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Abstract 

Impaired habit-learning has been proposed to underlie the tic symptoms of Tourette 

syndrome (TS).  However, accounts differ in terms of how habit-learning is altered in TS, 

with some authors proposing habit-formation is impaired due to a deficient “chunking” 

mechanism, and others proposing habit-learning is over-active and tics reflect hyper-learned 

behaviours.  Attention-deficit/hyperactivity disorder (ADHD) frequently co-occurs with TS 

and is known to affect cognitive function in young people with co-occurring TS and ADHD 

(TS+ADHD).  It is unclear, however, how co-occurring ADHD symptoms affect habit-

learning in TS.  In this study, we investigated whether young people with TS would show 

deficient or hyper-active habit-learning, and assessed the effects of co-occurring ADHD 

symptoms on habit-learning in TS.  Participants aged 9-17 years with TS (n = 18), 

TS+ADHD (n = 17), ADHD (n = 13) and typical development (n = 20) completed a motor 

sequence-learning task to assess habit-learning.  We used a 2 (TS-yes, TS-no) x 2 (ADHD-

yes, ADHD-no) factorial analysis to test the effects of TS, ADHD, and their interaction on 

accuracy and reaction time indices of sequence-learning.  TS was associated with intact 

sequence-learning, but a tendency for difficulty transitioning from sequenced to non-

sequenced performance was suggestive of hyper-learning.  ADHD was associated with 

significantly poorer accuracy during acquisition of the sequence, indicative of impaired habit-

learning.  There were no interactions between the TS and ADHD factors, indicating young 

people with TS+ADHD showed both TS- and ADHD-related atypicalities in habit-learning.  
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Introduction 

Tourette syndrome (TS) is a neurodevelopmental disorder characterised by chronic 

motor and phonic tics, i.e. involuntary and repetitive movements and sounds (American 

Psychiatric Association, 2013).  The neural and cognitive mechanisms underlying tics are not 

fully understood, but increasing theoretical and empirical work suggests that abnormal habit-

learning mechanisms may be involved.  Habits are rigid, largely non-conscious and automatic 

behaviours that are performed regardless of motivation and outcome, for example, flipping a 

light switch despite knowing the light bulb has blown (Yin & Knowlton, 2006).  Habit-

learning is a gradual process subserved by dorsolateral regions of the striatum and 

sensorimotor cortical-striatal-thalamo-cortical (CSTC) circuitry (Seger & Spiering, 2011; 

Smith & Graybiel, 2013; Tricomi, Balleine, & O’Doherty, 2009).  These regions are 

reportedly abnormal in individuals with TS (Kataoka et al., 2010; Worbe et al., 2012) and are 

involved in generating tic-like behaviours in non-human animals (e.g. Xu et al., 2015).  

In line with the overlap between habit-learning and tic-related neural circuitry, several 

authors have proposed that tics are caused by specific functional abnormalities in the habit-

learning system.  One account hypothesises that excessive dopaminergic activity in the 

striatum leads to inappropriate hyper-learning of associations between sensory stimuli and 

motor responses, resulting in tic ‘habits’ that are ingrained and difficult to modify (Leckman 

& Riddle, 2000; Maia & Frank, 2011).  In support, enhanced learning of rewarded motor 

response sequences (Palminteri et al., 2011) and enhanced habit-like responding to learned 

but devalued stimulus-outcome associations (Delorme et al., 2015) have been reported in 

unmedicated adults with TS (see also Palminteri et al., 2009).  Further, enhanced learning 

performance was positively associated with tic severity and with connectivity in motor CSTC 

circuitry (Delorme et al., 2015; Palminteri et al., 2009; 2011).  These effects were absent in 

adults with TS taking dopamine-blocking neuroleptic medication, supporting the view that 
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unregulated dopamine levels are involved in atypical habit-learning and tics in TS (Delorme 

et al., 2015; Palminteri et al., 2009; 2011).  It should be noted, however, that adults with TS 

are atypical of the disorder since tics tend to remit by early adulthood (Bloch & Leckman, 

2009; Leckman et al., 1998), and tics in adults are less fluctuating and may be more ingrained 

than in children (Leckman & Riddle, 2000).  Thus, drawing conclusions about the role of 

habit-learning in tics from studies conducted exclusively with adults with TS is problematic.  

In contrast to the hyper-learning account of tics, two studies have reported reduced 

learning of probabilistic cue-outcome associations in the Weather Prediction task in children 

and adults with TS (Kéri et al., 2002; Marsh et al., 2004).  Further, correlations with tic 

severity showed that individuals with most severe tics had the poorest habit-learning 

performance (Kéri et al., 2002; Marsh et al., 2004).  Marsh et al. (2004) explained this 

impairment in terms of an inability to concatenate or chunk individual actions into a complete 

habitual behaviour, a mechanism believed to be critical in habit-learning and dependent on 

changes in striatal dopaminergic firing (described by Graybiel, 1998).  According to this 

view, the deficient chunking mechanism in TS results in the execution of fragmentary actions 

(tics) that would normally be part of sequenced, coherently executed habitual behaviours 

(Marsh et al., 2004).  However, the Weather Prediction task involves learning only pairwise 

stimulus-outcome associations rather than sequences of actions.  To fully test Marsh et al.’s 

(2004) account of tics, habit-learning tasks that more clearly require the to-be-learned actions 

to be concatenated, such as a motor sequence learning task, should be used. 

One commonly used motor sequence-learning task is the serial reaction time (SRT) 

task (Nissen & Bullemer, 1987).  In this task, participants respond to a stimulus that moves 

between different spatial locations with spatially corresponding buttons.  Unknown to the 

participant, sometimes the stimulus samples the locations in a repeating sequence (sequence 

condition), while other times the stimulus samples the locations in a non-repeating manner 
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(non-sequence condition).  Despite not being informed of the repeating sequence, 

participants’ reaction times (RTs) decrease in the sequence condition (enhancement effect) 

and show a marked increase when the non-sequence condition is presented subsequently 

(disruption effect).  Of relevance to TS, the structure of the repeating sequence can be 

manipulated to require more or less chunking.  If the sequence is structurally “unbalanced” 

and some transitions between locations occur more frequently than others, simply learning 

the pairwise associations between the frequently transitioning locations may be sufficient to 

speed RTs (Cohen, 1990; Jackson & Jackson, 1992).  For example, in the unbalanced 

sequence “A-B-C-D-B-C-A-B-D-C”, the transitions A-B and B-C occur more often than the 

other transitions (C-D and D-C).  Rather than learning the entire sequence of locations, RT 

may speed up simply because a participant learns these two frequently occurring pairs of 

locations.  In contrast, if the sequence is structurally “balanced” and the transitions between 

locations in the sequence are equally probable, knowledge of pairwise associations is not 

enough to support performance improvements; instead, knowledge of at least which location 

precedes a pair of locations is required to predict the following pair of locations (Cohen, 

1990; Jackson & Jackson, 1992).  For example, in the balanced sequence “B-C-D-B-A-D-A-

C-A-B-D-C”, there are no pairwise associations between locations that occur more frequently 

than others and therefore a “chunk” of locations, such as D-B-A, must be consolidated in 

order to learn the sequence. 

