6.5 cm2). Steps in white boxes are automated (do not require user input). After MSH analysis, the tissue is returned for
normal histopathology analysis

Shipp et al. Breast Cancer Research  (2018) 20:69 Page 3 of 14



by MSH. Pathologists reported the presence or absence
of tumor on the measured surface marked in yellow.

Multimodal MSH
A schematic of the MSH instrument and procedure is
shown in Fig. 1. Tissues were placed directly onto a
5.1 × 7.6 cm2 quartz window for measurement in an
inverted microscope configuration. Raman spectra were
measured at the corners of the window and the window
level was adjusted to reduce the tilt. Quartz is a popular
substrate for Raman spectroscopy as it avoids fluores-
cence or scattering contributions common in other sub-
strates. Tissues were found to be malleable such that
their own weight pressed with sufficient force to ensure
thorough, flat surface contact with the window.
AF images were acquired by a Nikon C2 confocal

microscope module (405 nm laser, emission 511 nm
long-pass filter, and detected by a photomultiplier tube).
The portion of the AF image containing the tissue sam-
ple was automatically detected, allowing the background
to be removed by a virtual mask. The user adjusted the
intensity threshold for this algorithm by visual inspec-
tion to ensure appropriate masking. Dark regions or
“segments” in the AF image were identified by an un-
supervised algorithm. A threshold was varied automatic-
ally across several intensity values. For each threshold
value, pixels with AF intensity values below the thresh-
old were grouped into contiguous regions. Each contigu-
ous region was marked as a segment. The threshold was
varied to maximize the segmentation parameter A·N,
where A is the area included in all segments within the
image and N is the number of segments in the image.
For MSH measurements, Raman measurement points
were assigned within both dark segments and large re-
gions of high AF intensity. The number and location of
measurement points were determined as described in
[40], with a minimum of two points per segment and a
target density of one point per square millimeter.
Raman spectra were acquired by a fiber-coupled Raman

spectroscopy module (785 nm excitation, 600–1800 cm− 1

detection). The procedure for Raman spectral acquisition
differed depending on the phase of the study. In the initial
training set measurement phase, regions of interest were
identified by eye in the AF image. Raman spectra were
then acquired in a raster scanning scheme. Scanned areas
ranged from 3 × 4 to 20 × 16 mm2 with 40–100 μm
step-sizes. For each scan, spectra were divided into four to
eight groups based on spectral similarities by k-means
cluster analysis. These groups were assigned arbitrary
colors and the scan was displayed as a hyperspectral
image. Under guidance of one or two trained pathologists,
like-colored regions in the hyperspectral image were
manually assigned to various tissue classes based on
spatial correlation to AF and H&E images. Spectra within

these regions were added to the training set for the corre-
sponding tissue type. These tissue assignments are
described in “Quantitative diagnosis based on Raman
spectra”.
MSH-sampled measurements were generated from

the raster scan using the nearest acquired spectra to
the generated sampling points. These MSH measure-
ments were limited to the raster-scanned area. For
test set samples (both mastectomy tissue and whole
BCS specimens), Raman measurement points were
identified automatically by the segmentation and
sampling procedure described above. For both of
these schemes, the acquisition time was set to 0.3 s.
All spectra were processed, analyzed, and classified
individually.
Raman spectra were processed by standard algorithms

including cosmic ray removal, wavenumber calibration,
throughput correction, background subtraction [41], and
smoothing [42]. Spectra with poor signal to noise ratio
(SNR) were withheld from analysis (see Additional file 1
for details), removing approximately 2% of spectra from
the training set. Raman raster scans from 91 breast tis-
sue samples in the training set (28 with tumor, 63 with-
out tumor, > 1000 spectra per sample, > 100,000 spectra
total) were annotated and used to train a linear discrim-
inant analysis (LDA) classification model as subsequently
described.
Using this model, segments in the AF image were

assigned class labels based on the Raman spectra ac-
quired from the corresponding area. For samples in-
cluded in the training set, spectral diagnoses were
performed using a new classification model trained
excluding the sample under evaluation (leave-one-out
cross-validation). If the classification of spectra within
a segment was not unanimous, the segment was split
into smaller segments, each containing spectra with
homogeneous diagnosis. Tissue regions diagnosed as
tumor were assigned a second round of Raman mea-
surements. Second round measurements were ac-
quired with higher sampling density and doubled
acquisition time per spectrum (0.6 s). In MSH mea-
surements generated from raster scans, second round
measurements averaged spectra from neighboring
raster scan points.
First-round and second-round Raman spectra were used

