
Parametric Polymorphism and Operational Improvement

JENNIFER HACKETT and GRAHAM HUTTON, University of Nottingham, UK

Parametricity, in both operational and denotational forms, has long been a useful tool for reasoning about

program correctness. However, there is as yet no comparable technique for reasoning about program improve-

ment, that is, when one program uses fewer resources than another. Existing theories of parametricity cannot

be used to address this problem as they are agnostic with regard to resource usage. This article addresses

this problem by presenting a new operational theory of parametricity that is sensitive to time costs, which

can be used to reason about time improvement properties. We demonstrate the applicability of our theory

by showing how it can be used to prove that a number of well-known program fusion techniques are time

improvements, including fixed point fusion, map fusion and short cut fusion.

CCS Concepts: • Software and its engineering → Functional languages; Polymorphism; • Theory of

computation→ Operational semantics;

ACM Reference Format:

Jennifer Hackett and Graham Hutton. 2018. Parametric Polymorphism and Operational Improvement. N/A,

ICFP (July 2018), 24 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Parametric polymorphism is everywhere. In typed functional languages, many if not most of the

built-in and user-defined functions are parametric. Because of this ubiquity, we must carefully study

the properties of parametric functions. Chief among these properties is the abstraction theorem

[Reynolds 1983], which shows that any well-typed term must satisfy a property that can be derived

uniformly from its type. By instantiating this theorem for specific types, we obtain the so-called

“free theorems” of Wadler [1989], properties held by any term of a given type.

The abstraction theorem was first presented by Reynolds [1983], who proved it using the notion

of relational parametricity. In relational parametricity, one starts with a denotational semantics

based on sets (or more generally, some form of domain) and builds on top of it another denotational

semantics based on relations between those sets. It can then be shown that interpreting any term

in related contexts must produce related results. Deriving the free theorem is then a matter of

calculating the relational interpretation of the type in question.

The original denotational presentation of the abstraction theorem is promising, as it suggests

that similar theorems will exist for any System F-like language. However, it is often not obvious

what a parametric model of such a language should be. For this reason, it is helpful to investigate

more operational notions of parametricity such as the version developed by Pitts [2000], where the

relations we work with are between terms rather than between the interpretations of terms. The

result is an abstraction theorem that respects observational equivalence, provided the relations

involved satisfy the intuitive property of ⊤⊤-closure.

Authors’ address: Jennifer Hackett; Graham Hutton, School of Computer Science, University of Nottingham, Jubilee Campus,

Wollaton Road, Nottingham, NG8 1BB, UK, {jennifer.hackett,graham.hutton}@nottingham.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

XXXX-XXXX/2018/7-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


:2 Jennifer Hackett and Graham Hutton

Parametricity can be used to give correctness proofs of a number of useful program optimisations,

most notably short cut fusion [Gill et al. 1993]. However, correctness is only one side of optimisations:

we must also consider whether transformations improve performance. In order to carry correctness

results into this setting we need a resource-aware theory of parametricity, to provide us with free

theorems that include information about efficiency properties.

In this article we develop a new operational theory of parametricity that can be used to reason

about time improvement, i.e. when one term can be replaced by another without increasing time

cost. Our theory is built on a standard lazy abstract machine [Sestoft 1997], making it applicable to

call-by-need languages such as Haskell. Specifically, we make the following contributions:

• We show how Pitts’ notion of ⊤⊤-closure can be adapted to produce a resource-aware notion

that we call machine-closure. The key idea is that whereas ⊤⊤-closed relations respect

observational equivalence, machine-closed relations respect time improvement.

• We use the notion of machine-closure to prove an abstraction theorem for call-by-need

programs that use recursion in a restricted manner, namely when the right-hand side of the

recursive binding is in value form. The resulting theorem can be used to reason about time

improvement properties in call-by-need languages such as Haskell.

• We demonstrate the application of our abstraction theorem by justifying a number of fusion-

based optimisations as time improvements, including short cut fusion. We focus on fusion as

most parametricity-based optimisations are instances of fusion.

This work has similar aims to that of Seidel and Voigtländer [2011], who investigate efficiency-

based free theorems in a call-by-value language, but differs in setting and approach. Firstly, we

consider call-by-need rather than call-by-value. Secondly, their work is based on a denotational

semantics instrumented with costs and it is not clear how this can be applied in a call-by-need

setting, so instead we use an operational semantics with an explicit stack and heap. Finally, our work

builds on the call-by-need improvement theory of Moran and Sands [1999a], using an improvement

relation to abstract away from explicit costs where possible.

This paper is part of a wider project to make questions of call-by-need efficiency more tractable

[Hutton and Hackett 2016]. By developing new techniques for questions of improvement that are

compatible with the existing techniques used to prove correctness, we seek to bring the two issues

of correctness and improvement closer together, reducing the work that must be done to formally

justify a particular program transformation. In this case, a technique based on parametricity for

reasoning about improvement makes it easier to reason about the efficiency aspects of program

transformations that rely on parametricity for their correctness properties.

2 BACKGROUND
We begin in this section with some background on the two key technical elements that underpin

our work, namely parametric polymorphism and operational improvement.

2.1 Parametric Polymorphism
The viewpoint of parametric polymorphism is that a polymorphic function must do the same thing

at every type. This contrasts with ad-hoc polymorphism [Strachey 2000], where it is only required

that a function do something at every type. The result is that parametrically polymorphic functions

are forced to respect the abstractions of the calling code, being prevented from inspecting the

structure of the type at which they are called. This property was first observed by Reynolds [1983],

who proved the abstraction theorem for the polymorphic λ-calculus.
Reynolds’ abstraction theorem works by first defining a set-theoretic denotational semantics,

where types are interpreted as sets and terms as elements of those sets, and then building on top of

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :3

this a semantics of logical relations. These relations are built by defining relation-lifted definitions

of the type constructors of the language. For example, two terms at a function type are related if

they take related arguments to related results:

(f , g) ∈ R → S ⇔ ∀ (x, y) ∈ R. (f x, g y) ∈ S

Once we have this relational interpretation of types, it can be shown by a straightforward induction

on the structure of type derivations that interpreting any term in related environments will give

related results. This model can be extended with extra constructs such as general recursion and

sequencing, which translate to adding restrictions on the relations [Johann and Voigtländer 2004].

However, this method is limited to languages with a natural denotational semantics, and so cannot

be applied when the only natural semantics is operational.

Pitts [2000] addressed this issue by presenting an operational treatment of parametricity for a

language called PolyPCF, a version of Plotkin’s PCF [Plotkin 1977] extended with list types and

polymorphism. The same technique of building relations from the structure of types is used, but

these relations are between terms rather than elements of a denotational semantics. It is therefore

necessary to require that the relations respect equivalence in the operational semantics.

To ensure that relations respect equivalence, Pitts introduced two notions for PolyPCF language.

Firstly, there is the ⊤ relation that holds between stacks (which function as term contexts) and

terms whenever the stack applied to the term will produce the empty list Nil. Secondly, there is the

⊤⊤-closure operator for term relations, so called because it involves using the ⊤ relation twice:

once to go from a relation on terms to one on stacks, and once to go back again. As a consequence

of the definition, all ⊤⊤-closed relations respect equivalence.

We can summarise the notion of ⊤⊤-closure as follows. Given a relation R : τ1 ↔ τ2 between
types τ1 and τ2, its ⊤⊤-closure R

⊤⊤
is a relation of the same type. A pair (M1,M2) is in R⊤⊤

if:

for all stacks S1, S2,
if for all (N1,N2) ∈ R, S1⊤N1 ⇔ S2⊤N2

then S1⊤M1 ⇔ S2⊤M2

Pitts shows that ⊤⊤-closed relations are closed under the relational versions of function space

formation, type abstraction and list type formation, thus demonstrating that they are a suitable

notion of relation on terms. It can then be shown that any closed term is related to itself, and that

open terms are related to themselves provided that the relational interpretations of the free type

variables are all ⊤⊤-closed. Applying this theorem is then a matter of instantiating with particular

relations, provided these relations can be shown to be ⊤⊤-closed.

2.2 Operational Improvement
In order to reason about the operational efficiency of programs, we need some model of the cost of

terms. For call-by-value this is straightforward: in most cases it is enough simply to count the steps

taken to evaluate the term to normal form; functions are slightly more complicated as we have

both the cost to evaluate the function itself and the cost to compute its result, where the latter may

depend on the argument to the function [Shultis 1985]. The result is a semantics of call-by-value

λ-terms that can be used to reason about time costs.

The situation for call-by-need is more complicated, however. In this case, a subterm is only

evaluated when it is forced, i.e. when its value is required, so the cost to evaluate a term to normal

form is a poor measure of efficiency. For example, the terms [⊥] and [0] are both in normal form,

but one is potentially more efficient than the other: e.g. head [⊥] diverges while head [0] returns

almost immediately. One might consider making this analysis recursive, comparing the cost of

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:4 Jennifer Hackett and Graham Hutton

evaluating subterms as well, but this method will identify the terms let x = M in (x, x) and (M,M)

even though one shares work in a way the other does not.

The solution of Moran and Sands [1999a] is to quantify over evaluation contexts. That is to say,

a term M is improved by another term N , written M ▷
∼
N , if for all contexts C, the term C[M ] takes

at least as many steps to evaluate as C[N ]. By taking into account all possible uses of the initial

terms, we automatically take into account cost savings introduced by sharing as well as the cost of

computing subterms. Furthermore, this notion of efficiency is compositional by definition, making

it amenable to techniques of inequational reasoning.

Moran and Sands’ improvement theory has been used to justify general-purpose program

improvements, such as the worker/wrapper transformation [Hackett and Hutton 2014]. This takes

advantage of the parallels between the rules of call-by-need improvement and those of program

equivalence, which makes it possible to adapt proofs of correctness into proofs of improvement.