Two previous studies have used the SRT or a variant of this task to study sequence 

learning in children and adolescents with TS (Channon et al., 2003; Takács et al., 2017).  

Channon et al. (2003) compared sequence learning between children with TS and typically 

developing controls using a traditional SRT design.  Participants first completed two blocks 

of trials in which the stimulus sampled on-screen locations in a pseudorandom manner, 

followed by four sequence blocks in which the stimulus sampled the screen locations in a 12-
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item repeating sequence, one block of a “test sequence” in which a new repeating sequence of 

locations was presented, and finally another block of the original repeating sequence.  

Channon et al. (2003) found no group differences in the extent to which RTs speeded up over 

repetitions of the sequence or in the amount of disruption to RT performance when the 

repeating sequence was replaced by the test sequence, indicative of comparable sequence 

learning in children with TS and controls.  Takács et al. (2017) used a variant of the SRT 

task, the Alternating Serial Reaction Time (ASRT) task, to assess sequence learning in young 

people with TS and typical development.  Participants responded to a stimulus that moved in 

triplets of screen locations that occurred at high or low frequency across the task.  Sequence 

learning was assessed by the extent to which RT decreased and accuracy increased for the 

high-frequency triplet compared to the low-frequency triplet across task blocks.  Similar to 

Channon et al.’s (2003) findings, Takács et al. (2017) found no group differences in RT or 

accuracy changes for the high versus low frequency triplet, suggesting equivalent sequence 

learning performance between young people with TS and controls.   

The comparable performance between TS and controls in these studies contradicts the 

majority of previous work reporting reduced (Kéri et al., 2002; Marsh et al., 2004) or 

enhanced (Delorme et al., 2015; Palminteri et al., 2009) habit-learning in TS, and particularly 

Palminteri et al.’s (2011) findings of enhanced motor sequence learning, and suggest that 

neither hyper-learning (Leckman & Riddle, 2000; Maia & Frank, 2011) nor impaired habit-

formation (Marsh et al., 2004) are accurate accounts of the neurocognitive basis of tics.  

However, the sequence and non-sequence conditions in Channon et al.’s (2003) SRT design 

were not matched for structure, which can influence sequence-learning (Jackson et al., 1995), 

and Takács et al.’s (2017) task measuring learning of triplets of locations only may not have 

sufficiently pushed the chunking mechanism to elicit an impairment in TS.  Further, neither 

study assessed explicit knowledge of the repeating sequence or controlled for such 
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knowledge in analyses of sequence-learning. Recognition and/or recall tasks after the SRT 

task can be used to assess and take account of the contribution of explicit sequence 

knowledge in facilitating performance.  It is therefore possible that sequence-learning 

occurred in a more explicit, goal-directed manner rather than primarily via the habit-learning 

system.  Consistent with this suggestion, a recent study demonstrated that young people with 

TS perform as well as controls in goal-directed learning (Shephard et al., 2016a).     

Given the contrasting findings and methodological issues with previous research and 

the proposed overlap between tics and habits, further research on habit-learning in TS is 

warranted.  Another key issue that should be addressed is how co-occurring conditions affect 

habit-learning in TS.  Attention-deficit/hyperactivity disorder (ADHD), characterised by 

impairing symptoms of inattention, hyperactivity, and impulsivity (American Psychiatric 

Association, 2013), is one of the most frequently co-occurring conditions in TS (Freeman, 

2007) and its presence is associated with worse functional outcomes (Sukhodolsky, et al., 

2003) and poor response to behavioural tic therapies (McGuire et al., 2014) but it is not clear 

why.  Similar to TS, ADHD is associated with altered dopaminergic signalling and under-

activation of fronto-striatal brain circuits (reviewed in Cubillo et al., 2012).  This suggests 

there may be some overlap in the neural substrates underlying TS and ADHD, which may 

help explain their frequent co-occurrence.  Despite this, there has been very little research 

comparing these populations, or investigating the basis of the overlap between them.  

Comparing TS with ADHD on cognitive functions linked to fronto-striatal dopaminergic 

systems, such as habit-learning, may help characterise the neural substrates that either 

contribute to the co-occurrence between these conditions, or that differentiate TS and ADHD 

from one another.     

The literature on habit-learning in ADHD (without tics) is sparse.  One model of 

ADHD (Sagvolden et al., 2005) proposed impaired dopamine-mediated learning in ADHD as 
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a consequence of hypo-dopaminergic activity in the nigro-striatal dopamine system.  

However, empirical work suggests that habit-learning, including motor sequence learning, is 

unimpaired (Karatekin et al., 2009; Vloet et al., 2010) or enhanced (Rosas et al., 2010) in 

ADHD relative to typically developing individuals.  One study using the ASRT task reported 

a subtle alteration in sequence learning in children with ADHD compared with controls 

(Barnes et al., 2010).  Nonetheless, the evidence overall suggests that this particular aspect of 

cognition is unimpaired in ADHD.  Only one previous study has examined habit-learning in 

young people with TS, TS+ADHD, and ADHD (Takács et al., 2017) and found no 

differences in sequence learning between TS, TS+ADHD, and ADHD compared to typically 

developing controls.  However, as noted above, explicit sequence knowledge was not 

controlled for in this study and triplet learning may not place sufficient demands on habit-

learning to elicit sequence learning impairments in TS.  Interestingly, these studies all 

reported general performance deficits in ADHD (longer RT, reduced accuracy across blocks), 

which may indicate more global motor preparation/attentional deficits, consistent with 

theories of ADHD as a deficit in arousal regulation (Sergeant, 2000).  This suggests that 

ADHD may not contribute to altered habit-learning in TS but may produce additional 

impairments in general task performance. 

The aim of the current study was to examine habit-learning in young people with TS, 

TS+ADHD, and ADHD compared to young people with typical development.  We modelled 

TS and ADHD as separate between-subjects factors which enabled us to assess main effects 

of TS and ADHD as well as explore the additive effects of these conditions in TS+ADHD.  

We studied children and adolescents with these disorders to ensure habit-learning findings 

would be relevant to the typical presentation of TS rather than to adults with atypical non-

remitting tics.  We used a carefully designed SRT task to measure motor sequence-learning.  