to create a final diagnosis image. For each segment, a tumor
score (TS) ranging from 1 to 10 was calculated from the
class probabilities returned by the LDA model for spectra
within that segment. The TS for MSH measurements of
training samples (see Additional file 1: Figures S3A and S4A)
guided the creation of thresholds into “clear,” “moderate
risk,” and “high risk” TS. These thresholds were applied to
independent test MSH measurements of mastectomy sam-
ples and whole BCS excision surfaces to create three-color
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MSH diagnosis maps that could be quickly and easily inter-
preted in the operating theater.

Statistical evaluation
The accuracy of the LDA classifier was estimated by
fivefold cross-validation in which the spectra from 80%
of patients (i.e. training set) were used to train a model
to evaluate the remaining spectra (i.e. validation set).
This was repeated five times to include each patient in
the validation set once. Results were then reported on a
per spectrum basis, including up to 1000 spectra per tis-
sue type per sample.
For statistical evaluation of MSH diagnosis, a sample

was considered positive if it contained tumor anywhere
in the measured area. Likewise, the MSH diagnosis was
considered positive if any tumor was identified (moder-
ate risk or high risk) in the diagnosis image. Samples

from mastectomy tissue were small enough that the
MSH-identified tumor overlapped with histopathologic-
ally identified tumor in all cases where both were
present. Similar correlation was not tested in BCS speci-
mens as the H&E sections were obtained perpendicular
to the MSH-measured surface per standard clinical
procedure.

Results
Unsupervised segmentation of AF images
Although the absolute origin of the signal in the AF sig-
nal is not fully understood, several endogenous fluoro-
phores can be detected by the 405 nm excitation/
511 nm long-pass emission system, including flavin ad-
enine dinucleotide (FAD), reduced nicotinamide adenine
dinucleotide (NADH), and collagen, the last of which is
most common in stromal tissue [43]. In our observations

Fig. 2 Method for unsupervised segmentation of auto-fluorescence (AF) images of breast tissue. a AF intensity images of a typical breast tissue
sample containing invasive carcinoma obtained at difference excitation laser powers. b Representation of the total area captured by all segments
to total number of segments for each image (A·N) versus the segmentation threshold. c Segmented AF images using the optimized intensity
thresholds t5, t11, t25, t45; white dots indicate the sampling points for Raman spectroscopy. Each segment is assigned a unique, arbitrary color in
these images. d The computed overlap with segmentation of the 45-mW image; blue, regions captured in segments in both AF images; red,
regions were in segments in the 45-mW image but not in the images at lower power; yellow, regions in segments of AF image at lower laser
power but not the 45-mW image. e Hematoxylin and eosin (H&E) section. The dense clusters of dark blue dots are tumor cells
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within this study, dark regions in the acquired AF im-
ages generally contained tumor, benign growths (e.g.
fibroadenoma), and adipose tissue (see Fig. 2). There-
fore, these dark regions were identified as “segments”
targeted for subsequent Raman measurements. The
sampling algorithm also assigned additional Raman
measurement points to bright regions in the AF
image to address samples where the tumor may have
higher AF intensity, i.e. samples containing only
tumor and adipose tissues or with tumor cells scat-
tered within stroma.
Automated algorithms were used to segment AF im-

ages and assign sampling points to minimize the number
of Raman measurements while still acquiring spectra
from any regions of tumor present on the surface of the
sample. Each AF image was segmented by finding the
maximum value of A·N (where A is the total area cap-
tured by all segments and N is the total number of seg-
ments) as a function of the segmentation intensity
threshold. Maximizing N leads to the discrimination of
small features while maximizing A favors larger seg-
ments, allowing faster measurements of large surfaces.
The process of optimizing the segmentation and sam-
pling algorithms toward these goals is described in
“Optimization of segmentation and sampling algorithms”
in Additional file 1.
The accuracy of the segmentation and sampling algo-

