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Abstract. Given a smooth defective solid crystalline structure defined by linearly inde-
pendent ’lattice’ vector fields, the Burgers vector construction characterizes some aspect
of the ’defectiveness’ of the crystal by virtue of its interpretation in terms of the closure
failure of appropriately defined paths in the material, and this construction partly de-
termines the distribution of dislocations in the crystal. In the case that the topology of
the body manifold M is trivial (e.g., a smooth crystal defined on an open set in R2), it
would seem at first glance that there is no corresponding construction that leads to the
notion of a distribution of disclinations, that is, defects with some kind of ’rotational’
closure failure, even though the existence of such discrete defects seems to be accepted
in the physical literature; see e.g. [7], [10]. For if one chooses to parallel transport a
vector, given at some point P in the crystal, by requiring that the components of the
transported vector on the lattice vector fields are constant, there is no change in the vec-
tor after parallel transport along any circuit based at P. So the corresponding curvature
is zero.

However, we show that one can define a certain (generally non-zero) curvature in this
context, in a natural way. In fact, we show (subject to some technical assumptions)
that given a smooth solid crystalline structure, there is a Lie group acting on the body
manifold M which has dimension greater or equal to that of M . When the dislocation
density is non-constant in M the group generally has a non-trivial topology, and so there
may be an associated curvature. Using standard geometric methods in this context,
we show that there is a linear connection invariant with respect to the said Lie group,
and give examples of structures where the corresponding torsion and curvature may be
non-zero even when the topology of M is trivial. So we show that there is a ’rotational’
closure failure associated with the group structure - however we do not claim, as yet,
that this leads to the notion of a distribution of disclinations in the material, since we
do not provide a physical interpretation of these ideas. We hope to provide a convincing
interpretation in future work.

The theory of fibre bundles, in particular the theory of homogeneous spaces, is central
to the discussion.
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Introduction

This work is an effort to further develop Davini’s proposal for a continuum theory of
defective crystals [3] by studying the geometry of the continuous structures he introduced
using modern mathematical methods, motivated by the assumption that an appropriately
detailed description of the geometry of the crystal continuum in the current configuration
informs us of the kinematic constitutive variables. In the next section, we summarize
some previous work showing that certain geometric fields are elastically invariant and
such that different crystals are (locally) elastically related only if those fields match (in
a prescribed sense) in the two states. In other words, those fields provide a complete set
of ’plastic strain variables’, and there is only a finite number of such variables. These
two facts suggest that those particular elastically invariant fields should be incorporated,
together with a measure of elastic strain, in any general list of kinematic constitutive
variables in a continuum mechanics context based on Davini’s model.

To phrase these concepts in geometrical language we indicate in Section 2 that the
’plastic strain variables’ can be rewritten as combinations of successive Lie brackets of the
vector fields that define the crystalline structure. This reformulation effectively introduces
iterations of the Burgers vector construction, and we make the assumption that there is a
finite basis for the Lie algebra of all vector fields so formed. (This does not follow from the
fact that there is a finite number of plastic strain variables). The utility of this assumption
is the central idea in Elżanowski and Preston’s analysis [6]. Then, the basis vector fields
define a finite dimensional Lie algebra (with appropriate choice of Lie bracket) and there
is generally a corresponding Lie group of dimension strictly greater than that of M , which
acts on M . It would seem, therefore, that the topology of the group acting on M should
play a role in the mechanics of a crystalline material with kinematic constitutive variables
as specified, and we note that this topology can be non-trivial even if that of M is trivial.

In this presentation we focus on the mathematical apparatus required to give sub-
stance to the remarks above introducing such concepts as the isotropy group of the action
of the Lie group on M , the principal bundle structure induced on the Lie group by the
isotropy group, and the corresponding lattice canonical connection with covariantly con-
stant measures of curvature and torsion. We also give a couple of explicit examples of
lattice structures (M is an open set in R2) where curvature and torsion do not vanish. We
present here only the mathematical foundations, but in future work we hope to provide
more detailed physical interpretations of quantities/procedures employed in this paper,
appropriate to the context and convincing from the point of view of engineering appli-
cations. Note that the theory of fibre bundles, which we employ here, has long been an
integral part of the mathematical physicist’s armory, and that insights deriving from the
perspective afforded by this theory have been instrumental in understanding/interpreting
solutions of field equations with certain symmetries.
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1. Continuous elastic crystals

Given a body manifold M of dimension n ≤ 3 (mathematically, the presentation is
valid for any finite dimension), let the kinematic state of a continuous solid crystal body
be defined by n linearly independent smooth vectors fields li : M → TM , i = 1, . . . , n,
where TM denotes the tangent space of M . In other words, the state of a continuous
elastic solid crystal, called a continuous lattice or simply a lattice, is defined as a smooth
(local) section l : M → L(M) of the bundle of the linear frames, [12], of the body manifold
M1. Subject to the choice of a local chart and invoking the Euclidean structure of Rn,
the lattice l(x), x ∈ M , induces a dual frame (dual lattice) d : M → L(M) such that
di(x) · lj(x) = δij, i, j = 1, . . . , n, x ∈ M , where δij denotes the usual Kroneker delta.
Some aspects of the “defectiveness” of the lattice l(x), x ∈ M , may be characterized in
dimension three (as is traditional) by the dislocation density tensor field Sij (ddt), the
components of which are defined by the equations

(1.1) n(x)Sij(x) = ∇∧ di(x) · dj(x), i, j = 1, . . . , x ∈M,

where n(x) is the lattice volume element (n(x) is the determinant of the dual lattice at
x). Note that if the defining frame field l(x) is holonomic (integrable) the corresponding
dislocation density tensor vanishes everywhere, and that the opposite is also true, [4].
In particular, the dislocation density tensor of the ideal lattice defined by the standard
frame li(x) = ei, i = 1, . . . , n, vanishes identically. Alternatively, some aspects of the
defectiveness can be characterized in any dimension by the (torsion) tensor T

(1.2) T =
1

2
T ijkdi ⊗ ηj ∧ ηk,

of the linear connection induced by the given lattice frame, where ηl denote the corre-
sponding coframe2.