In our task, repeating sequences were 12-items in length and fully balanced to push the 
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chunking mechanism proposed to be impaired in TS (Marsh et al., 2004).  Further, we 

matched the structure of the non-sequence and sequence conditions, and measured explicit 

sequence knowledge and controlled for this in analysis.  We hypothesised that young people 

with TS with or without co-occurring ADHD would show atypical motor sequence-learning 

and the degree of this atypicality would be associated with greater tic severity.  If the hyper-

learning hypothesis of tics (Leckman & Riddle, 2000; Maia & Frank, 2011) is correct, 

participants with TS and TS+ADHD would show greater sequence learning than participants 

without TS (ADHD and controls).  If the impaired chunking hypothesis of tics (Marsh et al., 

2004) is correct, participants with TS and TS+ADHD would show poorer sequence learning 

compared to ADHD and controls.  If young people with TS rely on explicit learning 

processes during sequence-learning, which has not been assessed in previous studies, 

sequence-learning differences between participants with and without TS should be absent 

when controlling for explicit sequence knowledge, and these young people should show 

better explicit sequence knowledge than those without TS.  We predicted young people with 

ADHD without tics would show comparable sequence-learning to controls, and ADHD 

symptoms would not be associated with sequence-learning.  We further predicted effects of 

ADHD (with and without co-occurring tics) on global performance measures (longer RT and 

reduced accuracy across blocks). 

Methods 

Participants 

Sixty-eight 9-17 year-olds with TS (n = 18), ADHD (n = 13), TS+ADHD (n = 17), or 

typical development (n = 20, Control group) took part in this study.  A number of participants 

were excluded due to task non-completion or outlying task performance (detailed in the 

Testing procedure and participant exclusions section, below), leaving 17 young people with 
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TS, 13 with TS+ADHD, 11 with ADHD, and 20 typically developing controls for the current 

analysis.  Participants had normal or corrected-to-normal vision and were free from 

neurological conditions such as epilepsy.  Young people with TS, TS+ADHD and ADHD 

were recruited from Nottinghamshire and Lincolnshire Child and Adolescent Mental Health 

Services (CAMHS) and Tourette’s Action support groups.  Control participants were 

recruited from Nottinghamshire primary and secondary schools.  Ethical approval for the 

study was obtained from University and NHS Research Ethics Committees (NHS East 

Midlands REC 11/EM/0339) and Research and Development departments of 

Nottinghamshire and Lincolnshire NHS trusts.  In accordance with the Declaration of 

Helsinki, parental written informed consent with child’s written assent was obtained for 9-15 

year-olds; 16-17 year-olds provided written informed consent.  

Consultant psychiatrists or paediatricians provided information on existing clinical 

diagnoses of TS, TS+ADHD and ADHD, and other co-occurring conditions.  The 

Development and Well-Being Assessment (DAWBA, Goodman et al., 2000) was used to 

confirm diagnoses and obtain further information on clinical or sub-clinical co-occurring 

symptomatology.  Tic severity (past week) was assessed using the Motor, Phonic, and 

Motor+Phonic scores from the Yale Global Tic Severity Scale (YGTSS; Leckman et al., 

1989).  ADHD symptom severity (past 6 months) was measured with the ADHD Index from 

the parent-rated Conners Rating Scale Revised (CPRS-R; Conners et al., 1998) and the 

Hyperactivity scale from the Strengths and Difficulties Questionnaire (SDQ; Goodman, 

1997).  Participants were assigned to clinical groups based on clinical diagnoses and scores 

on these measures.  Thirty-five participants had a clinical diagnosis of TS or chronic motor 

tics.  Of these, 17 also held a diagnosis of ADHD and/or scored above-threshold for clinically 

significant symptoms on the ADHD rating scales (CPRS-R ADHD Index scores > 60; SDQ 

Hyperactivity scores > 7).  These participants were assigned to the TS+ADHD group (n = 
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17).  The remaining 18 participants with TS formed the TS group; these young people did not 

have a diagnosis of ADHD and their scores on ADHD rating scales were below clinical 

thresholds.  Thirteen participants held a diagnosis of ADHD combined-type with no co-

occurring tics and were assigned to the ADHD group.  Typically developing control 

participants were screened for symptoms of neurodevelopmental disorders with the DAWBA 

and symptom rating scales.  The groups were matched on age (+/- 8 months), gender, 

handedness, and socioeconomic status (SES) (+/- 1 classification on the Office of National 

Statistics Socio-Economic Classification system, Rose & Pevalin, 2003).  The participant 

demographics and symptom profiles are shown in Table 1. 

     [Table 1] 

The following co-occurring conditions were reported.  TS: obsessive-compulsive 

disorder (OCD) (3), obsessive-compulsive behaviours (5), depression (3), anorexia (1), 

anxiety disorder (1); TS+ADHD: OCD (2), oppositional defiant disorder (ODD) (5), anxiety 

disorder (2), dyslexia (1); ADHD: ODD (5), conduct disorder (2), dyslexia (1), dyspraxia (1).  

Young people with actual or possible diagnoses of autism spectrum disorder (ASD) or 

intellectual disability, or with IQs less than 70 on the Wechsler Abbreviated Scale of 

Intelligence (WASI, Wechsler, 1999), were excluded from the study due to the likelihood that 

these conditions would interfere with implicit learning processes (Mostofsky et al., 2000) 

and/or the ability to follow task instructions.  The following combinations of medications 

were being received.  TS: Clonidine (2), Fluoxetine + Clonidine (1), Aripiprazole (2), 

Citalopram (1); TS+ADHD: Clonidine + methylphenidate (1), methylphenidate (1), 

Aripiprazole (2), Fluoxetine (1); ADHD: methylphenidate (8), Atomoxetine (1), 

methylphenidate + Atomoxetine (1).  Methylphenidate was withdrawn 24 hours prior to 

testing.  All other medications were continued, leaving 6 participants with TS, 4 participants 

with TS+ADHD, and 2 participants with ADHD on non-stimulant medication during testing. 
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SRT task 

The SRT task (Figure 1) was presented to participants as a game in which the aim was 

to stop a cartoon bomb character ‘Bob the bomb’ from exploding by pressing appropriate 

‘extinguish buttons’.  Every trial began with a display consisting of four white boxes 

(40x40mm) arranged in a horizontal line across the centre of a computer screen.  The boxes 

were shown for 225ms after which Bob the bomb (a 33x33mm square colour image of a 

cartoon smiling bomb) appeared in one of the boxes.  Participants used the index and middle 

fingers of each hand to press the ‘extinguish’ buttons on the laptop keyboard (keys 1, 2, 9, 0) 

corresponding to the box (far left, centre-left, centre-right, far right, respectively) Bob 

appeared in.  To encourage accuracy and prompt responding, participants were instructed to 

press the correct extinguish buttons as quickly as possible to prevent Bob exploding.  The 

stimulus screen terminated with the participant’s response or after 1500ms had elapsed, after 

which the trial ended. 