Subsequent work took this idea of having compatible equivalence and improvement proofs and

placed it in a generalised setting of preorder-enriched categories [Hackett and Hutton 2015].

Improvement theory and related techniques have seen something of a resurgence in recent years.

Breitner [2015] uses an operational approach to proving the safety of the call arity transformation

based on counting the number of allocations made. Sergey et al. [2017] use a step-counting approach

to show that floating let bindings into a lambda is an improvement provided the lambda expression

is used only once. Schmidt-Schauß and Sabel [2015] use an operational semantics based on term

rewriting rules to show that a number of local optimisations are improvements, including common

subexpression elimination. Finally, Simões et al. [2012] define a cost model for Launchbury’s natural

semantics [Launchbury 1993], and use it to prove soundness of a cost analysis.

3 FROM EQUIVALENCE TO IMPROVEMENT
In this section, we show how to build a theory of parametricity that can be used to reason about

program improvements. Essentially we want to do for improvement what Pitts did for equivalence.

Unfortunately, Pitts’ notion of ⊤⊤-closure is too strong for our purposes: because ⊤⊤-closed

relations must respect program equivalence, they cannot be used to distinguish between obser-

vationally equivalent programs with different costs. In a sense, Pitts’ notion of observation is too

narrow for our purposes. What we need is a notion of closure that forces relations to respect only

cost-equivalence, i.e. when two programs are interchangeable in terms of time costs.

3.1 Call-By-Need PolyPCF
We consider a simple language, a polymorphically-typed λ-calculus with recursive bindings. The

type and term grammars are defined as follows:

α ∈ TVar

x, y, xs ∈ Var

A, B ∈ Type ::= α

| A → B

| List A

| ∀ α .A

M, N ∈ Term ::=

x

| λx .M

| M x

| Λα .M

| M A

| let { ®x = ®M } in N

| Nil

| x :: xs

| case M of {Nil → M1; x :: xs → M2 }

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :5

The typing rules for the language are given in Figure 1, and comprise one rule for each language

construct. Note that the typing context Γ contains both free type variables and type assignments

for free term variables. We apply a standard well-formedness constraint to Γ.
Our chosen language is similar to the PolyPCF language studied by Pitts, but with two key

differences. Firstly, we have added recursive let-bindings to the language and remove the fixed

point combinator fix. We do this because let-binding-based presentations of recursion are better at

capturing sharing. Secondly, we only allow functions and constructors to be applied to variables.

This latter distinction is useful because it means that all sharing is explicitly introduced in let-

bindings, making it easier to reason about call-by-need evaluation; a similar restriction applied to

earlier versions of the internal language used in the Glasgow Haskell Compiler, GHC Core.

The operational semantics for this language is a small-step semantics based on Sestoft’s Mark 1

abstract machine [Sestoft 1997], extended to handle type abstraction and application. A machine

state is given by a triple ⟨H , M, S⟩ consisting of a heap H that binds term variables to terms, the

current term to be evaluated M , and a stack S consisting of tokens that describe the context in

which the result of evaluatingM is to be used. There are four kinds of stack tokens: variable updates

#x that signal when a variable is to be updated with the result of the computation; applications x

that signify when the result should be given a variable as an argument; type applications [A] that

signify when the result should be given a type argument; and finally, alternatives alts that signify

that the result should be pattern-matched and branched on.

A term is considered evaluated when it is in value form, that is, when it is the empty list, a cons

cell or either kind of abstraction. Note that this is quite a restrictive form for lists, as cons cells

only contain variables rather than terms; this reflects the fact that a fully-evaluated list will exist

almost entirely on the heap. By convention, we denote value terms with letters such as V andW .

The complete set of transition rules for the semantics are given in Figure 2. We assume that all

bound variables are unique in the statement of these rules, which can be achieved by α-renaming

to a fresh variable whenever an abstraction is opened.

Now we can define our notions of improvement and cost-equivalence. If for all heaps and stacks

⟨H , S⟩ we have that if ⟨H , M, S⟩ terminates after making n Lookup steps then ⟨H , N , S⟩ terminates

after n or fewer Lookup steps, we sayM is improved by N , writtenM ▷
∼
N . IfM and N both improve

each other we say that they are cost-equivalent, written M ◁▷
∼
N . Note that improvements capture

the notion of never-worse, and do not guarantee that the resulting term is in practice better.

We only count Lookups as these are an appropriate measure of the total cost of evaluating

a term. In particular, the total number of steps is bounded by a linear function of the number

of Lookups [Moran and Sands 1999a]. Of course, it may be the case that an improvement that

holds when counting Lookups fails when taking some other operational aspects into account.

However, restricting the scope of the costs makes the theory more tractable. This is standard in

improvement theory – no abstract model will perfectly match reality, and given that memory access

often dominates, counting memory accesses is a reasonable approach.

3.2 Machine-Closure for Relations
Now that we have our language, we must develop a notion of relations between terms of that

language. These relations will be between terms of particular types in the language; if R relates

terms of type A to terms of type B, we say that R has the type A ↔ B. However, not all relations will

have the desired properties of respecting costs. We must therefore have some notion of permissible

relations that are all guaranteed to have this property.

As noted above, we cannot use Pitts’ notion of ⊤⊤-closure as it identifies all equivalent terms

regardless of cost. However, we can modify ⊤⊤-closure to produce another notion of closure that

is more suitable for our purposes. We obtain this notion by replacing Pitts’ stacks by heap and

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:6 Jennifer Hackett and Graham Hutton

Γ, x : A ⊢ x : A

Var

Γ, x : A ⊢ M : B

Γ ⊢ λx .M : A → B

Abs

Γ, x : A ⊢ M : A → B

Γ, x : A ⊢ M x : B

App

Γ, α ⊢ M : A

Γ ⊢ Λα .M : ∀ α .A
TAbs

Γ ⊢ M : ∀ α .B ftv (A) ⊆ Γ

Γ ⊢ M A : B [A/α ]
TApp

Γ ⊢ Nil : List A

Nil

Γ, x : A, xs : List A ⊢ x :: xs : List A

Cons

Γ ⊢ M : List A Γ ⊢ M1 : B

Γ, x : A, xs : List A ⊢ M2 : B

Γ ⊢ case M of {Nil → M1; x :: xs → M2 } : B

Case

Γ, x1 : T1, . . . , xn : Tn ⊢ M1 : T1
...

Γ, x1 : T1, . . . , xn : Tn ⊢ Mn : Tn
Γ, x1 : T1, . . . , xn : Tn ⊢ M : T

Γ ⊢ let {x1 = M1; . . . ;xn = Mn } in M : T

LetRec

Fig. 1. The typing rules for our language

⟨H {x = M }, x, S⟩ → ⟨H , M, #x : S⟩ { Lookup }

⟨H , V , #x : S⟩ → ⟨H {x = V }, V , S⟩ { Update }

⟨H , M x, S⟩ → ⟨H , M, x : S⟩ { Unwind }

⟨H , λx .M, y : S⟩ → ⟨H , M [y/x ], S⟩ { Subst }

⟨H , M A, S⟩ → ⟨H , M, [A] : S⟩ { TypeUnwind }

⟨H , Λα .M, [A] : S⟩ → ⟨H , M [A/α ], S⟩ { TypeSubst }

⟨H , case M of alts, S⟩ → ⟨H , M, alts : S⟩ { Case }

⟨H , Nil, {Nil → N1; x :: xs → N2 } : S⟩ → ⟨H , N1, S⟩ { BranchNil }

⟨H , y :: ys, {Nil → N1; x :: xs → N2 } : S⟩ → ⟨H , N2 [y/x, ys/xs ], S⟩ { BranchCons }

⟨H , let { ®x = ®M } in N , S⟩ → ⟨H { ®x = ®M }, N , S⟩ { Letrec }

Fig. 2. The call-by-need abstract machine

stack pairs that capture all of the state of the abstract machine besides the term itself, and adapting

the ⊤ relation to take costs into account. We also follow Voigtländer and Johann [2007] and use

one-directional implication in our definition, as this is more useful for reasoning about program

orderings. We call the resulting notion of closure machine-closure. Given a relation R : A ↔ B, two

termsM1 : A andM2 : B are related by the machine-closure of R, written RM
, if:

for all heap and stack pairs ⟨H1, S1⟩ and ⟨H2, S2⟩,
if for all (N1, N2) ∈ R, ⟨H1, N1, S1⟩ ↓n ⇒ ⟨H2, N2, S2⟩ ↓n
then ⟨H1, M1, S1⟩ ↓n ⇒ ⟨H2, M2, S2⟩ ↓n

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :7

By ⟨H , N , S⟩ ↓n , we mean that if we start the abstract machine in state ⟨H , N , S⟩, then it will take at
most n Lookup steps to finish evaluating. The key idea is that machine-closed relations should only

be able to capture properties that can be observed by running terms in specific machine contexts

and comparing the costs. In other words, they must be observational improvement properties.

We can prove a number of useful theorems about machine-closure. Firstly, we note that machine-

closure is monotone, i.e. if R ⊆ S then RM ⊆ SM . This follows from the fact that R appears twice

under the left-hand side of an implication. Secondly, we show that machine-closure really is a

notion of closure, i.e. R ⊆ RM = (RM)M . That R is smaller than RM
follows from the definition, as

when (M1, M2) ∈ R then the criterion for membership in RM
becomes a tautology. Then, as any

heap and stack pairs that identify pairs in R will also identify pairs in RM
by definition, we can

conclude that any pair in (RM)M will also be in RM
, so our closure operation is idempotent.