Two crystalline structures, say l(x) and l̃(x), having the same domain of definition M ,
are called elastically related if there exists a diffeomorphism φ : M →M such that

(1.3) l̃i(φ(x)) = φ∗(li(x)), i = 1, . . . , n, x ∈M

where φ∗ : TM → TM denotes the tangent map of φ. Thus, any diffeomorphism of
M , when applied to a continuous lattice via (1.3), induces an elastically related lattice
structure. It is clear however that, in general, two (smooth) crystalline structures are not

1In general, a differentiable manifold may not admit a global section of its frame bundle. As our
approach is local, we shall only consider local section of L(M). So the reader may think about the
manifold M as an open neighborhood in Rn

2For the relation between the components of the ddt Sij and the tensor T i
jk see [5].
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necessarily elastically related, see [4]. Indeed, given a diffeomorphism φ : M → M , the

lattice l(x), and the elastically related lattice l̃(φ(x)) = φ∗(l(x)), one may show that

(1.4) S̃ij(φ(x)) = Sij(x), i, j = 1, . . . , n, x ∈M

where S̃ij(x) are the components of the dislocation density tensor of the new structure.
So the set defined by

(1.5) CM = {Sij(x) : x ∈M}
is an invariant of elastic deformation as it is unchanged by any diffeomorphism φ : M →
M . Thus, a necessary condition that two continuous lattices l and l̂ be elastically related
is that

(1.6) ĈM = CM

where ĈM is the set corresponding to the section l̂.
Although the ddt is an elastic scalar invariant in the sense that (1.4) holds, it is not

the only scalar invariant. For instance, successive directional derivatives of the dislocation
density tensor e.g., the first order directional derivatives li · ∇Sjk, are also unchanged
under a diffeomorphism of M (we call these the invariants of ’first order’). In fact there is
an infinite number of scalar invariants, satisfying equations analogous to (1.4) - however
at most n of these scalar invariant functions can be independent, since n independent
functions parameterize a local chart. Corresponding to each of the independent scalar
invariants there is a necessary condition that two continuous lattices be elastically related,
analogous to (1.6).

If there are n independent scalar invariants, they must occur amongst the first (n− 1)
directional derivatives of the ddt : for if the first such invariant is some component of the
ddt, and if no other component is independent of the first then a second invariant must
be found amongst the first order directional derivatives of the ddt, and so on. Suppose
that the independent scalar invariants occur amongst the first k directional derivatives
of the ddt, where k ≤ (n − 1). Then the scalar invariants of order (k + 1) may be
expressed as functions of the n independent invariants, and given these functions it is
straightforward to show by induction that any invariant of arbitrary finite order may be
similarly expressed. The case where there are fewer than n independent scalar invariants
may be treated analogously.

To progress, it is useful to generalize the definition of the set CM to incorporate all
scalar invariants of order ≤ (k + 1), not just the nine components of the ddt. This
set represents the ’classifying manifold’ corresponding to the crystal state, given certain
regularity assumptions - this set is a fundamental construct in E.Cartan’s ’equivalence
method’ (which allows one to decide if two coframes are mapped to each other by a diffeo-
morphism), [15]. The central fact which makes this definition important is the following:
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if one constructs the classifying manifolds corresponding to two crystal states, and those
manifolds overlap (in a precise sense, see [15]), then the two continuous lattices are locally
elastically related to one another (i.e., the lattice vector fields in certain neighbourhoods
of points determined by the overlap condition are elastically related). So the identity of
classifying manifolds corresponding to two crystal states, generalizing (1.6), is necessary if
the crystal states are to be elastically related to each other, whereas, as a kind of converse
result, if the two classifying manifolds overlap, then the crystal states are locally elasti-
cally related. By virtue of this last fact one may regard the quantities that enter into
the definition of the classifying manifold as the ’plastic strain variables’ which determine
whether or not different crystal states are locally elastically related to one another. (This
overlap condition is ’local’, so the topology of the classifying manifold plays no role in
this context.) See [15],[18] for details.

Finally, in this section, we say that a continuous lattice is uniformly defective if its dis-
location density tensor Sij(x) is constant in M , that is, if it is material point independent.
From equation (1.4), if two uniformly defective lattices are elastically related they have the
same dislocation density tensor. It can be shown that if two uniformly defective lattices
have the same dislocation density tensor, then they are locally elastically related (but not
necessarily elastically related). However, in the sequel we deal solely with non-uniformly
defective structures.