rithms was ultimately evaluated by calculating the
“tumor hit rate” as a figure of merit. The tumor hit rate
describes the probability that a region of tumor on the
surface of a sample will contain at least one Raman
measurement. If the Raman spectral classifier were 100%
accurate, the tumor hit rate would be equivalent to the
sensitivity of the complete MSH procedure. The tumor
hit rate was calculated for all 28 mastectomy samples
containing tumor in the training set. For these samples,
the median tumor hit rate was 100%. One sample con-
tained approximately 5 mm2 of low-density tumor cells
scattered within stroma that went unsampled. The tumor
hit rates for the other mastectomy samples ranged from 73
to 100% (see Additional file 1: Figure S2). Therefore, this
new method for optimizing the segmentation threshold
allowed using fewer targeted Raman measurements to de-
tect the majority of tumor regions over large surfaces. In-
deed, the algorithm was optimized for assigning sampling
points to large tissue areas detects most tumors - even
those smaller than 1–2 mm - with a sampling density of
one point per square millimeter. These algorithms allowed
even large tissue surfaces (4 × 6.5 cm2) to be thoroughly an-
alyzed by fewer than 2000 Raman measurements.
Sample to sample variations in the intensity of AF

emission (depending on patient age, various tissue struc-
tures, etc.) is a key challenge when attempting to use an
absolute intensity threshold for the segmentation of all

AF intensity images. To ensure a user-independent and
accurate diagnosis result, all data analysis steps were au-
tomated and designed to be invariant across the full
range of samples. To evaluate the invariance of the seg-
mentation algorithm to these conditions, we induced
large AF intensity variations by imaging a set of eight
breast tissue samples with four different excitation pow-
ers (5 mW, 12 mW, 25 mW, and 45 mW).
When the AF images recorded at different laser powers

(Fig. 2a) were segmented using the intensity threshold
values corresponding to the maximum values in Fig. 2b
(t5, t11, t25, t45), consistent results were obtained regarding
the shape and size of the dark segments and the generated
locations of sampling points for Raman spectroscopy mea-
surements (white dots) (see Fig. 2c). The percent overlap
with the segments from the 45-mW image with AF im-
ages obtained at lower excitation powers ranged from 82
to 93%. Furthermore, segments identified in the image ac-
quired at all laser powers correspond to the area of tissue
containing tumor, shown by the dense clusters in the
H&E image in Fig. 2e. These results indicate that the max-
imum value of the A·N function may provide a consistent,
unsupervised, user-independent method for selecting an
optimal intensity threshold for each AF image.

Quantitative diagnosis based on Raman spectra
After establishing a method for guiding Raman spectros-
copy measurements based on AF images of breast tissue,
a supervised model was developed for classification of
breast tissues based on Raman spectra. Figure 3
compares the AF image (Fig. 3a), pseudo-color k-means
clustering hyperspectral image from the Raman spectra
(Fig. 3b), and the histopathology image obtained by H&E
staining (Fig. 3c) for a typical breast sample containing
invasive carcinoma, benign tissue with inflamed stroma,
and fat. These images show that the k-means clustering
images can accurately capture the main tissue structures,
including the tumor, based solely on the molecular com-
position of tissue measured by the Raman spectra.
Under guidance of one or two trained breast patholo-

gists, the k-means clustering hyperspectral images ac-
quired from all mastectomy samples in the training set
allowed for individual Raman spectra to be assigned a
label corresponding to invasive carcinoma (IC), other
tumor types (OT, e.g. DCIS, lobular carcinoma in situ
(LCIS), malignant phyllodes (MP)), benign proliferative
lesions (BG, e.g. fibroadenoma, sclerosing adenosis, epi-
thelial hyperplasia), inflammation (IN), parenchyma (P),
normal mammary stroma (S), fat (F), or a mixture of fat
and stroma (F + S) (see Fig. 3e). A maximum of 1000
spectra of each tissue type was included from each
sample. These eight tissue types were later relabeled into
three classes based on spectral similarities: fat (including
F and F + S), benign/healthy (including S, P, IN, and BG),
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and tumor (including invasive carcinoma (IC), DCIS,
LCIS, and malignant phyllodes (MP)) (see Fig. 3f ).
The simplified classes preserve major spectral features

corresponding to cancer (nucleic acids, non-collagen
proteins), stroma (collagen and other proteins), and fat
(lipids) (see Fig. 3f ) that are consistent with previously

reported Raman spectra of breast cancers, adipose tis-
sue, and other healthy breast tissue [27, 30, 38, 43].
Spectra from various tumor types (see Fig. 3g) share the
characteristic features typical of tumor: intense bands
assigned to nucleic acids (788 cm− 1, 1098 cm− 1,
1342 cm− 1), phenylalanine (1004 cm− 1), and amide I