Finally, we show that machine-closed relations respect improvement, in the sense that whenever

(M1, M2) ∈ R,M ′
1
▷
∼
M1 andM2 ▷∼ M ′

2
, then (M ′

1
, M ′

2
) ∈ R. Assuming this precondition, and assuming

R is machine closed, we can then conclude that for any heap and stack pairs ⟨H1, S1⟩ and ⟨H2, S2⟩
such that for any (N1, N2) ∈ R, we have ⟨H1, N1, S1⟩ ↓n ⇒ ⟨H2, N2, S2⟩ ↓n :

⟨H1, M
′
1
, S1⟩ ↓n

⇒ { improvement }

⟨H1, M1, S1⟩ ↓n
⇒ { assumption }

⟨H2, M2, S2⟩ ↓n
⇒ { improvement }

⟨H2, M
′
2
, S2⟩ ↓n

Therefore, we can conclude that (M ′
1
, M ′

2
) is also in RM

.

3.3 Actions on Relations
Now that we have defined an appropriate notion of relation on terms, we must in turn define how

the type constructors of our language act on those relations. In particular, we need these actions

to preserve the machine-closure property, in order that any relation built out of machine-closed

relations using these constructors will also be machine-closed. We can define relational actions for

the three type constructors of our language as follows:

• Function spaces. Given relations, R : T1 ↔ T ′
1
and S : T2 ↔ T ′

2
, we can define the relation

R → S : (T1 → T2) ↔ (T ′
1
→ T ′

2
). Two terms M : T1 → T2 and M

′
: T ′

1
→ T ′

2
are related by

R → S iff for all collections of bindings B, B
′
, we have the following implication:

(let B in y, let B′ in y) ∈ R

⇒ (let B in M y, let B′ in M
′
y) ∈ S

In other words, they must take related arguments to related results.

• List types. Given R : T ↔ T
′
, we can define the relation List R : List T ↔ List T

′
as the

least fixed point of the following equation, for all collections of bindings B, B
′
:

List R = ({ (Nil, Nil)} ∪

{ (let B in y :: ys, let B′ in y :: ys)

| (let B in y, let B′ in y) ∈ R,

(let B in ys, let B′ in ys) ∈ List R }) M

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:8 Jennifer Hackett and Graham Hutton

In other words, Nil is related to itself, and non-empty lists are related if their heads and tails

are related. The fixed point is guaranteed to exist because all operations in the definition are

monotone and relations List A ↔ List A
′
form a lattice.

• Type abstraction. Given a family of functions R indexed over types T1, T
′
1
that map relations

of type T1 ↔ T ′
1
to relations of type T2 [T1 ] ↔ T ′

2
[T ′

1
], we can define the relation ∀ r . R (r).

Two terms M : ∀ α .T2 [α ] and M
′
: ∀ α .T ′

2
[α ] are related by ∀ r . R (r) if and only if:

∀ T1, T
′
1
∈ Type, S : T1 ↔ T ′

1
.

(M T1, M
′ T ′

1
) ∈ R (S)

In other words, two polymorphic terms are related if a relation between two types can be

lifted to a relation that relates the terms’ instantiations at those types.

These three definitions are based on the relational actions from Pitts [2000], adapted to our setting.

We use the technique of adding bindings to get around the limitation of applying terms and

constructors only to variables, and to take account of sharing. There is an implicit requirement in

the above definitions that all the bindings are type-correct. Note that our approach for lists differs

from that of Pitts, who uses a greatest fixed point to make the use of coinduction easier. In contrast,

we use a least fixed point to make the use of induction easier. In Pitts’ setting, both definitions

result in the same logical relation, and we conjecture the same is true in our setting. However, our

theory does not depend on this being the case, and all of our results hold regardless.

The next step is to prove that all three of these constructions preserve the notion of machine-

closure. That this is the case for the List construction is immediate, as any fixed-point of the defining

equation is by definition machine-closed. For the other two, the proof is a little more involved:

Lemma 3.1 (Function Space Preserves Machine-Closure).

(i) Given bindings B, B
′
and heap and stack pairs ⟨H , S⟩, ⟨H ′, S′⟩, if we have

(a) (let B in y, let B′ in y) ∈ R

(b) ∀ (N , N ′) ∈ R
′. ⟨H , N , S⟩ ↓n⇒ ⟨H ′, N ′, S′⟩ ↓n

then we also have

∀ (M, M ′) ∈ R → R
′ .

⟨H + B, M, y : S⟩ ↓n ⇒ ⟨H ′ + B′, M ′, y : S
′⟩ ↓n

(By H + B, we mean the heap gained by adding the bindings B to the heap H .)

(ii) Given machine-closed relations R and R
′
, then R → R

′
is also machine-closed.

Proof. For part (i), take arbitrary (M, M ′) ∈ R → R
′
.We note that (let B in M y, let B′ in M

′
y) ∈

R
′
by assumption (a) and the definition of R → R

′
, and reason as follows:

⟨H + B, M, y : S⟩ ↓n

⇔ { Unwind and Letrec steps are free }

⟨H , let B in M y, S⟩ ↓n
⇒ { assumption (b) }

⟨H ′, let B′ in M
′
y, S′⟩ ↓n

⇔ { Unwind and Letrec steps are free }

⟨H ′ + B′, M ′, y : S
′⟩ ↓n

For part (ii), we assume (M, M ′) ∈ (R → R
′) M

for machine-closed R and R
′
, and aim to prove

(M, M ′) ∈ R → R
′
. Assuming type-correct bindings B and B

′
such that (let B in y, let B′ in y) ∈ R,

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :9

we must show that (let B in M y, let B
′ in M

′
y) ∈ R

′
. Letting ⟨H , S⟩, ⟨H ′, S′⟩ be arbitrary

heap-stack pairs such that ∀ (N , N ′) ∈ R
′. ⟨H , N , S⟩ ↓n ⇒ ⟨H ′, N ′, S′⟩ ↓n , we have:

⟨H , let B in M y, S⟩ ↓n
⇔ { Unwind and Letrec steps are free }

⟨H + B, M, y : S⟩ ↓n

⇒ { part (i), definition of machine-closure }

⟨H ′ + B′, M ′, y : S⟩ ↓n

⇔ { Unwind and Letrec steps are free }

⟨H ′, let B′ in M
′
y, S⟩ ↓n

Because these heap-stack pairs were arbitrary, we can conclude (let B in M y, let B′ in M
′
y) ∈

R′M
, which implies the desired result by the assumption that R

′
is machine-closed. □

Lemma 3.2 (Type Abstraction Preserves Machine-Closure).

(i) Given heap and stack pairs ⟨H , S⟩, ⟨H ′, S′⟩, if we have

∀ r : T ↔ T
′, (N , N ′) ∈ R (r) .

⟨H , N , S⟩ ↓n ⇒ ⟨H ′, N ′, S′⟩ ↓n

then we also have

∀ (M, M ′) ∈ ∀ r . R (r) .

⟨H , M, [T ] : S⟩ ↓n ⇒ ⟨H , M ′, [T ′ ] : S
′⟩ ↓n

(ii) For any typesT2,T
′
2
, given a family of functions R indexed over typesT1,T

′
1
that map relations of

typeT1 ↔ T ′
1
to relations of typeT2 [T1 ] ↔ T ′

2
[T ′

1
], if all the relations R (r) are machine-closed

then the relation ∀ r .R (r) will also be machine-closed.

Proof. Similarly to Lemma 3.1, but with TypeUnwind steps rather than Unwind/Letrec. □

3.4 The Logical Relation
Given the above relational actions, it is possible to define a family of relations indexed over types,

abstracted over the interpretations of type variables. By convention this family is called the logical

relation, denoted ∆. The idea is that this family of relations will relate every term to itself, and so

by calculating the relation for a particular type we will get a property of terms of that type. This

property is called the abstraction theorem. Using the constructions from the previous section, we

can define our logical relation recursively on the structure of types:

∆ ( ®R/ ®α) (αi ) = Ri

∆ ( ®R/ ®α) (T1 → T2) = ∆ ( ®R/ ®α) (T1) → ∆ ( ®R/ ®α) (T2)

∆ ( ®R/ ®α) (∀ α .T ) = ∀ r . ∆ (rM/α , ®R/ ®α) (T )

∆ ( ®R/ ®α) (List T ) = List (∆ ( ®R/ ®α) (T ))

A simple proof by induction shows that ∆ ( ®R/ ®α) (T ) is machine-closed whenever all the ®R are.

Furthermore, another proof by induction shows that if all of ®R are subsets of ▷
∼
then ∆ ( ®R/ ®α) (T ) is

also a subset of ▷
∼
. This corresponds to Reynolds’ identity extension lemma [Reynolds 1983].

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:10 Jennifer Hackett and Graham Hutton

3.5 The Abstraction Theorem (for Non-Recursive Programs)
Now we can prove a version of the abstraction theorem. In this section we will prove the theorem

for a non-recursive version of our language, but in the next section we will show how to extend

the theorem to deal with recursive programs. We proceed in this manner because dealing with

recursion requires applying some limitations to our language that we do not wish to apply to

non-recursive programs. For the purposes of this section, we use the following weaker version of

the Let rule that disallows the use of recursion:

Γ ⊢ M1 : T1 . . . Γ ⊢ Mn : Tn
Γ, x1 : T1, . . . , xn : Tn ⊢ M : T

Γ ⊢ let {x1 = M1; . . . ;xn = Mn } in M : T

Let’

Now we state the abstraction theorem:

Theorem 3.3 (Abstraction for Non-Recursive Programs). Given a closed term M and closed

type A such that ⊢ M : A (using the weaker Let’ rule rather than Let), we have (M, M) ∈ ∆ () (A).