2. Non-uniformly defective structures

Consider a continuous lattice defined by the frame field l : M → L(M) and assume
that the corresponding smooth vector fields li(x), i = 1, . . . , n, induce an m-dimensional
Lie subalgebra, say l, of the algebra X (M) of all smooth vector fields on M , where
n ≤ m <∞. We shall call the subalgebra l the lattice algebra and number its generating
vector fields, say l1, l2, . . . , lm, so that li = li(x), i = 1, . . . , n, unless stated otherwise.

Our assumption that the lattice algebra l is of finite dimension is motivated by the
following two observations. First, as intimated in the previous section, the fields of scalar
invariants of order less than or equal to n determine whether or not two continuous lattices
are locally elastically related, and any scalar invariants of higher order are determined (via
appropriate functional relations) by the lower order invariants. In fact, as scalar invariants
are unchanged by elastic deformations, we may regard this finite set of scalar invariants
as a rather general set of inelastic constitutive variables. Moreover, as shown in [18], [20],
this set of inelastic variables may be expressed in terms of Lie brackets of the generating
vector fields of order less than or equal to (n+ 1) (We say that terms such as [li(x), lj(x)]
are Lie brackets of second order, terms such as [[li, lj], lk] are Lie brackets of third order,
etc., and refer to li as a Lie bracket of first order, for convenience). We therefore ask what
assumption guarantees that this set of Lie brackets determines all higher order brackets.
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Clearly this is so if the smooth vector fields li(x), i = 1, . . . , n, induce a finite dimensional
Lie subalgebra of X (M) .

Finally, we assume also that all generators of the subalgebra l are complete vector
fields on the manifold M implying that the algebra l consists entirely of complete3, vector
fields, [8]. Thus, there exists (see [8], [16],) an abstract Lie group, say, G acting on the
body manifold M , the Lie algebra of which is isomorphic to the subalgebra l. That is:

Theorem 1. Consider a continuous lattice defined by n linearly independent smooth vec-
tor fields li : M → TM , i = 1, · · · , n. Let l ⊂ X (M) denote the smallest algebra of vector
fields containing the given lattice vector fields. Assume that l is finite-dimensional and
complete. Then, there exists a simply connected Lie group G contained in Diff(M) as an
abstract subgroup4 and such that the natural action Λ : G ×M → M of the group G on
M is smooth and the algebra l is homomorphic to the Lie algebra, say g, of the group G.

Indeed, given the smooth left action Λ : G ×M → M of the group G on the body
manifold M , there exists a homomorphism χ : G → Diff(M) from the group G into the
group of all diffeomorphisms of M such that

(2.1) χ(g)(x) = Λ(g, x), g ∈ G, x ∈M.

If, in addition, the action Λ is effective5 the homomorphism χ identifies the group G with
a subgroup, say, χ(G) ⊂ Diff(M). Correspondingly, there exists a relation between the
Lie algebra g of the group G and the algebra of all smooth vector fields X (M). To this
end, given x ∈M , consider the smooth mapping Λx : G→M such that

(2.2) Λx(g) = Λ(g, x)

for any g ∈ G, i.e., Λx maps the group G onto the orbit G(x) (under the action Λ) of
the point x. The mapping Λx is a morphism (but not necessarily an isomorphism) of the
action of G on itself (by left translations) into the action of Λ on M . Let dΛx : TG→ TM
be the tangent map of Λx, where dΛx : TgG → TΛ(g,x)M for any g ∈ G. Identifying the
tangent space TeG at the identity e of the group G with the Lie algebra g of G, define

(2.3) dχ : g→ X (M)

by requiring that

(2.4) dχ(v)(x) = deΛx(v)

for any v ∈ g and any x ∈M . It can than be shown, [8], that:

3A vector field on M is complete if the corresponding flow on M is global.
4Note that although the set Diff(M) of all diffeomorphisms of M , is a group, it is not a Lie group.
5If for any g ∈ G there exists x ∈M such that Λ(g, x) 6= x, the action of G on M is said to be effective.



CONNECTION AND CURVATURE 7

Proposition 1. The mapping dχ : g → X (M) is a homomorphism of Lie algebras. In
fact, dχ(g) = l.

Given an m-parameter Lie group G acting on the left on the body manifold M , where
the Lie algebra g of G is homomorphic to the lattice algebra l, consider a point, say
x0 ∈M , and let Gx0 be the isotropy group of the action Λ at x0. That is, let

(2.5) Gx0 := {g ∈ G : Λ(g, x0) = x0}.
If the action Λ is transitive6 the orbit Λx0(G) = M and the rank of the projection Λx0

is constant, [8]. This, in turn, allows one to identify M with the quotient space G/Gx0 .

Namely, consider the mapping Λ̂(x0) : G/Gx0 →M , called here a realization, defined by

(2.6) Λ̂(x0)(hGx0) = Λx0(h) = Λ(h, x0), h ∈ G
where hGx0 denotes the left co-set of Gx0 generated by h. It can be shown easily that

Λ̂(x0) is a diffeomorphism commuting with the natural left action of G on G/Gx0 . Note,
that in general a realization is base point dependent. That is, two realizations based at two

different points, say, Λ̂(x0) : G/Gx0 → M and Λ̂(y0) : G/Gy0 → M , where y0 = Λ(g, x0)
for some g ∈ G, are two different mappings with the corresponding isotropy groups being
a conjugate of each other, i.e., Gy0 = gGx0g

−1. Indeed, let g0 ∈ Gx0 then,

(2.7) Λ(gg0g
−1, y0) = Λ(gg0g

−1,Λ(g, x0)) = Λ(gg0, x0) = Λ(g, x0) = y0.

