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Abstract 

Machining processes are known to drastically impact the performance and lifetime of a component subjected to 

fatigue in service. Therefore, understanding the effect of manufacturing processes on surface integrity is vital to 

determine their suitability for any given application. As part of a wider study investigating multiple production 

operations, results are presented here which characterise the fatigue performance and failure mechanisms of Ti-

6Al-4V specimens subject to conventional (end milling, surface grinding) and non-conventional machining 

processes (abrasive waterjet machining, wire electrical discharge machining, large area electron beam melting). 

Post process shot peening was then applied on each of the 5 different surfaces generated and the resulting fatigue 

response similarly evaluated. The abrasive waterjet machined specimens generally exhibited the longest fatigue 

life, particularly at higher applied stress (³ 700 MPa) irrespective of surface condition. Despite the difference in 

process mechanisms, fatigue results for the milled and wire electrical discharge machined surfaces were 

comparable. Examination of the fatigue specimen fracture surfaces however, revealed that the locations of crack 

initiation were inconsistent for the different processes and conditions assessed. In general, post process shot 

peening increased the fatigue strength / life of all the evaluated specimens, regardless of the base machining 

operation.  
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1. Introduction 

Machining strategy can significantly influence the resulting workpiece surface condition/integrity, which has a 

direct bearing on component fatigue properties and therefore the viability of the material/component in service. 

Achieving appropriate surface integrity (SI) is imperative particularly for high-value or safety critical parts such 

as those in the aerospace industry, which have extremely stringent tolerance and quality requirements. Field et al. 

[1] were the first to introduce an approach for assessing workpiece surface integrity by correlating the effect of 

surface changes/alterations produced after machining against a range of mechanical properties and metallurgical 

characteristics (e.g. surface finish, micro hardness, microstructure, residual stress, fatigue performance), which 

were classified into 3 levels of ‘data sets’. While this provided a useful guideline for the academic research 

community, aerospace companies tend to employ internal/proprietary surface integrity criteria tailored specifically 

to their individual acceptance standards [2]. Considerable research has been carried out on assessing the influence 

of machining operations on workpiece SI of aerospace materials, some of which have been summarised in a recent 

review publication [3] as well as in several CIRP keynotes focussed on conventional cutting [4] and abrasive 

machining/grinding [5] processes. However, there are comparatively limited numbers of contributions that 

consider more complex SI parameters such as fatigue performance (as the trials are generally costly and time-

consuming to perform), which is a critical concern to the aerospace industry. According to Bhaumik et al. [6], 

approximately 60% of the total in-service failures in aerospace components are caused by fatigue.  

Non-conventional machining methods involving energy beams (such as laser and electron beams) or plasma 

sources where the mechanism of material removal is not based on mechanical shearing have attracted increasing 

interest from the aerospace industry in recent years as alternatives to traditional techniques for machining high 

strength aerospace materials. However, their deployment is still somewhat limited due largely to the thermal 

nature of such processes which are known to induce adverse workpiece integrity effects such as recast layer 

formation and heat affected zones, thereby impacting on performance in service [7]. Therefore, in the context of 

aerospace part manufacture, it is necessary to better study and compare the effects of different machining 

processes on component fatigue performance as such data is not currently evident in the literature. 

Milling and grinding are two of the most established conventional machining operations utilised in the fabrication 

of aero-engine components as they are mechanical deformation based processes that typically induce compressive 

residual stress regimes in the workpiece material and hence more likely to produce favourable fatigue 

performance. In a study by Yao et al. [8], the influence of milling on fatigue performance of a TB6 titanium alloy 
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was investigated. Reducing workpiece surface roughness (Ra) from 1.64 µm to 0.67 µm was shown to improve 

the specimen’s fatigue life by 43.22%. In a similar study by Moussaoui et al. [9] involving milling of Ti-6Al-4V 

specimens, surface roughness (Ra) however was not found to have a significant influence on fatigue life, as the 

residual stress generated was the dominant factor in determining fatigue performance (as the residual stress varied 

from a neutral condition to -264 MPa, the number of cycles to failure increased by 2.5 times). Rangaswamy et al. 