To prove this theorem we must actually prove a stronger theorem, extending the logical relation

∆ to terms with free variables. Assuming Γ = ®α , x1 : T1, . . . , xn : Tn , we define Γ ⊢ M ∆ M
′
: T

to mean that for all bindings B, B
′
that close the terms M , M

′
respectively, and machine-closed

relations ®R : Ti ↔ T ′
i (where length

®R = length ®α ), we have:

(∀ i ∈ [1 . . n] .

(let B in xi ,

let B′ in xi ) ∈ ∆ ( ®R/ ®α) (Ti ))

⇒

(let B in M [ ®T / ®α ],

let B′ in M
′ [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T )

Theorem 3.3 then follows immediately from the following lemma:

Lemma 3.4. Given a context Γ, term M and type A such that Γ ⊢ M : T (using the weaker Let’

rule instead of Let), we have that Γ ⊢ M ∆ M : T . (The proof is given in the Appendix.)

4 DEALINGWITH RECURSIVE BINDINGS
In order to extend our treatment to deal with the full Let rule, we must have some way to reason

about the behaviour of recursive bindings. The usual technique, as used by Pitts [2000] and Moran

and Sands [1999a], is to define some notion of unwinding and to consider a fixed point as a limit to

the sequence of increasingly deep unwindings. This notion of limit is made precise by an unwinding

lemma that relates the behaviour of recursive terms to that of their finite non-recursive unwindings.

For example, the meaning of let x = M in N is generally taken to be the limit of the sequence:

let x0 = ⊥ in N [x0/x ]

let x1 = M [x0/x ];x0 = ⊥ in N [x1/x ]

let x2 = M [x1/x ];x1 = M [x0/x ];x0 = ⊥ in N [x2/x ]

...

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :11

We denote the nth element of this sequence as let x =n M in N

This technique cannot be applied as-is in a call-by-need setting, as there is work shared in the

recursive definition that is not shared in any of the unwindings. We follow the approach taken by

Moran and Sands [1999a] and restrict ourselves to cases where the right-hand side is a value, in

which case the problem does not arise. We return to this assumption in the concluding section.

First of all, we must state and prove our version of the unwinding lemma. In this case, we want

to know that machine-closed relations behave well with respect to limits of unwindings, which can

be regarded as a kind of continuity property of relations.

Lemma 4.1 (Unwinding).

(i) A machine state ⟨H {x = V }, N , S⟩ terminates in k steps iff there is some non-negative integer

n such that the machine state ⟨H {x =n V }, N , S⟩ terminates in k steps.

(ii) Given a pair of closed terms let x = V in N and let x = V
′ in N

′
and a machine-closed

relation R, the membership relation (let x = V in N , let x = V
′ in N

′) ∈ R holds iff the

membership relation (let x =n V in N , let x =n V
′ in N

′) ∈ R holds for all non-negative n.

Proof. Part (i) follows easily from the fact that a binding can only recurse finitely many times

in a given execution. For part (ii), the ⇒ direction follows from (i) and the definition of machine-

closure. For the ⇐ direction, suppose we have heap and stack pairs ⟨H1, S1⟩ and ⟨H2, S2⟩ such
that for any (P, P ′) ∈ R, we have ⟨H1, P, S1⟩ ↓n ⇒ ⟨H2, P

′, S2⟩ ↓n . We prove that ⟨H1, let x =
V in N , S1⟩ ↓n ⇒ ⟨H2, let x = V

′ in N
′, S2⟩ ↓n by case analysis on the termination behaviour of

the left-hand side of this result, considering the two cases in turn:

• Termination. If ⟨H1, let x = V in N , S1⟩ terminates in k steps, then by part (i) there must be

some non-negative integer n such that ⟨H1, let x =n V in N , S1⟩ terminates in k steps, in

which case we also have that ⟨H2, let x =n V
′ in N

′, S2⟩ terminates in k steps, and then by

part (i) we can conclude that ⟨H2, let x = V
′ in N

′, S2⟩ terminates in k steps.

• Non-termination. If ⟨H1, let x = V in N , S1⟩ does not terminate, ⟨H1, let x = V in N , S1⟩ ↓n
⇒ ⟨H2, let x = V

′ in N
′, S2⟩ ↓n is vacuously true. □

Now we can extend our proof of Lemma 3.4 to deal with recursive bindings. Only the Let case

differs. For simplicity, we illustrate the case for a single recursive binding, but the result can be

generalised easily to the case of multiple recursive bindings.

Lemma 4.2 (Recursive bindings). If Γ, x : T1 ⊢ V ∆ V : T1 and Γ, x : T1 ⊢ N ∆ N : T2 both
hold, then Γ ⊢ let x = V in N ∆ let x = V in N : T2 will also hold.

Proof. Let B and B
′
be bindings that close let x = M in N (but don’t contain x; we can

ensure this with alpha-renaming) and let ®R : ®T ↔ ®T ′
be a list of machine-closed relations

with length equal to the number of free type variables in Γ. Assume that for any y : A ∈ Γ,

we have (let B in y, let B
′ in y

′) ∈ ∆ ( ®R/ ®α) (A). We aim to prove (let B in let x =

V [ ®T /α ] in N [ ®T /α ], let B′ in let x = V [ ®T ′/α ] in N [ ®T ′/α ]) ∈ ∆ ( ®R/ ®α) (T2).

It suffices to prove (let B; x = V [ ®T /α ] in x, let B′
; x = V [ ®T ′/α ] in x) ∈ ∆ ( ®R/ ®α) (T1), which

implies our goal by the assumption Γ, x : T1 ⊢ N ∆ N : T2. First, we prove that for all n, we have

(let B; x =n V [ ®T /α ] in xn, let B′
; x =n V [ ®T ′/α ] in xn) ∈ ∆ ( ®R/ ®α) (T1). We do this by induction

on n. The base case is simple, as both sides diverge and all machine-closed relations relate diverging

terms to each other. For the inductive case, we reason as follows. Our induction hypothesis is

that (let B; x =n V [ ®T /α ] in xn, let B
′
; x =n V [ ®T ′/α ] in xn) ∈ ∆ ( ®R/ ®α) (T1), so by the

assumption Γ, x : T1 ⊢ V ∆ V : T1 we know that (let B; x =n V [ ®T /α ] in V [xn/x ], let B′
; x =n

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:12 Jennifer Hackett and Graham Hutton

V [ ®T /α ] in V [xn/x ]) ∈ ∆ ( ®R/ ®α) (T1). But these terms are cost-equivalent to (let B; x =n+1

V [ ®T /α ] in xn, let B′
; x =n+1 V [ ®T ′/α ] in xn), so we are done.

Finally, we apply Lemma 4.1 to give (let B; x = V [ ®T /α ] in x, let B′
; x = V [ ®T ′/α ] in x) ∈

∆ ( ®R/ ®α) (T1), which completes the proof of this lemma. □

5 APPLICATIONS
In this section, we apply our abstraction theorem to a range of examples to derive free theorems

for improvement: theorems about the operational time efficiency of terms that rely only on their

polymorphic types. As this theory is built on the same language and cost model as Moran and

Sands [1999a], all the same theorems hold, but now we have the added tool of parametricity. In

order to apply this tool, however, we need ways to construct interesting machine-closed relations.

In Moran and Sands’ theory, there is the special operator ✓ (which is pronounced as ‘tick’) that

adds one unit of cost. In our context, it is useful to reify this into the machine model, as this makes

reasoning easier. We therefore add a tick token ✓ to our stacks: it is safe to do this because our

reasoning was generic in the possible stack items. We introduce the following transition rule for ✓
to the abstract machine semantics that we defined in Figure 2:

⟨H , M, ✓ : S⟩ → ⟨H , M, S⟩ { Tick }

and count these steps as well in our cost semantics, so the total cost of evaluation is now given by

the number of Lookup and Tick steps. We can then formulate the following theorem:

Theorem 5.1. Given a context C such that C [⊥] ◁▷
∼
⊥, the following relations are machine-closed:

(i) {(M, M ′) | C [M ] ▷
∼
M

′ }

(ii) {(M, M ′) | M ▷
∼
C [M ′ ]}

By ⊥, we mean some arbitrarily-chosen divergent term.

Proof. We take an arbitrary pair (M, M ′) in the machine-closure of the relation and show it is

in the original relation. For (i) we must show C [M ] ▷
∼
M

′
, which by definition is equivalent to:

∀⟨H , S⟩, ⟨H , C [M ], S⟩ ↓n ⇒ ⟨H , M ′, S⟩ ↓n

Take an arbitrary ⟨H , S⟩. Starting in the state ⟨H , C [x ], S⟩ where x is fresh, the machine will

either evaluate to ⟨H ′, x, S′⟩ in k steps, or it will diverge, because otherwise it would violate the

assumption C [⊥] ◁▷
∼
⊥. If ⟨H , C [x ], S⟩ diverges then so does ⟨H , C [M ], S⟩, so ⟨H , C [M ], S⟩ ↓n

⇒ ⟨H , M ′, S⟩ ↓n is vacuously true and we are done. Otherwise, take an arbitrary (N , N ′) such

that C [N ] ▷
∼
N

′
. We know that ⟨H , C [N ], S⟩ evaluates to ⟨H ′, N , S′⟩ in k steps by construction,

so we can conclude ⟨H ′, N , k✓ : S
′⟩ ↓n ⇒ ⟨H , C [N ], S⟩ ↓n (where

k✓ represents k copies of ✓).
From this and the assumption C [N ] ▷

∼
N

′
we can conclude ⟨H ′, N , k✓ : S

′⟩ ↓n ⇒ ⟨H , N ′, S⟩ ↓n .
Because N and N

′
were arbitrary, by the definition of machine-closure this implies ⟨H ′, M, k✓ :

S
′⟩ ↓n ⇒ ⟨H , M ′, S⟩ ↓n , which by construction implies ⟨H , C [M ], S⟩ ↓n ⇒ ⟨H , M ′, S⟩ ↓n .
The second case (ii) follows the same pattern. □

5.1 Example: Fixed Point Fusion
Given a fixed point combinator fix : ∀ α . (α → α) → α , the fixed point fusion rule [Meijer et al.