Summarizing what we have just discussed, we can state that:

Theorem 2. Consider a continuous lattice defined by n linearly independent smooth vec-
tor fields li : M → TM , i = 1, · · · , n, where l ⊂ X (M) is the corresponding lattice algebra
and where the induced action Λ : G × M → M (Theorem 1) is transitive. Then, the
underlying body manifold M can be identified with the homogeneous space7 G/Gx0 where
the subgroup Gx0 ⊂ G is the isotropy group of the action Λ at the point x0 ∈M .

In other words, the body manifold M with the lattice frame l may be viewed as the
homogeneous space G/Gx0 on which the group G acts in the natural way on the left. This
generalizes the uniformly defective case where the body manifold M is identified with a
Lie group acting on itself, [17].

In addition to M being identified with the homogeneous space G/Gx0 , the subgroup
Gx0 (in general, any closed subgroup of G), introduces a principal bundle structure on
the group G with the bundle projection π : G → G/Gx0 such that π(g) = gGx0 , for any
g ∈ G, and the natural right action of Gx0 on G. Moreover, as the tangent map

(2.8) deπ : TeG := g→ TGx0
G/Gx0

6The group action is transitive if there is only one orbit.
7A homogeneous space is the quotient space of a Lie group by a closed subgroup.
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is surjective its kernel is the Lie algebra g0 of the isotropy group Gx0 . This allows one to
identify the tangent space TGx0

G/Gx0 with the algebra quotient g/g0, [8]. Furthermore,

the specific realization Λ̂(x0) : G/Gx0 → M induces a bundle isomorphism between the
principal bundle G(G/Gx0 , Gx0)

8 and the principal bundle G(M,Gx0) with the projection
π0 : G→M such that

(2.9) π0(g) = Λ̂(x0)(π(g)) = Λ̂(x0)(gGx0) = Λ(g, x0).

We shall explore this way of looking at the group G acting on the body manifold M in the

next section. For now, note that due to the fact that the realization Λ̂(x0) : G/Gx0 →M
is a diffeomorphism, the kernel of the tangent map deπ0 : g → Tx0M is again the Lie
algebra g0 of the isotropy group Gx0 .

Example 1. Consider a two-dimensional continuous lattice given by the frame l1 = (1, 0)
and l2 = (0,−x). As the corresponding dislocation density tensor is not constant, the
lattice is non-uniformly defective. In fact, it generates a three-dimensional Lie algebra
spanned by

(2.10) l1 = (1, 0), l2 = (0,−x), l3 = (0, 1)

as [l1, l2] = l3 and [l1, l3] = [l2, l3] = 0. Viewing the vector fields li, i = 1, 2, 3, as
infinitesimal generators of one-parameter groups acting on R2 and using the exponential
map construction to determine the three associated flows exp(tli) : R2 → R2 we obtain:
(x, y) 7→ (x+ t, y), (x, y) 7→ (x, y − xt) and (x, y) 7→ (x, y + t). The composition of these
flows generates the (left) action of a three-parameter group, say G,

(2.11) Λ((a, b, c), (x, y)) = (x+ a, y − b(x+ a) + c)

for any (a, b, c) ∈ G and (x, y) ∈ R2 where the group multiplication

(2.12) gg = (a+ a, b+ b, c+ c+ ba), g, g ∈ G

can easily be determined from the equation

(2.13) Λ(gg, (x, y)) = Λ(g,Λ(g, (x, y)))

for any two g, g ∈ G. Obviously, the group G is connected (in fact, path connected)
and its action Λ on R2 is transitive. Given an arbitrary point (x, y) ∈ R2, consider its
orbit map Λ(x,y) : G → R2, (2.2). Its tangent map dΛ(x,y) : TgG → TΛ(g,(x,y))R2, where

8We use here the standard principal bundle notation P (N,K), [12], where P denotes the total space
of the bundle, K is its structure group, and N is its base.
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g = (a, b, c), is represented in the standard coordinate systems on G = R3 and R2 by the
matrix

(2.14)

(
1 0 0
−b −x 1

)
inducing (at the identity of the group, e = (0, 0, 0)) our lattice algebra l. Moreover,
analyzing the group multiplication of the group G, one can easily show that its Lie algebra
g is generated by

(2.15) l1 = (1, 0, 0), l2 = (0, 1, a), l3 = (0, 0, 1)

and that the algebras l and g are isomorphic. Finally, selecting a point, say (x0, y0) ∈ R2,
the corresponding isotropy group of the action Λ at (x0, y0) is

(2.16) Gx0 = {(0, b, bx0) : b ∈ R}
and its one-dimensional Lie algebra g0 is spanned by (0, 1, x0).