Five blocks of 120 trials were completed.  In blocks 2, 3 and 5 (sequence blocks) the 

stimulus sampled the boxes in a sequence of 12 locations that repeated ten times.  In blocks 1 

and 4 (non-sequence blocks) the stimulus sampled the boxes in ten different 12-item non-

repeating sequences of locations.  The non-repeating sequences matched the first order 

(number of times each location appeared) and second order (pairwise associations) structure 

of the repeating sequence.  The non-repeating sequences were presented in a different order 

in blocks 1 and 4, so block 4 was not just a repeat of block 1, and none of the ten non-

repeating sequences matched the repeating sequence used in sequence blocks.  Repeating and 

non-repeating sequences were fully balanced in structure, such that the probability of the 

stimulus sampling one location after another location was equal for all items in the sequence 

and consequently, pairwise association learning would not be sufficient to support 

performance improvements.  Two balanced sequences were created and administered in 
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alternating order across participants for counterbalancing: A: 0-1-9-2-1-0-9-0-2-9-1-2; B: 1-

2-0-9-2-9-0-1-0-2-1-9.  Following task instructions, participants completed four practice 

trials followed by the five blocks of experimental trials.  The task was programmed using E-

Prime version 1.2 (Psychology Software Tools Inc.) and performed on a Samsung P510 

laptop (screen size 20x34cm, resolution 1280x800 pixels).  

[Figure 1] 

SRT Performance measures 

Primary measures of SRT performance were reaction time indices.  Following 

previous SRT methods (Thomas & Nelson, 2001), each participant’s median RT (ms) was 

computed for correct trials over 12-trial runs (one sequence repetition in sequence blocks or 

one non-repeating sequence in non-sequence blocks) in each block and averaged to obtain the 

mean-of-median RT for correct trials per block for each participant, which were used in 

analyses.  The first trial from each block and trials on which incorrect responses were made 

were excluded from RT analysis.  As is standard in research using the SRT task, a RT 

disruption index was calculated for each participant as RT in the disruption block (non-

sequence block 2/task block 4) minus RT in the second sequence block (task block 3) to 

measure the extent to which performance was impaired (RT increased) by the removal of the 

learned repeating sequence.  As an additional method of quantifying sequence learning, we 

computed each participant’s accuracy (% correct trials) in each SRT task block, as well as an 

accuracy disruption index (accuracy in the disruption block minus accuracy in the second 

sequence block) to quantify the extent to which performance was disrupted (accuracy 

decreased) by the removal of the repeating sequence.  Participants with RT or accuracy 

measures 3SD outside of their group mean, or with insufficient correct trials for analysis (< 

20% of trials per block), were considered outliers and were excluded from analyses (detailed 

below). 
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Generate task 

Following the SRT task, participants completed a Generate task to probe for explicit 

knowledge of the repeating sequence.  On each trial, one item of the repeating sequence was 

presented and participants were required to indicate, by pressing the appropriate location 

button on the keyboard, where they thought the stimulus would move next in the sequence.  

The sequence was presented twice (24 trials total).  Generate performance was quantified by 

summing the number of correct trials i.e. trials on which the participants correctly identified 

the next location in the sequence (max score = 24, chance = 8). 

Testing procedure and participant exclusions 

The SRT task was administered in the afternoon of a one-day testing visit.  In the 

morning of the visit, participants completed a 1-hour electro-encephalography (EEG) session 

in which they performed an explicit, goal-directed reinforcement learning task and a 

Go/Nogo cognitive control task (data published in Shephard et al., 2016a).  After a 45-minute 

refreshment break, the SRT task was administered followed by the Generate task.  Four 

participants with TS+ADHD and two participants with ADHD were unable to complete the 

SRT task due to fatigue/inattention.  A further one participant with TS produced outlying RT 

scores (3 SD +/- group mean).  These participants were excluded from analysis, leaving a 

final sample of 17 TS, 13 TS+ADHD, 11 ADHD, and 20 controls. 

Statistical analysis 

Statistical analyses were conducted in SPSS v22 (IBM Corp, 2012).  Figures were 

created using SigmaPlot v.14 (SyStat Software, San Jose, CA).  The hypothesis that TS but 

not ADHD would be associated with hyper-learning or impaired sequence learning was tested 

using 2 x 2 factorial ANOVAs.  Each model included the between-groups factors TS with the 

levels TS-yes (TS and TS+ADHD group) and TS-no (ADHD and Control groups), and 

ADHD with the levels ADHD-yes (ADHD and TS+ADHD groups) and ADHD-no (TS and 
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Control groups).  The factorial design allowed us to test for effects of TS and ADHD on 

performance measures, as well as for any interactive effects of TS and ADHD which would 

indicate that participants with TS+ADHD differ from those with TS or ADHD alone.  To 

assess the effects of TS and ADHD and interactions between these factors on participants’ 

acquisition of the repeating sequence, mean-of-median RT and accuracy from the first (non-

sequence) task block and the following two sequence task blocks were subjected to 3 (block) 

x 2 (TS) x 2 (ADHD) ANOVAs; separate models were used for RT and accuracy data.  

Significant main effects of block, TS, ADHD, and interactions between these factors were 

further investigated using planned contrasts between pairs of blocks and levels of each group 

factor with Sidak correction applied to control for multiple comparisons.  Greenhouse-

Geisser corrections for violations of sphericity were applied where appropriate.  To assess the 

effects of TS and ADHD and interactions between these factors on the extent to which the 

sequence had been learned, the RT and accuracy disruption indices were subjected to 2 (TS) 

x 2 (ADHD) factorial ANOVAs; a separate model was used for each index.  Significant 

TS*ADHD interactions were further investigated using Sidak-corrected planned contrasts 

between the levels of each factor.   

To aid in interpreting the ANOVA results, we report the size (partial eta squared) and 

Bayes Factors for each effect.  The Bayes Factors (BFs), described in Masson (2011) and 

Jarosz and Wiley (2014), complement the ANOVA F-test results and standard effect sizes by 

providing estimates of how likely the data are under the null hypothesis relative to the 

experimental hypothesis (termed ‘BF01’), and vice versa, i.e. how likely the data are under 

the experimental over null hypothesis (termed ‘BF10’).  To compute these factors, the 

probability that the data support the null hypothesis (p(H0|D)) and the probability that the 

data support the experimental hypothesis (p(H1|D)) are first computed for each result using 

the sum of squares values for the experimental effect and associated error (see Jarosz & 
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Wiley, 2014 and Masson et al., 2011 for formulae).  The BF01 is equivalent to dividing the 

p(H0|D) by the p(H1|D) and yields a value that indicates how many times more likely the 

data are under the null hypothesis rather than the experimental hypothesis.  For example, a 

BF01 value of 2.5 would indicate the data are 2.5 times more likely to fit the null than 

experimental hypothesis.  The BF10 is then calculated by dividing 1 by the BF01 value, 

which reverses the comparison of probabilities and yields a BF value that indicates how much 

more likely the data are to fit the experimental hypothesis than the null hypothesis.  For 

example, if BF01 = 2.5, then BF10 = 1 / 2.5 = 0.4, indicating the data are 0.4 times more 

likely under experimental than null hypothesis.  In this example, the BF01 and BF10 values 

suggest that the data are more likely to fit the null hypothesis.  