1991] states that if h is a strict function such that h · f = д · h, then we have fix f = h (fix g).

We can actually prove an improving version of this rule using parametricity, solely from the type.

Given a term fix : ∀ α . (α → α) → α , the abstraction theorem implies the following:

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :13

for any bindings B2, B
′
2
and machine-closed relation R : T ⇔ T

′
,

if for any bindings B1, B
′
1
we have

(let B1 in x, let B′
1
in x) ∈ R ⇒

(let B1 in (let B2 in f ) x, let B′
1
in (let B′

2
in f ) x) ∈ R

then (let B2 in fix T f , let B′
2
in fix T

′
f ) ∈ R

Simplifying, by letting B2 = { f = M1 }, B
′
2
= { f = M2 }, we obtain:

for any machine-closed relation R,

if for any bindings B1, B
′
1
we have

(let B1 in x, let B′
1
in x) ∈ R ⇒ (let B1 in M1 x, let B′

1
in M2 x) ∈ R

then (let f = M1 in fix T f , let g = M2 in fix T
′
g) ∈ R

Now if we let R = {(N , N ′) | C [N ] ▷
∼
N

′ }, we obtain:

for any context C such that C [⊥] ◁▷
∼
⊥,

if for any bindings B1, B
′
1
we have

let B1 in C [x ] ▷
∼
let B′

1
in x ⇒ let B1 in C [M1 x ] ▷∼ let B′

1
in M2 x

then let f = M1 in C [fix T f ] ▷
∼
let g = M2 in fix T

′
g

Finally, we observe that the precondition let B1 in C [x ] ▷
∼
let B′

1
in x ⇒ let B1 in C [M1 x ] ▷∼

let B′
1
in M2 x is implied by let B1 in C [M1 x ] ▷∼ let B1, y = C [x ] in M2 y, so we obtain:

for any context C such that C [⊥] ◁▷
∼
⊥,

if for any bindings B1 we have

let B1 in C [M1 x ] ▷∼ let B1, y = C [x ] in M2 y

then let f = M1 in C [fix T f ] ▷
∼
let g = M2 in fix T

′
g

Here, the role of the function h is played by the context C, and the requirement C [⊥] ◁▷
∼
⊥ states

that this context must be strict. The fixed functions f and g correspond to the termsM1 andM2,

and the requirement that let B1 in C [M1 x ] ▷∼ let B1, y = C [x ] in M2 y is simply a spelling-out

of h · f = д · h. Thus we see that our abstraction theorem implies an improving version of the

standard fixed point fusion rule. We can also take R = {(N , N ′) | N ▷
∼
C [N ′ ]} to obtain a version

of this rule where the improvement goes in the other direction:

for any context C such that C [⊥] ◁▷
∼
⊥,

if for any bindings B1 we have

let B1, y = C [x ] in M1 y ▷∼ let B1 in C [M2 x ]

then let f = M1 in fix T f ▷
∼
let g = M2 in C [fix T

′
g ]

The first rule tells us that fusion is an improvement when the fusion precondition is an improvement

in one direction. The second tells us that reverse fusion (“fission”) is an improvement when the

fusion precondition is an improvement in the other direction. Together, these imply that if the

fusion precondition is a cost equivalence, then fusion itself is a cost equivalence.

5.2 Example: Map Fusion
For our second example, consider the map function on lists:

map : ∀ α β . (α → β) → List α → List β

map = Λα β .λf xs →

case xs of
Nil → Nil

(y :: ys) → let y′ = f y; ys
′ = map α β f ys in y

′
:: ys

′

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:14 Jennifer Hackett and Graham Hutton

A common optimisation concerning this function is map fusion, where two successive applications

of map are fused into one. The correctness of this transformation is a consequence of the free

theorem for map, so it makes sense to ask if we can justify it as an improvement in a similar way.

The abstraction theorem applied to map gives us the following:

for any bindings B2, B
′
2
and machine-closed relations R1 : T1 ↔ T ′

1
, R2 : T2 ↔ T ′

2
,

if for any bindings B1, B
′
1
we have

(let B1 in x, let B′
1
in x) ∈ R1 ⇒

(let B1 in (let B2 in f ) x, let B′
1
in (let B′

2
in f ) x) ∈ R2

and (let B2 in xs, let B′
2
in xs) ∈ List R1

then (let B2 in map T1 T2 f xs, let B′
2
in map T ′

1
T ′
2
f xs) ∈ List R2

As before, we can use theorem 5.1 to instantiate our relations R1 and R2 with contexts C and D.
However, it is not clear that the List action applied to a relation based on a context will still be a

relation based on a context. To proceed, we need the following result:

Theorem 5.2. Given a context C such that C [⊥] ◁▷
∼
⊥ and Γ ⊢ M : T1 ⇒ Γ ⊢ C [M ] : T2,

List {(M1, M2) | C [M1 ] ▷∼ M2 }

⊆

{(L1, L2) | let map = . . . ; f = λx .C [x ]; l = L1 in map T1 T2 f l ▷
∼
L2 }

Proof. From the definition of List, we know that List {(M1, M2) C[M1] ⟩M2 } is the greatest

solution to the following equation:

X = ({ (Nil, Nil)} ∪

{ (let B in y :: ys, let B′ in y :: ys)

| let B in C [y ] ▷
∼
let B′ in y,

(let B in ys, let B′ in ys) ∈ X }) M

We proceed by fixed point induction on X . In the base case, X is empty, so is clearly included

on the right hand side. For the inductive step, we assume X ⊆ {(L1, L2) | let map = . . . ; f =
λx .C [x ]; l = L1 in map T1 T2 f l ▷

∼
L2 } and try to prove the same for the right hand side of the

recursive equation. Because both sides of our inclusion are machine-closed, it suffices to show that

the following relation is included in the right hand side:

{(Nil, Nil)} ∪

{ (let B in y :: ys, let B′ in y :: ys)

| let B in C [y ] ▷
∼
let B′ in y,

(let B in ys, let B′ in ys) ∈ X }

We proceed by case analysis on the elements of this relation. First of all, the pair (Nil, Nil) is
included in {(L1, L2) | let map = . . . ; f = λx .C [x ]; l = L1 in map T1 T2 f l ▷

∼
L2 } simply by

applying the definition of map. In turn, for (let B in y :: ys, let B′ in y :: ys) we know the following

two properties from the way in which the relation is constructed:

let B in C [y ] ▷
∼
let B′ in y

(let B in ys, let B′ in ys) ∈ X

From the inductive hypothesis, the second of these two properties implies:

let map = . . . ; f = λx .C [x ];B in map T1 T2 f ys ▷
∼
let B′ in ys

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :15

We then reason as follows:

let map = . . . ; f = λx .C [x ]; l = let B in y :: ys in map T1 T2 f l

◁▷
∼

{ flattening lets }
let map = . . . ; f = λx .C [x ];B; l = y :: ys in map T1 T2 f l

▷
∼

{ applying definitions of map, f }

let map = . . . ; f = λx .C [x ];B; y′ = C [y ]; ys′ = map T1 T2 f ys in y
′
:: ys

′

▷
∼

{ let B in C [y ] ▷
∼
let B′ in y, and

let map = . . . ; f = λx .C [x ];B in map T1 T2 f ys ▷
∼
let B′ in ys }

let B′ in y :: ys

Hence this pair is also included in the right-hand side. □

Now we can specialise our free theorem for map to something more immediately useful. Letting

T1 = T
′
1
, R1 = {(M1, M2) | M1 ▷∼ M2 } and R2 = {(M1, M2) | C [M1 ] ▷∼ M2 }, we obtain the following:

for any bindings B2, B
′
2
,

if for any bindings B1, B
′
1
we have

let B1 in x ▷
∼
let B′

1
in x ⇒ let B1 in C [(let B2 in f ) x ] ▷

∼
let B′

1
in (let B′

2
in f ) x

and (let B2 in xs, let B′
2
in xs) ∈ List R1

then (let B2 in map T1 T2 f xs, let B′
2
in map T1 T

′
2
f xs) ∈ List R2

We note that List R1 contains the improvement relation, and simplify:

for any bindings B2, B
′
2
,

if for any bindings B1 we have

let B1 in C [(let B2 in f ) x ] ▷
∼
let B1 in (let B′

2
in f ) x

and let B2 in xs ▷
∼
let B′

2
in xs

then let h = λx .C [x ]; l = let B2 in map T1 T2 f xs in map T2 T ′
2
h l ▷

∼
let B′

2
in map T1 T

′
2
f xs

Finally, we let B2 = { f = P, xs = M }, B′
2
= { f = Q, xs = M } and obtain:

if for any bindings B1 we have

let B1 in C [P x ] ▷
∼
let B1 in Q x

then let h = λx .C [x ]; f = P ; xs = M; l = map T1 T2 f xs in map T2 T
′
2
h l

▷
∼
let g = Q; xs = M in map T1 T

′
2
g xs

Note that B1 is quantified over all bindings, including those that bind variables free in C, P and Q;

however, in practice C, P and Q will typically not contain free variables. The result states that if the

function P can be fused with the context C to make an improved function Q, then the combination

of map (λx .C [x ]) with map P is improved by map Q. This establishes that map fusion is indeed

an efficiency optimisation in terms of time performance.