3. The canonical connection on reductive homogeneous space G/Gx0

As the Lie algebra g0 of the isotropy group Gx0 is a subalgebra of the Lie algebra g, there
exists a complementing vector space, say D, such that g = g0 ⊕D. Using the realization

Λ̂(x0) and utilizing the fact that the tangent Tx0G/Gx0 is identifiable with the algebra
quotient g/g0, one can easily show that the projection deπ0|D is a linear isomorphism
onto Tx0M . This allows one to lift the generators li(x), i = 1, . . . , n of the lattice algebra
l ⊂ X (M) to the Lie algebra g of the group G by requiring that the lifted frame li,
i = 1, . . . , n in g be such that deΛx(li) = dχ(li)(x) = li(x), for every x ∈ M . Note that
as the complementing vector space D is not uniquely defined, neither is the lifting of the
generators of the lattice algebra (see Remark 1). However, as the morphism dχ, see (2.3),
is of the maximum rank and as the Lie algebra g is isomorphic to the space of all left
invariant vector fields on the group G, the frame li, i = 1, . . . , n induces a left-invariant
n-dimensional distribution, say, L : G → TG, on the tangent space of the group G such
that g = g0 ⊕ L(e) and

(3.1) TgG = TggGx0 ⊕ L(g), g ∈ G,
where the cosets gGx0 are regarded as smooth submanifolds of G9. Moreover, the distri-
bution L defines a left-invariant (by the left translations of G) horizontal distribution10

on the principal bundle G(M,Gx0). That is, for any g ∈ G, L(g) is a vector subspace of
TgG, it depends smoothly on g, and dgπ0(L(g)) = Tπ0(g)M . Although the distribution L

9Obviously, all tangent spaces TggGx0
, g ∈ G, are isomorphic (as vector subspaces) to the subalgebra

g0.
10The distribution L is horizontal in the sense that its projection dπ0(L) = TM .
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is, by definition, left invariant under the action of the group G it is not, in general, right-
invariant under the action of the isotropy group Gx0 , the structure group of G(M,Gx0).
Namely, in general, there is no guarantee that L(gg0) = Rg0∗L(g) for every g ∈ G and
every g0 ∈ Gx0 , where Rg0 = gg0. This means that although horizontal, the distribution
L does not, in general, induce a principal connection on G(M,Gx0). Yet, it is true that
at every g ∈ G the kernel of the tangent bundle projection dgπ0 : TgG → Tπ0(g)M is the
vertical space TggG.

The construction of the horizontal distribution L on the principal bundle G(M,Gx0)
can be mimicked on the bundle of linear frames of the base manifold M using the concept
of the linear isotropy representation of the isotropy group Gx0 . To this end, given g ∈ G,
let us consider the mapping Λg : M → M where Λg(x) = Λ(g, x), x ∈ M . In particular,
Λg0(x0) = x0 for any g0 ∈ Gx0 and the tangent map

(3.2) dx0Λg0 : Tx0M → Tx0M

is a linear isomorphism corresponding, subject to the choice of a basis in Tx0M , to an
element of the general linear group GL(n,R). That is, let u0 : Rn → Tx0M be a linear
frame (a linear isomorphism) at x0 ∈M assigning to an n-tuple (ξ1, . . . , ξn) ∈ Rn a vector
in Tx0M having (ξ1, . . . , ξn) as its coordinates in the selected basis. By the linear isotropy
representation of Gx0 we shall mean the homomorphism λ : Gx0 → GL(n,R) such that

(3.3) λ(g0) = u−1
0 ◦ dx0Λg0 ◦ u0 : Rn → Rn, g0 ∈ Gx0 .

Selecting a particular realization Λ̂(x0) identifying the tangent space of the homogeneous
space G/Gx0 with TM and fixing the choice of the frame u0 at Tx0M

11, allows one to
induce through the homomorphism λ a G-invariant Gx0-structure (more specifically a
λ(Gx0)-structure) on M , that is, a reduction of the bundle of linear frames of M , L(M),
to the subgroup λ(Gx0). Namely, given the reference frame u0 at x0, a frame at any other
point, say x ∈ M , (including x0) can be represented as dx0Λg ◦ u0 for some g ∈ G such
that Λg(x0) = Λ(g, x0) = x; all due to the fact that the action Λ of the group G on M
is transitive. Moreover, the group λ(Gx0) acts on such a selection of frames of M on the
right by

(3.4) dx0Λg ◦ u0 ◦ (u−1
0 ◦ dx0Λg0 ◦ u0) = dx0Λgg0 ◦ u0.

This, in fact, shows that G(M,Gx0) and the just constructed λ(Gx0)-structure, labelled
here as P (M,Gx0), are isomorphic via the mapping g 7→ dx0Λg ◦ u0, g ∈ G. Also, as the
bundle G(M,Gx0) is left invariant under the action of the group G on the quotient G/Gx0 ,
so is the structure π : P →M where the left action of G on P is given by gu 7→ dxΛg ◦ u,
g ∈ G, u ∈ P , π(u) = x.

11These specific choices are maintained henceforward.
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The horizontal distribution L on G(M,Gx0) can now be reconstructed on the isomorphic
frame subbundle P (M,Gx0). However, as the distribution L is generally not invariant
under the right action of the isotropy group, its P (M,Gx0) counterpart is not invariant
under the right action of the subgroup λ(Gx0) and it does not correspond to a linear
connection on M . Assume however that the homogeneous space G/Gx0 is reductive, that
is, there exists a vector subspace, say, M ⊂ g such that the Lie algebra g is the direct sum
of the isotropy subalgebra g0 and the vector space M, and the subspace M is invariant
under the “action” of the subalgebra g0 i.e., [g0,M] ⊂M, or equivalently, it is invariant
under the adjoint action of the group Gx0 , i.e., adGx0

(M) ⊂M12. Suppose now that the
horizontal distribution L is such that L(e) = M. As the distribution L is left invariant
under the action of the whole group G, the condition adGx0

(M) ⊂ M implies its right
invariance under the action of the isotropy group Gx0 .