The ANOVA analyses were repeated including Generate task performance (number 

of correct Generate items) as a covariate in the models to assess the extent to which explicit 

knowledge of the repeating sequence influenced learning performance and any TS- or 

ADHD-related differences in performance.  In addition, a 2 x 2 ANOVA examined whether 

Generate task performance was better in young people with TS than those without TS.  In 

addition, we repeated our analyses including the following covariates: 1) medication status 

(on or off medication during testing), since the longer-acting medications (e.g. clonidine, 

aripiprazole, atomoxetine) not withdrawn during testing may have directly or indirectly 

influenced neurotransmitters involved in sequence learning; 2) age, due to some previous 

findings that SRT performance can vary with age (e.g. Janacsek et al., 2012); 3) IQ, since the 

groups differed in IQ scores (see Table 1).  Medication status, age and IQ were not significant 

covariates and did not alter effects of TS and ADHD on sequence learning and were therefore 

not retained in the models. 

The hypothesised associations between tic and ADHD symptom severity and 

sequence-learning were examined by computing Pearson correlation coefficients between the 
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RT and accuracy disruption indices, YGTSS Motor+Phonic tic severity scores, and CPRS-R 

ADHD Index scores.  We also calculated RT and accuracy enhancement indices 

(RT/accuracy in the second sequence block minus RT/accuracy in the first non-sequence 

block RT) to quantify performance improvements during sequence acquisition in a single 

measure, and computed Pearson correlations coefficients between these indices and tic and 

ADHD severity.  All variables were z-transformed prior to computing correlation 

coefficients.  Correlations between tic severity and sequence learning indices were computed 

only within the TS and TS+ADHD groups since participants with ADHD and control 

participants did not have tics.  Correlations between ADHD severity and sequence learning 

were computed only within the TS+ADHD and ADHD groups since the TS and Control 

groups had low ADHD symptom scores. 

Finally, we conducted a supplementary analysis to assess whether sequence learning 

performance was influenced by the severity of co-occurring clinical or subclinical OCD 

symptoms, since previous work has shown that sequence learning is impaired in OCD 

(Kathmann et al., 2005; Vloet et al., 2010).  The Children’s Yale-Brown Obsessive 

Compulsive Scale (CY-BOCS; Goodman et al., 1986) was used to measure symptoms of 

OCD and obsessive-compulsive behaviours (OCBs) in all participants.  Only participants 

with OCD or OCB symptoms (n = 10) produced non-zero scores on this scale; the remaining 

participants uniformly scored zero.  Analysis was therefore restricted to the sub-sample of 

participants with OCD/OCB symptoms, all of whom had TS or TS+ADHD.  Within this 

sample, Pearson correlation coefficients were computed between z-transformed CY-BOCS 

Total (obsessions + compulsions) scores and the z-transformed SRT RT and accuracy 

enhancement and disruption indices.     

Results 

SRT performance 
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 Overall RT and accuracy performance in each SRT task block is presented for the 

four groups in Figure 2.  RT and accuracy performance is presented by TS and ADHD group 

factors during the acquisition phase in Figure 3 and during the disruption phase in Figure 4.   

Sequence acquisition 

 The 3 x 2 x 2 ANOVA assessing the effects of task block, TS, ADHD, and their 

interaction on RT during the acquisition of the repeating sequence revealed a significant main 

effect of block (F(2, 114) = 6.72, p = .002, η2 = .105).  Across groups, RTs significantly 

decreased from the first non-sequence block to the first sequence block (p = .006, d = .23) 

and remained significantly faster in the second sequence block than in the first non-sequence 

block (p = .01, d = .26), but did not differ between the two sequence blocks (p = .97, d = .02) 

(Figures 2a and 3a&c).  There were no significant main effects of TS or ADHD, and no 

significant interactions between these factors and block (all F < 2.66, p > .11, η2 < .045) 

(Figure 3a&c).  To assess the extent to which these null effects were likely to be genuine 

(rather than reflecting false negatives, for example), the BF01 and BF10 Bayes Factors were 

computed for each non-significant effect.  All BF01 values were equal to or greater than 1.95, 

indicating the null effects were at least 1.95 times more likely to occur under the null than 

experimental hypothesis.  Conversely, all BF10 values were equal to or less than 0.51, 

indicating the non-significant effects were only 0.5 times (or less) likely under the 

experimental hypothesis.  When Generate performance was included as a covariate, the main 

effect of block was reduced to a trend (F(2, 112) = 2.42, p = .09, η2 = .041); all other effects 

were unchanged. 

The 3 x 2 x 2 ANOVA examining the effects of task block, TS, ADHD, and their 

interaction on accuracy during acquisition of the repeating sequence revealed significant 

main effects of block (F(1.56, 88.85) = 6.22, p = .006, η2 = .098) and ADHD (F(1, 57) = 6.81, 

p = .01, η2 = .107), and a significant ADHD*block interaction (F(1.56, 88.85) = 3.91, p = .03, 
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η2 = .064).  Participants without ADHD showed no changes in accuracy across the three task 

blocks (all p > .77, d < .11), but participants with ADHD showed a significant decrease in 

accuracy in the second sequence block compared to the previous sequence and non-sequence 

blocks (both p < .004, d > .31) (Figure 3d).  Further, participants with ADHD had 

significantly lower accuracy than those without ADHD in the two sequence blocks (both p < 

.03, d > .56) but did not differ in the non-sequence block (p = .18, d = .34) (Figure 3d).  To 

further characterise the effect of ADHD on accuracy, BF01 and BF10 Bayes Factors were 

computed for the main effect of ADHD to compare the probability of the data occurring 

under the null hypothesis versus the experimental hypothesis and vice versa.  The BF01 was 

0.25 and the BF10 was 4.01, indicating that the data were 4.01 times more likely under the 

experimental hypothesis and only 0.25 times more likely under the null.  The effects of TS, 

TS*block interaction, and TS*ADHD interaction were non-significant (all F < 1.41, p > .25, 

η2 < .024) (Figure 3b).  Bayes Factors computed for these null effects revealed BF01 values 

of > 28.97 and BF10 values of < 0.03, indicating the data were at least 28.97 times more 

likely under the null hypothesis and only 0.03 times more likely to fit the experimental 

hypothesis.  When explicit knowledge of the repeating sequence was included as a covariate, 

the main effect of block became non-significant (F(1.55, 87.03) = 1.78, p = .18, η2 = .031); all 

other effects were unchanged.     

