Supplementary Data

Magnetic shepherding of nanocatalysts through hierarchically-assembled Fe-filled CNTs hybrids

Michele Melchionna,^a Alessandro Beltram,^a Antoine Stopin,^b Tiziano Montini,^{a,c} Rhys W. Lodge,^d Andrei N. Khlobystov,^d Davide Bonifazi,^{*b} Maurizio Prato^{*a,e,f} and Paolo Fornasiero^{*a,c}

- [a] Dr. M. Melchionna, Dr A. Beltram, Dr. T. Montini, Prof. Dr. P. Fornasiero, Prof. Dr. M. Prato Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy. Emails: prato@units.it, pfornasiero@units.it
- [b] Dr. A. Stopin, Prof. Dr. D. Bonifazi School of Chemistry, Cardiff University, Park Place, Main Building, CF10 3AT, Cardiff, United Kingdom. Email: bonifazid@cardiff.ac.uk
- [c] Prof. Dr. P. Fornasiero, Dr T. Montini ICCOM-CNR, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- [d] R.W. Lodge, Prof. Dr. A.N. Khlobystov, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
- [e] Prof. Dr. M. Prato
 Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastian (Spain).
- [f] Prof Dr. M. Prato Ikerbasque, Basque Foundation for Science, 48013 Bilbao (Spain).

Figures and tables

Figure S1: (A) Comparison of the XANES spectra of Fe@CNT@Pd@TiO₂-magn after treatment in H_2/Ar at 450 °C with those of the standard Fe₃C and metallic Fe; (B) Results from linear combination fitting of the XANES spectrum of Fe@CNT@Pd@TiO₂-magn after treatment in H_2/Ar at 450 °C.

Figure S2: (A) Comparison of the XANES spectra of Fe@CNT@Pd@TiO₂-magn after treatment in air at 450 °C with those of the standard Fe₃C and metallic Fe; (B) Results from linear combination fitting of the XANES spectrum of Fe@CNT@Pd@TiO₂-magn after treatment in air at 450 °C.

Figure S3: HR-TEM and SAED analysis of the Fe@CNTs precursor evidencing the presence of Fe_3C as main component.

Figure S4: A) and C) Representative TEM images of Fe@CNTs/Pd@TiO₂-filtr as prepared showing both the covered CNTs and free standing aggregates made of Pd@TiO₂. B) and D) Typical higher magnification of free standing aggregates clearly indicating absence of the CNT core.

Figure S5: Representative TEM images of the magnetically separated liquid phase of Fe@CNTs/Pd@TiO₂-filt at different magnifications, showing a large population of free standing aggregates of titania.

Figure S6: Fast Fourier Transform of Fe@CNTs/Pd/TiO₂-magn after thermal treatment indicating that the titania is mostly in the anatase phase.

Figure S7: EDX spectrum of Fe@CNTs/Pd/TiO₂-magn after thermal treatment and corresponding table with atomic %. The Cu and Si signals are contributions from the TEM grid.

Figure S8: N_2 physisorption isotherms of Fe@CNTs/Pd@TiO₂-filt and Fe@CNTs/Pd@TiO₂-magn thermally treated and f-Fe@CNTs

Figure S9: Pore size distribution of Fe@CNTs/Pd@TiO₂-filt and Fe@CNTs/Pd@TiO₂-magn thermally treated and f-Fe@CNTs.

Figure S10: Fe@CNTs/Pd@TiO₂-magn as prepared (blue) and thermally treated (red) photocatalytic hydrogen production from ethanol/water solutions under UV irradiation. Activities are normalized by g of Pd@TiO₂. Inset: H_2 evolution rates.

 $\textbf{Figure S11:} \ Raman \ spectrum \ of \ Fe@CNTs/Pd@CeO_2-magn \ after \ thermal \ treatment.$