Remark 1. Note that not every homogeneous space is reductive; see for example [21].
Note also that establishing whether or not a given homogeneous space is reductive may
not be easy. Indeed, the definition of the reductive homogeneous space states that there
exists a vector space M complementing the subalgebra g0 to the whole algebra g such
that M is invariant under the adjoint action of the isotropy group. The subalgebra g0

can be complemented to the whole algebra g by a variety of different vector spaces and,
in general, it is not clear how to identify a subspace invariant under the adjoint action, if
one exists at all. Moreover, one may also ask if such a choice (if there is one) is unique.

Given the specific linear isotropy representation λ of the isotropy group Gx0 in the
general linear group GL(n,R) via (3.3), and having assumed that the homogeneous space
G/Gx0

∼= M is reductive, we are now ready to define a linear connection on P (M,Gx0).
To this end, let us define first an equivariant (as we shall prove next) linear mapping from
the Lie algebra g of the group G into the Lie algebra of the general linear group, i.e.,
Π : g→ gl(n,R), such that

(3.5) Π(X) =

{
λ(X), X ∈ g0,

0, X ∈M,

where λ denotes the induced by the linear isotropy representation homomorphism of the
corresponding Lie algebras, g0 and gl(n,R).

12The reductivity of a homogeneous space is usually defined by requiring the invariance of the vector
space M under the adjoint action of the subalgebra of the isotropy group, that is, adGx0

(M) ⊂ M.

The condition [g0,M] ⊂ M implies the invariance of M under the adjoint action of the isotropy group,
but not vice versa. However, when the isotropy group is a connected Lie group both conditions are
equivalent, [21].
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Proposition 2. The mapping Π is equivariant under the action of the isotropy group
Gx0, that is,

(3.6) Π(Rg0∗X) = ad(λ(g0))Π(X)

for any X ∈ g and any g0 ∈ Gx0.

Proof. Note first that as the algebra g is a collection of left invariant vector fields Rg0∗X =
ad(g0)X. Moreover, as the map Π is linear, it is enough to consider two separate cases.
First, suppose that X ∈M. Then the right-hand side vanishes from the definition of the
mapping Π and the fact that the adjoint is an inner automorphism, while the left-hand
side equals 0 due to the fact that the subspace M is adjoint-invariant. On the other
hand, when X ∈ g0, λ(ad(g0)X) = ad(λ(g0))λ(X) as λ is a group homomorphism and
the adjoint is an algebra inner automorphism. �

We can now define a linear connection on P (M,Gx0), called here the lattice canonical
connection, by requiring that the corresponding gl(n,R)-valued one-form (a connection
form) ω on P is such that

(3.7) Π(X) = ω(X̃) for anyX ∈ g,

where X̃ is the natural lift ofX to the frame bundle P (M,Gx0). Although the construction
of the natural lift of a vector field is thoroughly discussed in, for example, [12], we recap
some relevant parts for the readers’ benefit. That is, given an element X ∈ g, consider
the one-parameter group g(t) = exp tX ⊂ G. Its action on the body manifold M induces
a vector field X∗ on TM by

(3.8) X∗
x =

d

dt

∣∣∣
t=0

Λ(g(t), x) = deΛx(X)

where Λx(g) = Λ(g, x), g ∈ G, x ∈M ; see also (2.4). By the natural lift of X ∈ g (or the
corresponding X∗) we mean the vector field on P (M,Gx0) such that

(3.9) X̃u =
d

dt

∣∣∣
t=0
dπ(u)Λg(t) ◦ u, u ∈ P.

As the bundles G(M,Gx0) and P (M,Gx0) are isomorphic and both left-invariant under
the action of the group G, the projection π : P → M “commutes” with the group

action implying that the vector fields X̃ and X∗ are π-related, that is, π∗(X̃u) = X∗
π(u).

Consequently, given the canonical form on a frame bundle, that is, an Rn-valued one-form
θ on P such that

(3.10) θ(X̂u) = u−1(π∗(X̂u))

for any u ∈ P , and any X̂u ∈ TuP , we have that

(3.11) u(θ(X̃u)) = π∗(X̃u) = X∗
π(u).
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Moreover, as the natural lift is a Lie algebra homomorphism from the Lie algebra g of the
group G into the algebra of smooth vector fields on P (M,Gx0), the natural lift of a Lie
bracket is a Lie bracket of the natural lifts, i.e.,

(3.12) [̃X, Y ] = −[X̃, Ỹ ]

for any X, Y ∈ g. Note also that if X ∈ g0 the corresponding induced vector field X̃u

is vertical. Indeed, when X ∈ g0 the one-parameter group g(t) = exp tX ∈ Gx0 and the

vector X∗
x0

= 0. Thus, due to the left-invariance of P (M,Gx0), π∗(X̃u) = 0 implying that

the field X̃u is vertical in P , i.e., X̃u ∈ Tuπ−1(u) for every u ∈ P .
Given the canonical connection ω on the reductive homogeneous space G/Gx0

∼= M ,
where g0 ⊕M and [g0,M] ⊂ M, the induced vector fields corresponding to the vector

space M form the horizontal distribution of ω as ω(X̃) vanishes whenever X ∈M, (3.5),
and the distribution is right-invariant under the action of Gx0 on P (M,Gx0).