[10] studied the grinding of Ti-5Al-2.5Sn alloy in both dry and wet conditions. The dry ground (without lubricants) 

workpieces exhibited lower fatigue strength than the un-machined materials, with fatigue life decreasing with the 

increase of cutting speed. In contrast, wet grinding (with lubricants) increased the materials’ fatigue performance 

when compared with non-ground materials. In conventional machining processes, a ‘white layer’ is occasionally 

observed when inappropriate machining conditions are applied, which can appear white and featureless under an 

optical microscope after etching of the workpiece specimen cross section with an appropriate chemical reagent. 

Guo et al. [11] reported that the presence of a white layer following hard turning and surface grinding of AISI 

52100 steel led to a 7.6 fold reduction in fatigue life due to detrimental tensile residual stresses of up to ~2000 

MPa generated within the white layer. 

In addition to standard cutting operations, an abrasive waterjet (AWJ) can be applied as a surface treatment 

technique [12] where the process erodes and deforms the near surface of the workpiece, subsequently introducing 

compressive residual stresses in the subsurface as a result of the associated peening effect. Thus, similar to the 

condition found in the study by Moussaoui et al. [9], an enhancement of fatigue resistance can be expected. In 

work by Arola et al. [13], AWJ peened AISI 304 stainless steel and Ti-6Al-4V titanium alloy workpieces 

demonstrated considerable improvement in fatigue resistance compared to non-surface treated specimens, with 

10% and 25% increase in endurance strength respectively.  

In large area electron beam melting (LAEBM), the kinetic energy of an incident electron beam is applied to 

achieve fine polishing of metal surfaces [14]. Previously, several similar processes were studied to enhance 

workpiece surface integrity. Proskurovsky et al. [15] applied pulsed electron-beam to modify the surfaces of 

several popular materials, which include titanium alloys (BT8M and BT18Y) as well as aluminium alloys (Al2024 

and Al6061). In all cases, resultant workpiece microhardness, wear and corrosion resistance together with fatigue 

strength were significantly improved. Particularly, the fatigue resistance of the EB-treated titanium alloy was 

almost doubled when compared against corresponding untreated specimens. Okada et al. [16] applied LAEB 

irradiation as a final surface finishing process of Ti-6Al-4V specimens and found that surface roughness (Rz) was 
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reduced from 20 µm to 3 µm. Furthermore, both hardness and corrosion resistance were improved after the 

finishing treatment. According to Farayibi et al. [17], the surface enhancement function of pulsed electron beam 

irradiation is also applicable for the surface preparation of laser additive manufactured structures.  

Wire electrical discharge machining (WEDM) applies discrete electrical discharges which are generated between 

a current carrying wire (tool electrode) and workpiece across a dielectric medium. This causes the material in 

close proximity of the wire to melt and vaporise. A principal advantage of WEDM is that its performance is not 

constrained by the workpiece material’s hardness, mechanical strength or toughness [18]. The effects of EDM on 

workpiece surface integrity have been widely studied. A review by Kumar et al. [19] highlighted that almost all 

of the process parameters applied in EDM can have a marked difference in the thickness of the damaged surface 

layers. Gökler and Ozanözgü [20] studied the effects of cutting parameters on surface roughness in the WEDM 

process of three different ferrous alloys (1040, 2379 and 2738 steel), where a method to determine the proper 

parameter combinations for the desired roughness was demonstrated. Mower [21] reported a 15% to 30% decrease 

in the fatigue life of WEDM machined Ti-6Al-4V specimens compared to conventionally milled surfaces, which 

was attributed to the presence of a recast layer in the former. Developments in EDM generator technology over 

the past decade involving control of ultrahigh frequency (> 1 MHz) and short duration pulses have enabled 

significant improvement in WEDM process capability, particularly with respect to minimising/eliminating 

adverse recast layer formation and related surface/subsurface damage.  