Fig. 3 Raman spectral acquisition and annotation. Tumor regions (clusters of blue dots in the H&E image in (c)) appear darker in the auto-
fluorescence (AF) image (a). The region in the green box was measured by a Raman raster scan. K-means cluster analysis of these spectra
identifies similar spectra to create a hyperspectral image (b). Single spectra from locations marked in b are shown in d. Based on the information
in a-d, pre-processed spectra from green areas (horizontal triangles) are marked as tumor, blue (square/circle) as inflamed stroma, and red
(vertical triangles) as fat. Other clusters (cyan, yellow, and magenta) were background or noise and were withheld from the training set. Mean
and standard deviation of all spectra in the training set show that the annotated tissue types (e) could be simplified to three classes used by the
spectral classifier (f). Spectral features used for classification are marked as shaded areas (peak areas) and magenta lines (peak intensity
differences). These peak areas are shaded blue for lipid-associated bands, green for protein-associated bands, and magenta for nucleic acid-
associated bands. These features are consistent across all tumor types (g). Classes: IC, invasive carcinoma; OT, other tumor types (includes ductal
carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS), malignant phyllodes (MP)); BG, benign growths (includes fibroadenoma, sclerosing
adenosis, hyperplasia); IN, inflammation; P, parenchyma; S, healthy stroma; F, fat; F + S, mixture of fat and stroma
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vibrations (1655 cm− 1), less intense bands corresponding
to collagen (860 cm− 1, 938 cm− 1). Although there are
spectral differences between these tumor types, they are
less pronounced than the differences between spectra
from tumor and other tissue types. These and other fea-
tures (eight features in total) were identified to reduce
the dimensionality of Raman spectra for more robust
classification (see Additional file 1: Table S1). Briefly,
spectra from tumor tissue was distinguished from be-
nign tissues based on higher intensities in bands
assigned to nucleic acids and lower intensities in
collagen-assigned and amide III-assigned bands, in
agreement with previous reports [38].
The model for classifying Raman spectra was opti-

mized over several classifier families with varied parame-
ters, including spectral features (see “Optimization of
Raman Spectral Classifier” in Additional file 1). The
overall sensitivity and specificity for the best-performing
model (linear discriminant analysis (LDA)), were 90.2%
and 93.4%, respectively (see Additional file 1: Table S3
for breakdown by tissue type). This represents the per-
formance of the classifier on a single Raman spectrum,
not taking into account any information from the AF
image or neighboring spectra.
When the classifier performance was evaluated for

different sub-types of tumor, the sensitivity was
greater than 99% for DCIS, LCIS and malignant
phyllodes, which were always found with closely
packed tumor cells. However, the sensitivity was 89%
for tissues containing invasive carcinoma, which
often consisted of scattered tumor cells within be-
nign tissue.
Another significant source of misclassification was

spectra from benign/healthy tissues being classified as
tumor. Although this “benign/healthy” class contains
many tissue types such as stroma, parenchyma, and in-
flammation, classification errors occurred most often
(50–80% specificity by spectrum) with spectra from
hypercellular tissues including epithelial hyperplasia,
sclerosing adenosis, and, to a lesser degree, fibroaden-
oma. Although these tissues were specifically targeted
for inclusion in the training set, their low prevalence
(three samples with sclerosing adenosis, four samples
with hyperplasia, nine samples with fibroadenoma) sug-
gest that the classifier could be further improved by in-
cluding more measurements of these tissues in the
training set.