[Figures 2 & 3] 

Disruption to sequence learning 

  The 2 x 2 ANOVA examining the effects of TS, ADHD, and their interaction on the 

RT disruption index revealed a marginal effect of TS (F(1, 57) = 3.73, p = .058, η2 = .061), 

reflecting smaller disruptions to RT performance in participants with TS compared to those 

without TS (Figure 4a).  This trend-level effect of TS was further investigated by computing 

BF01 and BF10 Bayes Factors to assess the fit of the data under the null hypothesis versus 
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the experimental hypothesis and vice versa. The BF01 was 1.13 and the BF10 was 0.89, 

indicating the data were slightly more likely under the null than experimental hypothesis.  

The main effect of ADHD and TS*ADHD interactions were non-significant (both F < 0.62, p 

> .43, η2 < .011).  BF01 and BF10 values for these non-significant effects were > 5.61 and < 

0.19 respectively, indicating the null effects were at least 5.61 times more likely under the 

null than experimental hypothesis, and less than 0.20 times more likely under the 

experimental hypothesis.  The trend-level effect of TS remained when explicit sequence 

knowledge was included as a covariate (F(1, 56) = 3.64, p = .06, η2 = .061), with a BF01 of  

1.14 and BF10 of 0.88 suggesting similar support for the null hypothesis over the 

experimental hypothesis.  The effect of ADHD and TS*ADHD interaction remained non-

significant (both F < 0.61, p > .44, η2 < .011).  

 The 2 x 2 ANOVA examining the effects of TS, ADHD, and their interaction on the 

accuracy disruption index revealed a trend-level effect of TS (F(1, 57) = 3.37, p = .07, η2 = 

.056), which showed that participants with TS tended to show a larger decrease in accuracy 

during the disruption block than participants without TS (Figure 4b).  BF01 and BF10 values 

for the trend-level effect of TS were 1.35 and 0.74, respectively, indicating the data were 

slightly more likely under the null than experimental hypothesis.  There was also a trend-

level effect of ADHD (F(1, 57) = 3.35, p = .07, η2 = .056), showing that participants with 

ADHD tended to show an increase in accuracy performance during the disruption block 

while participants without ADHD did not (Figure 4b).  BF01 and BF10 values for the trend-

level effect of ADHD were 1.37 and 0.73, respectively, suggesting the data were slightly 

more likely under the null than experimental hypothesis.  The TS*ADHD interaction was not 

significant (F(1, 57) = .026, p = .87, η2 < .001).  The BF01 and BF10 values for this null 

effect were 7.70 and 0.13, respectively, indicating the data were 7.7 times more likely under 

the null than the experimental hypothesis and only 0.13 times more likely under the 
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experimental hypothesis.  The trend-level effects of TS (F(1, 56) = 2.99, p = .09, η2 = .051) 

and ADHD (F(1, 56) = 2.89, p = .095, η2 = .049) on accuracy remained, although were 

somewhat reduced, when explicit sequence knowledge was included as a covariate; the 

TS*ADHD interaction remained non-significant (F(1, 56) = 0.06, p = .81, η2 = .001).  BF01 

and BF10 values for the trend-level effects of TS and ADHD were similar when covarying 

explicit sequence knowledge (TS: BF01 = 1.60, BF10 = 0.63; ADHD: BF01 = 1.69, BF10 = 

0.59), again indicating the data were slightly more likely under the null than experimental 

hypothesis.  The BF01 and BF10 values for the non-significant TS*ADHD interaction 

remained similar when controlling for explicit knowledge (7.56 and 0.13 respectively) and 

indicated the data supported the null rather than experimental hypothesis.  

[Figure 4] 

Generate task performance 

 The mean number of correctly predicted Generate task items was similar across 

groups and close to chance performance: TS mean = 8.65 (SD = 3.61), ADHD mean = 7.73 

(SD = 2.72), TS+ADHD mean = 8.00 (SD = 1.87), Control mean = 8.05 (SD = 2.96).  A 2 

(TS) x 2 (ADHD) ANOVA confirmed there were no significant effects of TS or ADHD and 

no interaction between these factors on Generate task performance (all F < .395, p > .53, η2 < 

.007).  

Associations between implicit sequence learning, tic severity, and ADHD severity 

 There were no significant associations between YGTSS Motor+Phonic tic severity 

scores and the RT and accuracy enhancement and disruption indices in the participants with 

TS and TS+ADHD (all r < .165, p > .39).  There were no significant associations between 

ADHD Index scores and RT and accuracy enhancement and disruption indices in participants 

with ADHD and TS+ADHD (all r < -.339, p > .13). 

Associations between sequence learning and OCD symptom severity 
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 In the sample of young people with TS or TS+ADHD and co-occurring OCD/OCB 

symptoms, there were no significant associations between CY-BOCS scores and the RT and 

accuracy enhancement and disruption indices of sequence learning (all r < -.361, p > .31). 

Discussion 

 This study used a motor sequence-learning task to investigate habit-learning in young 

people with TS, TS+ADHD, and ADHD compared to typically developing young people.  

We aimed to assess whether young people with tics would show enhanced or impaired 

sequence-learning to test previous authors’ hypotheses that tics are caused by hyper-learning 

or deficient habit-formation (Leckman & Riddle, 2000; Maia & Frank, 2011; Marsh et al., 

2004).  Further, we sought to determine the effects of co-occurring ADHD symptoms on 

habit-learning in young people with TS.  We used a factorial approach to investigate the 

effects of TS, ADHD, and their interaction on sequence-learning.  We found no evidence of 

altered sequence acquisition in TS, although there were trend-level TS-related differences in 

the extent to which performance was disrupted by removal of the repeating sequence.  There 

was evidence of impaired sequence learning in ADHD, including poorer accuracy during 

sequence acquisition compared to young people without ADHD.  

 The main effects of TS on RT and accuracy performance during the acquisition phase 

of the task (blocks 1-3) were non-significant, indicating that TS was not associated with 

impaired learning of the repeating sequence.  Further, the Bayes Factors for these non-

significant effects indicated the data were more likely under the null rather than experimental 

hypothesis.  These findings are consistent with the two previous studies examining sequence-

learning in children and adolescents with TS (Channon et al., 2003; Takács et al., 2017).  Our 

learned sequences were long (12-items) and fully balanced in structure, and therefore were 

likely to have placed considerable demands on the habit-learning chunking mechanism.  
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Taken together, our findings and those of the previous sequence-learning studies provide 

little support for the deficient habit-formation hypothesis of tics (Marsh et al., 2004). 