5.3 Example: Fold Fusion
Now consider the fold function on lists, with the following type:

fold : ∀ α β .(α → β → β) → β → List α → β

Applying our abstraction theorem, we obtain:

for any bindings B2, B
′
2
and machine-closed relations R1 : T1 ↔ T ′

1
, R2 : T2 ↔ T ′

2
,

if for any bindings B1, B
′
1
we have

(let B1 in x, let B′
1
in x) ∈ R1 and (let B1 in y, let B′

1
in y) ∈ R2

together imply (let B1;B2 in h x y, let B′
1
;B′

2
in h

′
x y) ∈ R2

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:16 Jennifer Hackett and Graham Hutton

and (let B2 in n, let B′
2
in n

′) ∈ R2

and (let B2 in l, let B′
2
in l

′) ∈ List R1

then (let B2 in fold T1 T2 h n l, let B′
2
in fold T ′

1
T ′
2
h
′
n
′
l
′) ∈ R2

Letting T1 = T
′
1
, R1 = {(M1, M2) | M1 ▷∼ M2 }, R2 = {(M1, M2) | C [M1 ] ▷∼ M2 }, we obtain:

for any bindings B2, B
′
2
,

if for any bindings B1, B
′
1
we have

let B1 in x ▷
∼
let B′

1
in x and let B1 in C [y ] ▷

∼
let B′

1
in y

together imply let B1;B2 in C [h x y ] ▷
∼
let B′

1
;B′

2
in h

′
x y

and let B2 in C [n] ▷
∼
let B′

2
in n

′

then let B2 in C [fold T1 T2 h n l ] ▷
∼
let B′

2
in fold T1 T

′
2
h
′
n
′
l

Simplifying further, we obtain:

for any bindings B2, B
′
2
,

if for any bindings B1 we have

let B1;B2 in C [h x y ] ▷
∼
let B1;B

′
2
; y

′ = C [y ] in h
′
x y

′

and let B2 in C [n] ▷
∼
let B′

2
in n

′

then let B2 in C [fold T1 T2 h n l ] ▷
∼
let B′

2
in fold T1 T

′
2
h
′
n
′
l

This is an improving version of the usual fusion rule for fold [Meijer et al. 1991], much like

the improving version of fix fusion above, telling us that when the fusion precondition is an

improvement in one direction then fusion itself is also an improvement.

5.4 Example: Short Cut Fusion
Short cut fusion, as introduced by Gill et al. [1993], is a general purpose transformation that

eliminates the use of intermediate lists in functional programs. The transformation itself is based

around fold function from the previous example, coupled with a new function called build:

build : ∀ α .(∀ β .(α → β → β) → β → β) → List α

build = Λα .λg → g (List α) (λx xs → x :: xs) Nil

Essentially, build is used to produce lists by abstracting over the two list constructors, while fold

is used to consume the resulting lists in a structured manner by replacing the two constructors.

These two functions are linked by the following equation:

fold h n (build g) = g h n

Short cut fusion involves applying this equation anywhere the left-hand side appears, thereby

removing the intermediate list. The strength of this technique comes from the generality of build.

In particular, many library functions that produce lists can be implemented using build, and any

function implemented in such a way then becomes a candidate for short cut fusion.

Unlike the previous examples, which could in theory be proved from the structure of the function

in question, the structure of g is not known ahead of time. As such, parametricity is essential in

the proof of correctness of short cut fusion. This suggests that we may be able to prove a result

about its efficiency properties using our new abstraction theorem. First of all, instantiating the

abstraction theorem for the type of our function g gives:

for any bindings B2, B
′
2
and machine-closed relation R : T1 ↔ T ′

1
,

if for any bindings B1, B
′
1
we have

(let B1 in x, let B′
1
in x) ∈ ∆ () (A) and (let B1 in y, let B′

1
in y) ∈ R

together imply (let B1;B2 in f x y, let B′
1
;B′

2
in f x y) ∈ R

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :17

and (let B2 in c, let B′
2
in c) ∈ R

then (let B2 in g f c, let B′
2
in g f c) ∈ R

In this case, we let T1 = List A, R = {(M1, M2) | let xs = M1 in fold h n xs ▷
∼
M2 }, B2 = { f =

λx xs.x :: xs; c = Nil } and B′
2
= { f = h; c = n}. The fact that R is machine-closed follows from the

strictness of the fold function on lists. We obtain:

if for any bindings B1, B
′
1
we have

(let B1 in x, let B′
1
in x) ∈ ∆ () (A) and let B1 in fold h n y ▷

∼
let B′

1
in y

together imply let B1; xs = x :: y in fold h n xs ▷
∼
let B′

1
in h x y

and fold h n Nil ▷
∼
n

then let f = λx xs.x :: xs; c = Nil in fold h n (g f c) ▷
∼
let f = h; c = n in g f c

We now aim to prove the precondition. We assume (let B1 in x, let B′
1
in x) ∈ ∆ () (A) and

let B1 in fold h n y ▷
∼
let B′

1
in y, and attempt to prove let B1; xs = x :: y in fold h n xs ▷

∼
let B′

1
in h x y. Note that by our equivalent of the identity extension lemma the first assumption

implies let B1 in x ▷
∼
let B′

1
in x. We reason as follows:

let B1; xs = x :: y in fold h n xs

▷
∼

{ definition of fold }

let B1 in h x (fold h n y)

▷
∼

{ assumptions }

let B′
1
in h x y

We can therefore conclude that let f = λx xs.x :: xs; c = Nil in fold h n (g f c) ▷
∼
g h n, which

establishes that applying short cut fusion is indeed in an improvement.

6 CONCLUSION AND FURTHERWORK
We have shown that a parametricity result holds for a call-by-need operational semantics with a

notion of program cost, extending the work of Pitts [2000]. The resulting abstraction theorem can

be used to derive free theorems that give results about program efficiency, giving conditions under

which program transformations are guaranteed to maintain or improve the time performance of

programs. We have applied our theorem to a range of examples, including the well-known short

cut fusion of Gill et al. [1993], showing that these particular transformations are all safe, in the

sense that they do not degrade performance. This is an important step towards making formal

reasoning about the performance of call-by-need programs tractable.

This work considers the time performance of call-by-need programs. However, space behaviour

of call-by-need programs can also be counterintuitive, and this raises the question of whether a

similar parametricity result will hold. This work was based on call-by-need time improvement as

developed by [Moran and Sands 1999a]; corresponding work for space costs could be based on the

theory of [Gustavsson and Sands 1999, 2001]. Ultimately, it would be best to have a unified theory

for both space and time based on some abstract notion of resource, so that this asymmetry can be

avoided. The work of Sands [1997] may offer a way forward here, and we are also in the process of

developing a generic foundation for program improvement [Hackett and Hutton 2018], based upon

the use of metric spaces to abstract over various aspects including the cost model.

Another way to extend this work would be to consider selective strictness, where an operator

such as Haskell’s seq can be used to force evaluation of subterms. Parametricity in the presence of seq

has already been investigated both denotationally [Johann and Voigtländer 2004] and operationally

in terms of program equivalence and partial equivalence [Voigtländer and Johann 2007], so it would

be a natural next step to attempt to do the same for program improvement.

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:18 Jennifer Hackett and Graham Hutton

Improvement-theory based techniques can show that a transformation does not have a negative

impact on performance, but there are other questions we may wish to ask about our optimisations.

In particular, we would like to quantify how much performance is improved, and whether this

change is merely a constant factor or an actual asymptotic improvement. This would also allow

us to verify the properties of optimisations that are not simple improvements, such as those that

improve performance in all but a few pathological cases.

This work inherits the limitation of Moran and Sands [1999a], in that it can only be used to

reason about certain forms of recursive definition, namely those where the right-hand side is in a

value form. This covers the usual case of recursive functions, because the right-hand side is then a

lambda-term and hence in value form, but it fails to address a number of programs written in the

so-called “knot-tying” style. For example, the function cycle that takes a list and produces the list

of infinite repetitions of that list, can naturally be written in two ways:

(i) cycle xs = xs ++ cycle xs

(ii) cycle xs = let r = xs ++ r in r

Our theory allows us to reason about the first definition, but not the second. The problem is the

unwinding lemma (4.1) fails when the right-hand side of the definition is unrestricted, as when

x = M [x ] is unwound to the infinite sequence x0 = ⊥;x1 = M [x0 ];x2 = M [x1 ] . . . we lose
sharing between the different levels of recursion. We believe this limitation can be removed by

considering bindings with fuel instead of unwound bindings, where x =n M is treated as a binding

that allows x to be looked up at most n times. However, while the unwinding lemma holds for this

form of binding, we have yet to prove the corresponding Let case for the abstraction theorem.

Deriving free theorems can be time consuming. Generation of standard free theorems has been

mechanised for a sublanguage of Haskell [Böhme 2007], so the work of this article could potentially

also be mechanised. This would benefit from further work on machine-closed relations, so as to

increase the number of ways we can specialise these theorems. In particular, it would be useful to

know whether the inclusion from Theorem 5.2 can be strengthened to an equality.

Recently, we have developed the UNIE system [Handley and Hutton 2018], an inequational

reasoning assistant that provides mechanical support for improvement proofs. This tool takes

care of the administrative work in improvement proofs, allowing users to focus on the high-level

structure of their proofs. At present, UNIE is based on the standard untyped improvement theory,

but it could be extended to include a type system and parametricity-based results.

Our concept of machine-closure is based on execution costs in an abstract machine. Similar ideas

have been explored in quantitative realizability models [Brunel 2015; Brunel and Gaboardi 2015],

where the notion of a ρ-behavior has a similar structure to our notion of a machine-closed relation

(as well as Pitts’ ⊤⊤-closed relations). It would be interesting to explore this connection further.

Acknowledgements
Wewould like to thank Martin Handley and the referees for many useful comments and suggestions.

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC) grant

EP/P00587X/1, Mind the Gap: Unified Reasoning About Program Correctness and Efficiency.