MSH tissue diagnostic model by integrating AF and
Raman
The MSH diagnosis relied on both spatial information
from segmented AF images and molecular information
from Raman spectra. Within an AF image, the likelihood
that a segment corresponded to a tumor (i.e. tumor

score, TS) was calculated based on the Raman classifica-
tion results of each spectrum within the segment.
To evaluate the performance of the MSH algorithm,

we used leave-one-sample-out cross-validation to com-
pare the MSH results for training set samples with the
diagnoses obtained by raster-scanning Raman imaging
and histopathology. An MSH diagnosis was obtained
based on AF images and spectra from raster scan Raman
measurements corresponding to locations assigned by
the sampling algorithm. Figure 4 presents typical exam-
ples of MSH and Raman raster scan diagnoses for breast
tissue samples containing the most common breast car-
cinomas: IC, LCIS, and DCIS. In all cases, the diagnostic
images obtained by raster-scanning Raman spectroscopy
and MSH were in agreement with histopathological
H&E images. However, MSH dramatically reduced the
acquisition time, as it required 100-fold to 200-fold
fewer Raman spectra compared with raster scanning
while providing similar diagnostic accuracy for breast
carcinomas, even those comprising small tumors (<
1 mm2).
Under guidance from a trained breast cancer surgeon,

the MSH diagnosis images were designed for ease of in-
terpretation in the operating theater. The MSH results
from training set samples were used to set thresholds to
display the maps of TS as clear, moderate risk, or high
risk. Setting the thresholds for the high-risk tumor at 9.9
(targeting high specificity) resulted in estimated sensitiv-
ity and specificity of 82% and 75%, respectively. The
more sensitive moderate-risk threshold at 9.4 had esti-
mated sensitivity and specificity for MSH of 96% and
59%, respectively.

Independent test of MSH diagnosis on mastectomy
samples
The first independent validation of MSH was carried
out on mastectomy samples (sizes ranging from 6 × 7
to 20 × 25 mm2) as H&E sections could be obtained
from the measured surface to confirm the MSH diag-
nosis. Measurements for all tissue samples were per-
formed according to the complete MSH protocol
presented in Fig. 1b and lasted less than 4 min per
sample. The receiver operating characteristic (ROC)
curve for this test and examples of these MSH mea-
surements are shown in Fig. 5. Tumor scores for all
segments in independent mastectomy samples are
shown in Additional file 1: Figure S4(B) with the
maximum TS for each sample shown in Additional
file 1: Figure S3(B).
Although a tumor such as DCIS may consist of many

small tumor regions (0.2–1 mm), the main objective here
was not to detect each individual microscopic region, ra-
ther to locate residual tumor within ~ 1 mm at the exci-
sion margin to facilitate intra-operative re-excisions. Thus,
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the sensitivity and specificity of the independent test sam-
ples was calculated by considering only the maximum TS
found in the MSH measurement for the whole sample.
Based on the moderate-risk TS threshold, the sensitivity
and specificity were 91% and 83%, respectively. The results
indicate successful detection of tumors, including DCIS
consisting of tumor regions smaller than 1 × 1 mm2. Using
the high-risk threshold increases the specificity to 97%
while decreasing the sensitivity to 64%.
Thus, a surgeon observing a region diagnosed as high

risk (see Fig. 5c-e) could remove more tissue from the cor-
responding region with high confidence of it being tumor.
The surgeon would take action on a moderate-risk diag-
nosis (such as Fig. 5b) taking into account other informa-
tion available at the time of surgery including patient
history, disease type (e.g. DCIS), radiographic appear-
ances, and size and location of detected tumor. The higher
sensitivity of the moderate-risk threshold ensures that
MSH misses few tumors on the excision surface.

Proof of principle tests of MSH on whole BCS specimens
in intra-operative timescales
Next, MSH measurements were acquired from 51 fresh,
whole BCS specimens immediately after surgery with no
sample preparation. The MSH measurements covered a
surface area between 2 × 2 to 4 × 6.5 cm2 and were com-
pleted in 12–24 min. Simulating clinical application, a
single side was analyzed that the surgeon may have con-
sidered of greatest concern.
MSH detected residual tumors on the surface of 18