Let Θ and Ω denote the torsion and the curvature forms of the connection ω, respec-
tively. Utilizing its standard structure equations, [12], we have

(3.13) 2Θ(X̃, Ỹ ) = θ([X̃, Ỹ ]) + ω(X̃)θ(Ỹ )− ω(Ỹ )θ(X̃),

and

(3.14) 2Ω(X̃, Ỹ ) = ω([X̃, Ỹ ]) + ω(X̃)ω(Ỹ )− ω(Ỹ )ω(X̃),

for any X, Y ∈ g. In particular, if X, Y ∈M

(3.15) 2Θ(X̃, Ỹ ) = θ([X̃, Ỹ ]),

(3.16) 2Ω(X̃, Ỹ ) = ω([X̃, Ỹ ])

as ω(X̃) = ω(Ỹ ) = 0. Moreover, recognizing the fact that, in general, the vector space M
is not a Lie algebra and that the algebra of the induced vector fields is homomorphic to
the Lie algebra g, (3.12), we have

(3.17) [X̃, Ỹ ] = [̃X, Y ] = ˜[X, Y ]M + ˜[X, Y ]g0

where [X, Y ]M and [X, Y ]g0 denote the M and g0 components of [X, Y ], respectively.
Consequently,

(3.18) 2Θ(X̃, Ỹ ) = −θ( ˜[X, Y ]M)

and

(3.19) 2Ω(X̃, Ỹ ) = ω( ˜[X, Y ]g0) = −λ([X, Y ]g0)

for any pair X, Y ∈ M as the fundamental form θ vanishes on the vertical subbundle of
TP while the connection form ω vanishes on its horizontal space. Finally, consider the
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base point x0 ∈ M and let us identify the vector space M with the tangent space Tx0M
by identifying X ∈M with the corresponding vector X∗

x0
, (3.8). Moreover, let us identify

Tx0M with Rn by means of the frame u0 at x0. Then, as θ(X̃u) = X∗
π(u) the torsion tensor

at x0

(3.20) T (X, Y ) = u0(2Θ(X̃u0 , Ỹu0)) = −u0 ◦ θ( ˜[X, Y ]M) = −[X, Y ]M

for any X, Y ∈M viewed as elements of Rn. Similarly, the curvature tensor

(3.21) R(X, Y ) = u0(2Ω(X̃u0 , Ỹu0)) = −u0 ◦ λ([X, Y ]g0) = −[X, Y ]g0 .

This gives us the value of both tensors at any and all points of the body manifold M
due to the fact that the canonical connection ω is left invariant. In summary (compare
e.g., [2], [12]):

Theorem 3. Let l : M → L(M) be a continuous lattice defined on the body manifold
M . Select a point x0 ∈ M and let P (M,Gx0) be the G-invariant Gx0-frame structure13

generated by the lattice l. Assume that the body manifold M , viewed as a homogeneous
space G/Gx0, is reductive with the decomposition of the Lie algebra g = g0 ⊕M. Then,
there exists a unique (G-invariant) lattice canonical connection ω in P as defined by the
relation (3.7). The connection ω is such that its torsion tensor T and the curvature tensor
R are given at x0 ∈M by:

• T (X, Y )x0 = −[X, Y ]M, for X, Y ∈M,

• (R(X, Y )Z)x0 = −[[X, Y ]g0 , Z], for X, Y, Z ∈M.

In addition, both tensors are covariantly constant.

Remark 2. Note that if a continuous lattice is uniformly defective, that is, M ∼= G as the
body manifold is viewed as a Lie group acting on itself, the lattice canonical connection
ω is identical to the linear connection induced on M by the lattice frame l. Indeed, as
the isotropy group Gx0 of such an action of M on itself is trivial, the curvature of the
lattice canonical connection vanishes and the torsion is given by the Lie algebra constants
of the subalgebra M = g. This is certainly consistent with the fact that the given lattice
frame induces a long distance parallelism on M and the algebra g is isomorphic to l; the
subalgebra of smooth vector fields generated by the lattice frame. On the other hand,
when the continuous lattice is non-uniformly defective, its lattice canonical connection
is completely different from the linear connection induced on M by the lattice frame.
Indeed, as clearly illustrated by the examples presented in the next section, the lattice
canonical connection ω may have a non-vanishing curvature and its torsion seems to be
in no relation to the torsion of the frame l. This, in fact, begs the question of what is

13To avoid any notational confusion, by a Gx0
-frame structure we mean a reduction of the bundle of

frames L(M) to the subgroup Gx0 .
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the relation between the flat linear connection induced on M by the lattice frame and the
lattice canonical connection ω; a question we shall investigate in the forthcoming work.

4. Examples

Example 2. Here we develop Example 1 - for completeness and for the benefit of the
reader, we first restate some facts. So, consider the three-parameter group G = R3 with
the group multiplication

(4.1) gg = (a+ a, b+ b, c+ c+ ba), g, g ∈ G

and assume that the group G acts on R2 (on the left) by

(4.2) Λ((a, b, c), (x, y)) = (x+ a, y − b(x+ a) + c)

for any (a, b, c) ∈ G and (x, y) ∈ R2. Given an arbitrary point (x, y) ∈ R2, consider
its orbit map Λ(x,y) : G → R2, (2.2)and its tangent map dΛ(x,y) : TgG → TΛ(g,(x,y))R2,
represented in the standard coordinate systems on G = R3 and R2 by the matrix

(4.3)

(
1 0 0
−b −x 1

)
.