However, we did find trend-level effects of TS on the RT and accuracy disruption 

indices, with participants with TS showing a tendency for smaller disruptions to RT and 

larger disruptions to accuracy when the repeating sequence was replaced by non-repeating 

sequences in the disruption block, although these effects were not associated with greater tic 

severity.  While these differences did not reach conventional levels of significance, the 

effects were of medium size and thus warrant some discussion.  The pattern of smaller RT 

disruption and larger accuracy disruption might indicate that young people with TS 

experienced difficulty in transitioning from sequenced to non-sequenced stimuli and because 

of this difficulty they “traded-off” accuracy for speed, i.e. they maintained RT at the expense 

of accuracy.  These trend-level effects were largely unchanged when controlling for explicit 

knowledge of the repeating sequence, indicating that primarily habit-learning rather than 

goal-directed learning was involved.  These findings may be in line with the hyper-learning 

hypothesis of tics (Leckman & Riddle, 2000; Maia & Frank, 2011) in that the disrupted 

performance could indicate that the sequence was over-learned and therefore difficult to stop 

executing when the repeating sequence was removed.  This pattern of findings is somewhat 

similar to those of Delorme et al. (2015), who found increased habitual behaviour execution 

in TS when this was no longer appropriate.  However, this interpretation must be considered 

with caution since the effects of TS on the disruption indices did not reach significance and 

did not correlate with tic severity, and the Bayes Factors indicated the trend-level effects 

were slightly more likely to under the null than experimental hypothesis.  Also, these effects 

occurred in the context of typical acquisition of the sequence suggestive of typical learning 

and so it is not completely clear why typical learning might result in greater disruption.  

Further, our findings contrast with those of Channon et al. (2003), who reported no 
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differences between children with TS and controls in the extent to which RT performance 

was disrupted when their repeating sequence was replaced by a new sequence, although 

Channon et al. (2003) did not assess accuracy as well as RT and their repeating and test 

sequences were not matched for structure.  

Considering our findings alongside those from other studies, habit-learning effects in 

TS appear to be heterogeneous, with some studies reporting clear enhancements (Delorme et 

al., 2015; Palminteri et al., 2009; 2011), others reporting clear impairments (Kéri et al., 2002; 

Marsh et al., 2004), and others (Channon et al., 2003; Takács et al., 2017) including our study 

reporting no or only subtle differences in habit-learning.  It is unclear whether this 

heterogeneity reflects true individual differences in habit-learning ability or methodological 

differences across studies, for example in the different habit-learning paradigms used and the 

varying degree of control for comorbidity.  Future work is needed to conduct more 

comprehensive assessments of habit-learning using a range of tasks in the same individuals, 

and in children and adults with TS with and without various co-occurring conditions.  

In contrast to our hypotheses, ADHD was associated with impaired sequence 

learning.  During the acquisition of the repeating sequence, young people with ADHD and 

TS+ADHD showed a significant decrease in accuracy rather than the expected increase or 

maintenance of accuracy performance as observed in the TS and control groups.  Further, 

while accuracy did not differ between participants with and without ADHD in the first (non-

sequence) task block, accuracy was significantly poorer in ADHD in the following two 

repeating sequence blocks.  These findings indicate that the impairment in accuracy 

performance was related to sequence-learning and not to general performance difficulties in 

ADHD.  There was no effect of ADHD on RT during the acquisition phase, indicating that 

young people with ADHD showed the same decrease in RT associated with sequence-

learning as the young people without ADHD.  This pattern of findings may indicate that 
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young people with ADHD and TS+ADHD traded-off accuracy for speed during the 

acquisition of the repeating sequence, perhaps because they had difficulty learning the 

sequence.  When the repeating sequence was removed in the disruption block, participants 

with ADHD showed a tendency for increased accuracy (the opposite of the impaired 

accuracy performance that is expected with disruption) but comparable disruptions to RT 

performance (increases in RT) as young people without ADHD.  Again, this pattern of 

findings may indicate that young people with ADHD traded accuracy for speed.  

Alternatively, it may have been easier for participants with ADHD to perform the task when 

the repeating sequence was not presented due to their sequence learning difficulties, and 

hence they showed no accuracy disruption effect.  However, these trend-level effects of 

ADHD on performance during the disruption to sequence learning must be interpreted with 

caution since the Bayes Factors indicated the data were slightly more likely to fit the null 

hypothesis better than the experimental hypothesis.  The effects of ADHD on sequence 

learning performance remained when controlling for explicit sequence knowledge, suggesting 

the atypical accuracy changes in these young people were not reflective of difficulties with 

goal-directed learning.  These sequence learning difficulties were not correlated with ADHD 

symptoms, indicating the impairments did not vary with the severity of symptomatology.   

Overall, the pattern of ADHD effects indicates that these young people had 

difficulties acquiring the repeating sequence and/or maintaining their accuracy performance 

while executing the sequence, in contrast to our hypothesis that habit-learning would be 

unimpaired in ADHD.  Previous studies of habit-learning in ADHD, of which there are few, 

have reported comparable overall performance to controls on traditional sequence learning 

SRT tasks similar to our design (Karatekin et al., 2009; Vloet et al., 2010) and the triplet-

learning ASRT task (Barnes et al., 2010; Takács et al., 2017), as well as superior performance 

compared to controls on an artificial grammar learning task (Rosas et al., 2010).  However, 
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similar to our findings, one of these studies did find subtle alterations in motor sequence-

learning: Barnes et al. (2010) found that children with ADHD showed inconsistent RT 

improvements in responding to repeating triplets of sequence locations, with comparable 

learning performance to controls at the beginning and end of the task but poorer learning 

performance in the middle of the task.  Barnes et al. (2010) suggested their findings may have 

reflected difficulties with temporal processing in ADHD, rather than deficits in sequence 

learning.  That is, participants with ADHD may have experienced difficulty in accurately 

predicting and preparing for the upcoming stimulus in the sequence, and this may have driven 

their inconsistent performance during triplet learning.  Whether a temporal processing deficit 

could explain our findings in ADHD is unclear, since RT performance during the acquisition 

of the repeating sequence was not different from controls.  Further, stimulus onset was 

similarly predictable in our task and the tasks used in Barnes et al. (2010) and in the other 

previous studies reporting no effects of ADHD on performance (Karatekin et al., 2009; 

Takács et al., 2017; Vloet et al., 2010).  Future work using neuroimaging to examine neural 

circuitry involved in sequence-learning atypicalities in ADHD may help to clarify the nature 

of the difficulty and the reason for inconsistent findings across studies.  

Importantly, we found no significant interactions between the TS and ADHD group 

factors on sequence-learning performance, indicating that the TS+ADHD group showed the 

same difficulties with acquisition of the sequence as the ADHD group, and the same 

difficulties with adjusting performance during the disruption block as the TS group.  Thus, 

young people with both sets of symptoms were more impaired than young people with either 

condition alone.  This finding is consistent with other research reporting that co-occurring 

ADHD symptoms introduce impairments in other cognitive functions in TS, including goal-

directed learning (Shephard et al., 2016a) and cognitive control (Roessner et al., 2007; 

Shephard et al., 2016b), as well as impairing response to behavioural tic treatments and 
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general functioning (McGuire et al., 2014; Sukhodolsky et al., 2003).  Together, these 

findings highlight the importance of treating both symptoms in young people with 

TS+ADHD and controlling for comorbid symptoms in research investigating neurocognitive 

mechanisms in either TS or ADHD.  Indeed, given our findings of ADHD-related 

impairments in sequence-learning, it is possible that co-occurring ADHD symptoms may 

have contributed to previously reported findings of impaired habit-learning in TS (Kéri et al., 

2002; Marsh et al., 2004). 