BCS specimens. For 10 of the BCS specimens detected
positive by MSH, the histopathological examination con-
firmed positive on-ink margins (see Fig. 6), including
small (~ 1 × 1 mm2) pockets of DCIS (see Fig. 6d-e).
MSH detected tumor in all specimens for which histo-
pathological assessment identified positive margins (see
all examples in Additional file 1: Figure S5).
For eight specimens where MSH detected tumor,

histopathological assessment identified margins wider

Fig. 4 Multi-modal spectral histopathology (MSH) diagnosis generated using auto-fluorescence (AF) and raster scan Raman measurements of
breast samples. Diagnosis for Raman raster scan is presented as tumor probability (P) (output of the classification model), while the diagnosis of
each segment in the MSH is presented as tumor score (TS). Segmentation and sampling algorithms use AF images to focus Raman
measurements (red circles) to suspicious regions, greatly reducing the number of spectra required for accurate diagnosis. Areas detected as
tumor in the first round of MSH measurements are sampled by further Raman measurements (magenta crosses). a) Invasive carcinoma (IC); b)
lobular carcinoma in situ (LCIS); c) ductal carcinoma in situ (DCIS)
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than the penetration depth of our technique. Each of
these measurements are presented in Additional file 1:
Figure S6. Figure 7e shows an MSH measurement that
detected positive margins. Histopathological assessment
of this specimen identified lactation adenoma at the
margin, but no tumor within 100 μm. For BCS speci-
mens, histopathology sections were not available for the
entire surface measured by MSH, only sections perpen-
dicular to the measured surface. Therefore, these de-
tected tumor regions could either be false positives or
true positives not detected by histopathology. If these

eight positive MSH results without confirmation by
co-located histopathology sections are considered false
positives, the specificity of MSH on BCS specimens is
80%, which is in agreement with the specificity for the
independent test on mastectomy samples.
MSH provided a “clear” diagnosis in 33 BCS speci-

mens (see Fig. 7a-d, all examples in Additional file 1:
Figure S7). Normal histopathological assessment of these
specimens detected no tumor near the measured surface.
Therefore, MSH detected tumor on the surface of all
specimens for which histopathological assessment later

Fig. 5 Validation of multi-modal spectral histopathology (MSH) on independent mastectomy breast samples. a Receiver-operator curve (ROC) for
independent test samples at varying tumor score thresholds. Results corresponding to the thresholds determined based on training set data are
marked with circles. (b-e) Examples of tumor tissue detected by MSH and confirmed by histopathology. DCIS, ductal carcinoma in situ; DC-
NST, ductal carcinoma of no special type; IC, invasive carcinoma. f-i Examples of tissue identified as clear by both MSH and histopathology.
S, stroma; P, parenchyma; HP, hyperplasia; FA, fibroadenoma. j Example of false positive where MSH marked segments as moderate risk although
histopathological assessment identified fibroadenoma
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identified positive margins. For the 51 BCS surfaces
measured in this independent test of MSH, the sensitiv-
ity was 100% and the specificity was at least 80%.

Discussion
The main objective of this study was to evaluate the potential
of multimodal spectral histopathology (MSH) to accurately
detect tumors on the surface of excised BCS specimens
within timescales compatible with intra-operative use. New
measurement and data analysis algorithms were developed
to obtain objective diagnoses of varied, large specimens free
from user variability. These algorithms were optimized to
measure a large tissue surface in intra-operative timescales
while maintaining the ability to detect small tumors.
We aimed to assess the surface area of the specimen in

the radial margin, which will enable assessment of one tis-
sue surface plus approximately half of the adjacent sur-
faces at the same time due to fatty tissue deformation.
Concentrating on the margins of greatest concern (sur-
faces up to 4 × 6.5 cm2) as informed by visual and tactile
inspection of the specimen and intraoperative radiography

could allow scanning in the time frame required for an
intra-operative procedure (12–24 min).
Although DCIS occurs less often than IC, it often

co-exists with small tumors and frequently extends beyond
the boundaries of the index tumor, making re-excisions
more common [5]. Small residual foci of DCIS are difficult
to detect by alternative intra-operative techniques under
development because of limited spatial resolution or sam-
pling coverage. However, MSH utilizes the high spatial
resolution, speed, and sensitivity (but low specificity) of AF
imaging to guide Raman spectroscopy with its high
chemical specificity to detect small tumors. Indeed, MSH
was able to detect residual DCIS and other small tumors
(1–2 mm) on the surface of whole BCS specimens that
were missed during surgery.
Mastectomy samples were chosen for developing

the diagnosis model and the initial independent test
because H&E sections could be obtained from the
same surface measured by MSH, thus providing a re-
liable standard of reference. These tests estimated the
sensitivity and specificity of the technique as 91% and
83%, respectively. These results included challenging