At the identity of the group, e = (0, 0, 0)) the tangent map induces the Lie algebra l of
vector fields on R2 generated by

(4.4) l1 = (1, 0), l2 = (0,−x), l3 = (0, 1).

Moreover, analyzing the group multiplication of the group G, one can easily show that
its Lie algebra g is generated by

(4.5) l1 = (1, 0, 0), l2 = (0, 1, a), l3 = (0, 0, 1)

and that the algebras l and g are isomorphic.
At the point (x0, y0) ∈ R2 the isotropy group of the action Λ is

(4.6) Gx0 = {(0, b, bx0) : b ∈ R}

and its one-dimensional Lie algebra g0 is spanned by (0, 1, x0). To determine if the homo-
geneous space G/Gx0 is reductive, select now a Lie algebra ĝ of vector fields on the group
G generated by

(4.7) l̂1 = (1, 0, b), l̂2 = (0, 1, x0), l̂3 = (0, 0, 1)
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to realize that it is isomorphic to the Lie algebra g and it has g0 as its subalgebra.
Moreover, ĝ is the algebra of the left-invariant vector fields on G14 and the vector space

(4.9) M = span{̂l1, l̂3} ⊂ g

is invariant under the adjoint action of G0 on g as [̂l2, l̂1] = −̂l3 ∈ M and [̂l2, l̂3] = 0. In

fact, the vector space M is a subalgebra of g, as [̂l1, l̂3] = 0, and the group G is a semidirect
product of the isotropy groupGx0 and the additive subgroupH = {(a, 0, c) : a, c ∈ R} ⊂ G
the Lie algebra of which is isomorphic to M.

In conclusion, the homogeneous space G/Gx0 of the lattice frame l1 = (1, 0), l2 = (0,−x)
is, as shown above, reductive via the decomposition g = g0⊕M. The isotropy group Gx0

is isomorphic, via the isotropy linear representation, to the subgroup

(4.10)

{(
1 0
−b 1

)
: b ∈ R

}
⊂ GL(2,R)

and the corresponding lattice canonical connection ω is both curvature and torsion free
as [M,M] = 0; see Theorem 3. Thus, there exists a local coordinate system on R2 such
that the corresponding Christoffel’s symbols Γijk, i, j, k = 1, 2, vanish.

Example 3. Consider the continuous lattice on R2 given (in the standard coordinate
system) by the frame

(4.11) l1 = (y,−x), l2 = (
1

2
(1 + x2 − y2), xy).

As [l1, l2] = 1
2
(2xy, 1 + y2 − x2) = l3 and as [l2, l3] = l1 and [l3, l1] = l2, the given lattice

frame generates the three dimensional Lie algebra of vector fields l which is isomorphic to
the Lie algebra so(3)15 of the special orthogonal group SO(3). In turn, the algebra so(3)
is isomorphic to the Lie algebra su(2) of the special unitary group SU(2) which can be

14The induced left action of the group G on its Lie algebra is given by the matrix

(4.8)

1 0 0
0 1 0
0 a 1

 .

15One may select

P =

0 0 0
0 0 −1
0 1 0

 , Q =

0 −1 0
1 0 0
0 0 0

 , R =

0 0 −1
0 0 0
1 0 0


as a basis of so(3), [1].
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spanned, for example, by the basis

(4.12) E =
1

2

(
0 i
i 0

)
, F =

1

2

(
i 0
0 −i

)
, H =

1

2

(
0 1
−1 0

)
.

As the group SU(2) is homomorphic to the group SO(3) via the covering isomorphism
p : SU(2)/{I,−I} → SO(3), rather than investigating the action of SO(3) on R2 corre-
sponding to our lattice algebra l, we shall consider the analogous action of SU(2) on the
complex space C; viewed as R2. Namely, given

(4.13) SU(2) =

{(
a −b̄
b ā

)
: aā+ bb̄ = 1; a, b ∈ C

}
consider the action Λ : SU(2)× C→ C such that

(4.14) Λ

((
a −b̄
b ā

)
, z

)
=
b+ āz

a− b̄z
.

As the action Λ is transitive, the isotropy groups at different points in C are conjugate to
each other. Thus, to simplify our calculations let us consider z0 = 1. It is then easy to
show that the isotropy group of the action Λ at z0 is

(4.15) Gz0 =

{(
α βi
βi α

)
: α2 + β2 = 1;α, β ∈ R

}
and that its Lie algebra g0 is spanned by E = 1

2

(
0 i
i 0

)
. As [E,F ] = −H and [E,H] = F ,

one can see that the homogeneous space SU(2)/Gz0 is reductive, that is, su(3) = g0 ⊕M
where the vector space M = span{H,F} and [g0,M] ⊂ M. Moreover, as [H,F ] = E,
that is, as [M,M] ⊂ g0, the lattice canonical connection ω, although torsion free, has
non-vanishing curvature. In fact, as the isotropy group Gz0 is isomorphic to the special
orthogonal group SO(2):

(4.16)

{(
p r
−r p

)
: p2 + r2 = 1, p, r ∈ R

}
the lattice canonical connection ω is a pull-back of the Gz0-component of the Maurer-
Cartan form of G to the manifold M isomorphic via the linear isotropy representation to
the quotient SO(3)/SO(2).
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