REFERENCES
Sascha Böhme. 2007. Free Theorems for Sublanguages of Haskell. Master’s thesis. Technische Universität Dresden.

Joachim Breitner. 2015. Formally Proving a Compiler Transformation Safe. In Haskell Symposium.

Aloïs Brunel. 2015. Quantitative Classical Realizability. Information and Computation 241 (2015).

Aloïs Brunel and Marco Gaboardi. 2015. Realizability Models for a Linear Dependent PCF. Theoretical Computer Science 585

(2015).

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :19

Andrew J. Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A Short Cut to Deforestation. In Functional Programming

Languages and Computer Architecture.

Jörgen Gustavsson and David Sands. 1999. A Foundation for Space-Safe Transformations of Call-by-Need Programs.

Electronic Notes on Theoretical Computer Science 26 (1999).

Jörgen Gustavsson and David Sands. 2001. Possibilities and Limitations of Call-by-Need Space Improvement. In International

Conference on Functional Programming.

Jennifer Hackett and Graham Hutton. 2014. Worker/Wrapper/Makes It/Faster. In International Conference on Functional

Programming.

Jennifer Hackett and Graham Hutton. 2015. Programs for Cheap!. In Logic in Computer Science.

Jennifer Hackett and Graham Hutton. 2018. A Generic Foundation for Program Improvement. (2018). In preparation.

Martin Handley and Graham Hutton. 2018. Improving Haskell. In Trends in Functional Programming.

Graham Hutton and Jennifer Hackett. 2016. Mind the Gap: Unified Reasoning About Program Correctness and Efficiency.

(2016). Engineering and Physical Sciences Research Council grant EP/P00587X/1.

Patricia Johann and Janis Voigtländer. 2004. Free Theorems in the Presence of seq. In Principles of Programming Languages.

John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Principles of Programming Languages.

Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. 1991. Functional Programming with Bananas, Lenses, Envelopes and

Barbed Wire. In Functional Programming Languages and Computer Architecture ’91 (Lecture Notes in Computer Science),

Vol. 523. Springer.

Andrew Moran and David Sands. 1999a. Improvement in a Lazy Context: An Operational Theory for Call-by-Need. (1999).

Extended version of [Moran and Sands 1999b], available at http://tinyurl.com/ohuv8ox.

Andrew Moran and David Sands. 1999b. Improvement in a Lazy Context: An Operational Theory for Call-by-Need. In

Principles of Programming Languages.

Andrew M. Pitts. 2000. Parametric Polymorphism and Operational Equivalence. Mathematical Structures in Computer

Science 10, 03 (2000).

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theoretical Computer Science 5, 3 (1977).

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. Proceedings of the IFIP 9th World Computer

Congress (1983).

David Sands. 1997. From SOS Rules to Proof Principles: An Operational Metatheory for Functional Languages. In Principles

of Programming Languages.

Manfred Schmidt-Schauß and David Sabel. 2015. Improvements in a Functional Core Language with Call-By-Need

Operational Semantics. In Principles and Practice of Declarative Programming.

Daniel Seidel and Janis Voigtländer. 2011. Improvements for Free. In Quantitative Aspects of Programming Languages.

Ilya Sergey, Dimitrios Vytiniotis, Simon L Peyton Jones, and Joachim Breitner. 2017. Modular, Higher Order Cardinality

Analysis in Theory and Practice. Journal of Functional Programming 27 (2017).

Peter Sestoft. 1997. Deriving a Lazy Abstract Machine. Journal of Functional Programming 7, 3 (1997).

Jon Shultis. 1985. On the Complexity of Higher-Order Programs. Technical Report. University of Colorado.

Hugo Simões, Pedro Vasconcelos, Mário Florido, Steffen Jost, and Kevin Hammond. 2012. Automatic Amortised Analysis of

Dynamic Memory Allocation for Lazy Functional Programs. In International Conference on Functional Programming.

Christopher Strachey. 2000. Fundamental Concepts in Programming Languages. Higher-Order and Symbolic Computation

13, 1-2 (2000).

Janis Voigtländer and Patricia Johann. 2007. Selective Strictness and Parametricity in Structural Operational Semantics,

Inequationally. Theoretical Computer Science 388, 1-3 (2007).

Philip Wadler. 1989. Theorems for Free!. In Functional Programming Languages and Computer Architecture.

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.

http://tinyurl.com/ohuv8ox


:20 Jennifer Hackett and Graham Hutton

A PROOF OF LEMMA 3.4
We proceed by induction on the derivation of the typing judgement Γ ⊢ M : T according to the

rules in Figure 1, considering each of the nine cases in turn.

Var Follows immediately from the definition of ∆.

Abs In this case, M is of the form λy.M ′
and T is of the form T1 → T2. The inductive hypothesis

is that Γ, y : T1 ⊢ M
′ ∆ M

′
: T2. We must prove that Γ ⊢ λy.M ′ ∆ λy.M ′

: T1 → T2.

We let B1, B2 be bindings that close λy.M
′
and let ®R : ®T ↔ ®T ′

be a list of machine-closed

relations with length equal to the number of free type variables in Γ. Assume that for all

x : A in Γ, (let B1 in x, let B2 in x) ∈ ∆ ( ®R/ ®α) (A), and let B′
1
and B′

2
be extensions of B1 and

B2 such that (let B′
1
in y, let B′

2
in y) ∈ ∆ ( ®R/ ®α) (T1) also. We reason as follows:

{ induction hypothesis }

⇒

(let B′
1
in M

′ [ ®T / ®α ],

let B′
2
in M

′ [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T2)

⇔ { β-reduction, machine-closure }

(let B′
1
in ((λy.M ′) y) [ ®T / ®α ],

let B′
2
in ((λy.M ′) y) [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T2)

⇔ { definition of → action on relations }

(let B′
1
in (λy.M ′) [ ®T / ®α ],

let B′
2
in (λy.M ′) [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T1 → T2)

⇔ { removing extra bindings }

(let B1 in (λy.M ′) [ ®T / ®α ],

let B2 in (λy.M ′) [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T1 → T2)

The removing bindings step is valid because let B1 in (λy.M ′) and let B2 in (λy.M ′) were

already closed, so the extra bindings in the extended versions cannot affect evaluation.

Because all relations are machine-closed, this means that the terms before and after removing

bindings must be treated equally. As this reasoning was generic in ®R, B1 and B2, we can

conclude that Γ ⊢ λy.M ′ ∆ λy.M ′
: T1 → T2, as required.

App Follows straightforwardly from the definitions of ∆ and the relational action of →.

TAbs In this case, M is of the form Λα .M ′
and T is of the form ∀ α .T ′

. The inductive hypothesis is

that Γ, α ⊢ M
′ ∆ M

′
: T

′
. We must prove that Γ ⊢ Λα .M ′ ∆ Λα .M ′

: ∀ α .T ′
.

We let B1, B2 be bindings that close M
′
and let ®R : ®T ↔ ®T ′

be a list of machine-closed

relations with length equal to the number of free type variables in Γ. Assume that for all

x : A in Γ, (let B1 in x, let B2 in x) ∈ ∆ ( ®R/ ®α) (A), and let X , X
′
be arbitrary types with an

arbitrary machine-closed relation R : X ↔ X
′
. We reason as follows:

{ induction hypothesis }

⇒

(let B1 in M
′ [X/α , ®T / ®α ],

let B2 in M
′ [X ′/α , ®T ′/ ®α ]) ∈ ∆ (R/α , ®R/ ®α)

⇔ { type-β-reduction, machine-closure }

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :21

(let B1 in ((Λα .M ′) X ) [ ®T / ®α ],

let B2 in ((Λα .M ′) X ′) [ ®T ′/ ®α ]) ∈ ∆ (R/α , ®R/ ®α) (T ′)

Because this reasoning is generic in X , X
′
and R : X ↔ X

′
, and because R is machine-closed,

we can conclude:

(let B1 in (Λα .M ′) [ ®T / ®α ],

let B2 in (Λα .M ′) [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (∀ α .T ′)

Finally, because all of the above reasoning was generic in ®R, B1 and B2, we can conclude that

Γ ⊢ Λα .M ′ ∆ Λα .M ′
: ∀ α .T ′

, as required.

TApp Follows straightforwardly from the definitions of ∆ and the relational action of ∀.
Nil Using the fact that let B in Nil ◁▷

∼
Nil, this case follows from the definition of the logical

relation ∆ and the relational action of List.

Cons Follows immediately from the definition of ∆ and the relational action of List.

Case In this case, we know that M is of the form case M
′ of {Nil → M1; x :: xs → M2 }. The

induction hypotheses are that Γ ⊢ M
′ ∆ M

′
: List T

′
, Γ ⊢ M1 ∆ M1 : T , Γ, x : T

′, xs :

List T
′ ⊢ M2 : T for some type T

′
.

We assume that x, xs are fresh, which can be ensured by alpha-renaming. We let B1, B2 be

bindings that close M and let ®R : ®T ↔ ®T ′
be a list of machine-closed relations with length

equal to the number of free type variables in Γ.