Fig. 6 Examples of multi-modal spectral histopathology (MSH) measurements of whole breast conserving surgery (BCS) specimens with positive
margins confirmed by histopathological assessment. The surface measured by MSH is facing downward in the specimen images. MSH detected
tumor on the surface of all specimens in 12–24 min. a-c) invasive carcinoma (IC); d, e) ductal carcinoma in situ (DCIS)

Shipp et al. Breast Cancer Research  (2018) 20:69 Page 11 of 14



cases (highly proliferative but non-malignant lesions)
that were under-represented in the training set for
the classification model. Still, MSH provided accurate
detection of breast carcinomas including DCIS.
The validation of the technique using 51 whole

BCS specimen surfaces (4 × 6.5 cm2) measured imme-
diately after surgery allowed demonstration of the
feasibility of intra-operative use of MSH (12–24 min).
MSH detected tumors in all scanned surfaces that
had positive margins subsequently confirmed by histo-
pathological assessment, including those with DCIS.
Had the MSH results been available in the operating
theater, the residual tumor may have been immedi-
ately removed.
As standard histopathology practice sparsely in-

volves sectioning BCS tissue perpendicular to the sur-
face measured by MSH, H&E sections were not
available at all locations where MSH detected tumor.
Although MSH provides a more comprehensive ana-
lysis of the excision surface compared to slide-based
histology, histopathology obtains information such as

tumor type and progression, which is important for
continuing patient care, but not urgently required
during surgery. The non-destructive, non-labeling na-
ture of MSH allows BCS specimens to be submitted
for normal histopathological processing following the
MSH measurement.
These results suggest that clinical use of MSH

could detect 95% of residual tumors in BCS surgeries
and prevent re-excisions in these cases. Positive mar-
gins remaining undetected by MSH would proceed
through treatment following current protocols. Any
false positives would result in cavity shaves, similar to
the untargeted approach of Chagpar et al. [6]. Thus,
MSH can be used with minimal risk and great poten-
tial benefit to the patient.
Our investigation confirms the extension of the

MSH technique to real specimens. The quartz win-
dow (5.1 × 7.6 cm2) was able to accommodate most
BCS specimens. Within 12–24 min, the excision surface
of greatest concern could be measured with diagnostic re-
sults displayed as three-color images, allowing surgeons to

Fig. 7 Examples of multi-modal spectral histopathology (MSH) measurements of whole breast conserving surgery (BCS) specimens for which
histopathological examination identified negative margins. a-d MSH detected no tumor on the surface of 80% of specimens declared clear by
histopathological examination. Distances from the measured margin to tumor are marked with green arrows. e MSH detected tumor although
only lactation adenoma (LA) was found within 100 μm of the measured surface in sections sampled by histopathological examination
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make immediate, informed decisions on further resections
while incorporating additional clinical factors. Neverthe-
less, the analysis time can be further reduced in the future
by developing a more optimized and automated instru-
ment to eliminate the current manual steps (e.g. micro-
scope focusing, change between AF and Raman objectives,
and faster microscope translation stage [39]). In clinical
use, additional information such as radiographic images of
the specimens would be used to identify the surface with
the highest risk, allowing prioritization of faster or more
accurate measurements (e.g. by increasing the Raman
acquisition time over a smaller area). Faster multi-beam
Raman spectroscopy could also be used to parallelize the
acquisition of the Raman spectra of tissue [44] to provide
additional speed and allow the measurement of the entire
specimen surface within a shorter measurement time.
With such further development and integration into clinical
practice, many re-excision operations may be prevented.

Conclusion
Combining the fast, high-resolution imaging of AF and
the accurate molecular diagnosis of Raman spectroscopy,
MSH is able to identify small residual tumors on the sur-
face of breast excision specimens within intra-operative
timescales. Measurement and diagnosis algorithms have
been trained and optimized to quickly evaluate large tissue
surfaces. A future fully automated system will further im-
prove on accuracy and speed. MSH diagnosis images
could guide the surgeon to remove additional tissue im-
mediately and potentially prevent a large number of sec-
ondary operations.
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