There were limitations to the current study which should be considered.  First, the 

modest sample sizes, particularly for the ADHD group, may have contributed to the trend-

level effects and non-significant TS*ADHD interactions and future research investigating 

habit-learning with larger samples of young people with TS, ADHD, and TS+ADHD is 

required.  Second, although stimulant medications were withdrawn prior to testing, it was not 

possible to withdraw other, longer-acting medications including aripiprazole, clonidine, and 

atomoxetine.  This is important since these medications directly or indirectly affect dopamine 

levels, which may have influenced habit-learning performance.  Our analysis covarying 

medication status (on or off longer-acting medications during testing) showed that these non-

withdrawn medications did not associate with sequence learning performance and did not 

alter the effects of TS and ADHD on sequence learning.  However, due to the small number 

of participants taking longer-acting medications during testing, we could not examine effects 

of different types of medications individually and this should be investigated in future 

research.  In addition, a proportion of our sample of young people with TS and TS+ADHD 

had co-occurring OCD or OCB symptoms.  This is to be expected since OCD, along with 

ADHD, is among the most common co-occurring conditions in TS (Freeman et al., 2007).  

The presence of co-occurring OCD in the current study is problematic since impaired habit-

learning, including motor sequence learning, has been reported in children and adults with 
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OCD compared to typically developing controls (Kathmann et al., 2005; Vloet et al., 2010).  

Our supplementary analysis showed no association between OCD symptoms and sequence 

learning performance in the subsample of participants with TS and co-occurring OCD or 

OCB symptoms, indicating these co-occurring symptoms did not influence their sequence 

learning ability.  Nevertheless, it will be important for future research to more thoroughly 

assess the effects of OCD on habit-learning in TS.  Finally, the SRT task was completed 

following a morning of EEG tasks and IQ assessments, and it is possible that fatigue and 

inattention may have affected young people’s performance.  
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Table 1 Clinical and socio-demographic characteristics. Means (SD) are presented for each participant group 

 TS (n = 18) TS+ADHD (n = 17) ADHD (n = 13) Control (n = 20) Group differences 

Age (months) 158.1 (33.3) 148.2 (33.9) 168.5 (32.9) 156.3 (34.8) n/s 

Gender (% males) 77.8 94.1 92.3 80.0 n/s 

Handedness (% right 

handed) 

83.3 88.2 92.3 85.0 n/s 

SES 2.1 (1.4) 1.8 (1.2) 2.1 (1.4) 1.5 (1.1) n/s 

IQ 111.2 (11.8) 110.1 (10.2) 96.3 (15.6) 112.6 (11.2) ADHD < TS/TS+ADHD/ 

Controls * 

Motor tic severity 

(YGTSS Motor) 

13.6 (7.5) 12.2 (7.8) --- --- TS = TS+ADHD (n/s) 

Phonic tic severity 

(YGTSS Phonic) 

5.5 (5.8) 19.1 (8.9) --- --- TS < TS+ADHD* 

Motor+Phonic tic severity 

(YGTSS Motor+Phonic) 

19.1 (11.8) 28.1 (11.3) --- --- TS < TS+ADHD* 

CPRS ADHD Indexa 54.0 (9.0) 71.4 (9.2) 76.1 (16.0) 47.6 (6.5) TS+ADHD/ADHD > 

TS/Controls* 

SDQ Hyperactivity 4.6 (3.1) 5.9 (3.1) 8.3 (2.0) 2.6 (2.6) ADHD > TS/Controls* 

TS+ADHD > Controls* 

* = significant at p < .05. SES = socioeconomic status assessed with the Office of National Statistics Socio-Economic Classification system. IQ 

= Wechsler Abbreviated Scale of Intelligence Full-Scale IQ. YGTSS = Yale Global Tic Severity Scale. CPRS = Conners Parent Rating Scale – 

Revised. SDQ Hyperactivity = Strengths and Difficulties Questionnaire Hyperactivity subscale. a Scores above 60 on the CPRS-R ADHD scale 

are considered to be clinically significant.  
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Figure 1 Diagram of the SRT task 

 

 
A. Stimulus, screen set-up, and response buttons 

The cartoon bomb stimulus sampled one of four box locations arranged horizontally across 

the screen. Participants responded to the stimulus using the keyboard keys 1, 2, 9, 0.  

B. Trial structure 

Every trial began with a screen displaying the four boxes for 225ms. Next, the cartoon bomb 

stimulus appeared in one of the four boxes and participants pressed the corresponding button 

on the keyboard. The trial ended when the participant pressed a button or after 1500ms had 

elapsed. 

C. Task structure 

Five blocks of 120 trials were completed. Block 1 was a non-sequence block, blocks 2 and 3 

were sequence blocks, block 4 was the disruption (non-sequence) block, block 5 was a 

sequence block. 
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Figure 2 SRT task RT and accuracy performance plotted by task block and group 

 

 
 

Plots show group averages for mean-of-median RT (ms) for correct trials in each task block (A), and accuracy (% correct trials) in each task 

block (B).  N-S 1 = Task block 1 (first non-sequence block), S 1 = Task block 2 (first repeating sequence block), S 2 = Task block 3 (second 

repeating sequence block, N-S 2 = Task block 4 (disruption block / second non-sequence block), S 3 = Task block 5 (third repeating sequence 

block).  Error bars represent the standard error of the group mean.   
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Figure 3 Performance in the acquisition phase by TS (TS-yes, TS-no) and ADHD (ADHD-yes, ADHD-no) group factors

 

Plots show RT (A and C) and accuracy (B and D) performance during the acquisition of the repeating sequence by TS (TS-yes, TS-no, plots A 

and B) and ADHD (ADHD-yes, ADHD-no, plots C and D) group factors.  N-S 1 = Task block 1 (first non-sequence block), S 1 = Task block 2 
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(first repeating sequence block), S 2 = Task block 2 (second repeating sequence block).  Error bars represent the standard error of the group 

mean.   
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Figure 4 Accuracy and RT disruption indices plotted by TS (TS-yes, TS-no) and ADHD (ADHD-yes, ADHD-no) group factors 

 

Plots show the RT and accuracy disruption indices reflecting the extent to performance was impaired by the removal of the repeating sequence in 

the disruption block. A) RT disruption index = increase in RT during the disruption block compared to the previous repeating sequence block.  

B) Accuracy disruption index = decrease in accuracy during the disruption block compared to the previous repeating sequence block.  Greater 

disruption indices are indicative of greater learning of the repeating sequence.  Error bars represent the standard error of the group mean.  

 

 

 