To prove Γ ⊢ case M
′ of { . . . } ∆ case M

′ of { . . . } : T we assume that for all y : A ∈ Γ
we have

(let B1 in y,

let B2 in y) ∈ ∆ ( ®R/ ®α) (A)

and try to prove

(let B1 in case M ′ [ ®T / ®α ] of {Nil → M1 [ ®T / ®α ]; x :: xs → M2 [ ®T / ®α ]},

let B2 in case M ′ [ ®T ′/ ®α ] of {Nil → M1 [ ®T
′/ ®α ]; x :: xs → M2 [ ®T

′/ ®α ]})

∈ ∆ ( ®R/ ®α) (T )

To prove this, we need the following sub-lemma:

Lemma A.1. Consider machine-closed relations R1 R2, heap and stack pairs ⟨H1, S1⟩, ⟨H2, S2⟩,
bindings B1, B2 and termsM1,M

′
1
,M2,M

′
2
that satisfy the following assumptions:

(i) (let B1 in M1, let B2 in M ′
1
) ∈ R2

(ii) For all bindings B′
1
, B′

2
and variables y, ys, if

(let B′
1
in y, let B′

2
in y) ∈ R1

and

(let B′
1
in ys, let B′

2
in ys) ∈ List R1

then it follows that

(let B′
1
in M2 [y/x, ys/xs ], let B′

2
in M ′

2
[y/x, ys/xs ]) ∈ R2

(iii) For any pair of terms (N , N ′) ∈ R2, ⟨H1, N , S1⟩ ↓n ⇒ ⟨H2, N
′, S2⟩ ↓n

Then for any pair of terms (L, L′) ∈ List R1, we have:

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:22 Jennifer Hackett and Graham Hutton

⟨H1 + B1, L, {Nil → M1; x :: xs → M2 } : S1⟩ ↓n ⇒

⟨H2 + B2, L
′, {Nil → M ′

1
; x :: xs → M ′

2
} : S2⟩ ↓n

Proof. Because List R1 is the machine-closure of Rel = {Nil, Nil } ∪ {(let B1 in y ::

ys, let B2 in y :: ys) | (let B1 in y, let B2 in y) ∈ R1, (let B1 in ys, let B2 in ys) ∈ List R1 },

the definition of machine-closure implies that our result holds if ⟨H1 + B1, L, {Nil →

M1; x :: xs → M2 } : S1⟩ ↓n ⇒ ⟨H2 + B2, L
′, {Nil → M ′

1
; x :: xs → M ′

2
} : S2⟩ ↓n for

any (L, L′) in the underlying set Rel. This (L, L′) will be of one of two forms.

Firstly, we consider the case of (Nil, Nil). In this case, we reason as follows:

⟨H1 + B1, Nil, {Nil → M1; x :: xs → M2 } : S1⟩ ↓n
⇔ { BranchNil }

⟨H1 + B1, M1, S1⟩ ↓n
⇒ { conditions (i) and (iii) }

⟨H2 + B2, M2, S2⟩ ↓n
⇔ { BranchNil }

⟨H2 + B2, Nil, {Nil → M ′
1
; x :: xs → M ′

2
} : S2⟩ ↓n

Next, we consider the case of (let B′
1
in y :: ys, let B′

2
in y :: ys). In this case, we know that

(let B′
1
in y, let B′

2
in y) ∈ R1 and (let B′

1
in ys, let B′

2
in ys) ∈ List R1. We reason as follows:

⟨H1 + B1, let B′
1
in y :: ys, {Nil → M1; x :: xs → M2 } : S1⟩ ↓n

⇔ { Letrec }

⟨H1 + B1 + B
′
1
, y :: ys, {Nil → M1; x :: xs → M2 } : S1⟩ ↓n

⇔ { BranchCons }

⟨H1 + B1 + B
′
1
, M2 [y/x, ys/xs ], S1⟩ ↓n

⇔ { Letrec }

⟨H1 + B1, let B′
1
in M2 [y/x, ys/xs ], S1⟩ ↓n

⇒ { conditions (ii) and (iii) }

⟨H2 + B2, let B′
2
in M ′

2
[y/x, ys/xs ], S2⟩ ↓n

⇔ { Letrec }

⟨H2 + B2 + B
′
2
, M ′

2
[y/x, ys/xs ], S2⟩ ↓n

⇔ { BranchCons }

⟨H2 + B2 + B
′
2
, y :: ys, {Nil → M ′

1
; x :: xs → M ′

2
} : S2⟩ ↓n

⇔ { Letrec }

⟨H2 + B2, let B′
2
in y :: ys, {Nil → M ′

1
; x :: xs → M ′

2
} : S2⟩ ↓n

□

Now we can prove this case of the main lemma. Let ⟨H1, S1⟩ and ⟨H2, S2⟩ be heap and stack

pairs such that for any pair of terms (N , N ′) ∈ ∆ ( ®R/ ®α) (T ), we have ⟨H1, N , S1⟩ ↓n ⇒

⟨H2, N
′, S2⟩ ↓n . We then reason as follows:

⟨H1, let B1 in case M ′ [ ®T / ®α ] of {Nil → M1 [ ®T / ®α ]; x :: xs → M2 [ ®T / ®α ]}, S1⟩ ↓n
⇔ { Letrec }

⟨H1 + B1, case M ′ [ ®T / ®α ] of {Nil → M1 [ ®T / ®α ]; x :: xs → M2 [ ®T / ®α ]}, S1⟩ ↓n
⇔ { Case }

⟨H1 + B1, M
′ [ ®T / ®α ], {Nil → M1 [ ®T / ®α ]; x :: xs → M2 [ ®T / ®α ]} : S1⟩ ↓n

⇒ { lemma; conditions (i) and (ii) follow from IHs, (iii) holds by assumption }

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



Parametric Polymorphism and Operational Improvement :23

⟨H2 + B2, M
′ [ ®T ′/ ®α ], {Nil → M1 [ ®T

′/ ®α ]; x :: xs → M2 [ ®T
′/ ®α ]} : S2⟩ ↓n

⇔ { Case }

⟨H2 + B2, case M ′ [ ®T ′/ ®α ] of {Nil → M1 [ ®T
′/ ®α ]; x :: xs → M2 [ ®T

′/ ®α ]}, S2⟩ ↓n
⇔ { Letrec }

⟨H2, let B2 in case M ′ [ ®T ′/ ®α ] of {Nil → M1 [ ®T
′/ ®α ]; x :: xs → M2 [ ®T

′/ ®α ]}, S2⟩ ↓n

But this reasoning was generic in ⟨H1, S1⟩, ⟨H2, S2⟩, so by machine-closure we have:

(let B1 in case M ′ [ ®T / ®α ] of {Nil → M1 [ ®T / ®α ]; x :: xs → M2 [ ®T / ®α ]},

let B2 in case M ′ [ ®T ′/ ®α ] of {Nil → M1 [ ®T
′/ ®α ]; x :: xs → M2 [ ®T

′/ ®α ]})

∈ ∆ ( ®R/ ®α) (T )

Finally, since this reasoning was generic in ®R, B1 and B2, we can then conclude that Γ ⊢

case M ′ of { . . . } ∆ case M ′ of { . . . } : T , as required.

Let’ In this case, M is of the form let ®x = ®M in M
′
. The induction hypotheses are that Γ ⊢

Mi ∆ Mi : Ti for all i, and Γ, x1 : T1, . . . , xn : Tn ⊢ M
′ ∆ M

′
: T .

We let B1, B2 be bindings that close let ®x = ®M in M
′
and let ®R : ®T ↔ ®T ′

be a list of

machine-closed relations with length equal to the number of free type variables in Γ.

To prove Γ ⊢ let ®x = ®M in M
′ ∆ let ®x = ®M in M

′
: T , we must assume that for all y : A ∈ Γ

it is the case that:

(let B1 in y,

let B2 in y) ∈ ∆ ( ®R/ ®α) (A)

and try to prove:

(let B1 in let ®x = ®M [ ®T / ®α ] in M
′ [ ®T / ®α ],

let B2 in let ®x = ®M [ ®T ′/ ®α ] in M
′ [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T )

We note that the induction hypotheses for theMi imply:

(let B1 in Mi [ ®T / ®α ],

let B2 in Mi [ ®T
′/ ®α ]) ∈ ∆ ( ®R/ ®α) (Ti )

In turn, by machine closure, this implies that

(let B1; ®x = ®M [ ®T / ®α ] in xi ,

let B2; ®x = ®M [ ®T ′/ ®α ] in xi ) ∈ ∆ ( ®R/ ®α) (Ti )

because each term takes exactly one Lookup step to replace xi withMi [ ®T / ®α ], and the extra

bindings serve no purpose beyond this. These, combined with the inductive hypothesis of

Γ, x1 : T1, . . . , xn : Tn ⊢ M
′ ∆ M

′
: T , imply

(let B1; ®x = ®M [ ®T / ®α ] in M
′ [ ®T / ®α ],

let B2; ®x = ®M [ ®T ′/ ®α ] in M
′ [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T )

which implies

(let B1 in let ®x = ®M [ ®T / ®α ] in M
′ [ ®T / ®α ],

let B2 in let ®x = ®M [ ®T ′/ ®α ] in M
′ [ ®T ′/ ®α ]) ∈ ∆ ( ®R/ ®α) (T )

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.



:24 Jennifer Hackett and Graham Hutton

Because these are each cost-equivalent to the terms in the previous relation and machine-

closed relations respect cost-equivalence. Finally, we note that this reasoning was generic in

®R, B1 and B2, so we can conclude Γ ⊢ let ®x = ®M in M
′ ∆ let ®x = ®M in M

′
: T .

This completes the proof. □

, Vol. N/A, No. ICFP, Article . Publication date: July 2018.


	Abstract
	1 Introduction
	2 Background
	2.1 Parametric Polymorphism
	2.2 Operational Improvement

	3 From Equivalence to Improvement
	3.1 Call-By-Need PolyPCF
	3.2 Machine-Closure for Relations
	3.3 Actions on Relations
	3.4 The Logical Relation
	3.5 The Abstraction Theorem (for Non-Recursive Programs)

	4 Dealing with Recursive Bindings
	5 Applications
	5.1 Example: Fixed Point Fusion
	5.2 Example: Map Fusion
	5.3 Example: Fold Fusion
	5.4 Example: Short Cut Fusion

	6 Conclusion and Further Work
	References
	A Proof of Lemma 3.4