Aspinwall et al. [22] evaluated the performance of modern ‘minimum damage’ WEDM systems when machining 

10 mm thick Inconel 718 nickel based superalloy and Ti-6Al-4V titanium alloy by utilising a multiple cut strategy 

comprising a series of roughing and finishing/trim passes. Initial recast layer thickness of 6–11 µm following the 

roughing operation was found to decrease essentially to zero on both materials after 4 successive trim passes. 

Furthermore, variation in workpiece microhardness was marginal with no discernible heat affected zones, 

suggesting that any residual thermal damage was minimal. Similar trials were undertaken by Antar et al. [23] on 

alternative nickel (Udimet 720) and titanium (Ti-6Al-2Sn-4Zr-6Mo/Ti6246) alloy workpieces. Average recast 

layer thickness was < 2 µm after the 4th trim cut, although minor reductions in subsurface microhardness (~10% 

below bulk value) extending to a depth of ~30 µm was recorded in both materials. Subsequent modification of the 

discharge pulse profile and associated electrical parameters produced equivalent low levels of damage but which 

was achieved with only 2 trim cuts (after the roughing pass), together with near neutral surface residual stress and 

surface roughness not exceeding 0.6 µm Ra [24]. Additionally, high cycle fatigue performance of both the Udimet 
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720 [25] and Ti6246 [26] workpieces machined using the updated WEDM parameters were found to be within 

~10% of corresponding high speed milled specimens. Alias et al. [27] analysed the effects of machine feed rate 

when WEDM of Ti-6Al-4V using brass wire. The results showed that the kerf width decreased with increasing 

feed rate while conversely, both material removal rate and resulting Ra (surface roughness) understandably 

exhibited rising trends. In research reported by Klocke et al. [28], the differences in fatigue strength and other 

surface conditions caused by grinding and WEDM were considered. The results showed that although ground 

specimens had lower surface roughness, the WEDM workpieces possessed better fatigue strength. 

In order to improve workpiece surface integrity following machining operations, shot peening has been evaluated 

by a number of researchers as a post-processing method to increase fatigue resistance by introducing compressive 

residual stresses in the surface layer [29]. Work by Jiang et al. [30] and Takahashi and Sato [31] demonstrated 

that shot peened Ti-6Al-4V surfaces possessed superior fatigue resistance compared to specimens without post-

processing treatment. In the former study, shot peening was performed at both room and elevated temperatures 

(150°C) with resulting fatigue limits of the treated specimens found to increase by 9% and 10% respectively, 

compared to the untreated specimens. Applying a second series of shot peening (re-shot peening) after completing 

50% of the estimated fatigue loading cycles was revealed to be a potential method to further augment fatigue life 

[30]. Similarly, the investigation by Takahashi and Sato [31] indicated that the specimens’ fatigue limits increased 

by 25% following shot peening as opposed to the non-treated test pieces. 

The present paper aims to compare the fatigue performance of Ti-6Al-4V surfaces produced using various 

conventional and non-conventional machining processes. The influence of post process shot peening was also 

investigated together with an analysis of workpiece fractography.  

2. Experimental test methodology 

2.1. Overview 

The experimental strategy employed is shown in Fig. 1. Five subtractive (end milling, surface grinding, AWJ, 

WEDM, LAEBM) based surface preparation methods were evaluated and applied to produce the test specimens 

used in this study. Half of the specimens were subsequently subjected to post-process shot peening, which was 

carried out by Sandwell UK. The Almen strip test procedure, as defined by SAE standard J442 [32], was used to 

ascertain the peening intensity while the coverage was determined by the exposure time. The intensity describes 

the induced curvature of a flat standardised strip (the Almen strip) when the peening process is performed on it. 
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The shot peening operation involved two stages, each utilising a defined media and peening intensity as shown in 

Table 1. Both sets of specimens (with and without post-processing) were then fatigue tested and the results 

analysed. 

 

Fig. 1 Experimental strategy 

Table 1 Shot-peening strategy  

Stage 1 

Media: ASH110 (0.011”) cast steel shot 

Intensity: 0.0075” Almen A. 

Coverage: 100% 

Stage 2 

Media: 75-150 µm glass bead 

Intensity: 0.005” Almen N 

Coverage: 100% 

 

2.2. Specimen preparation 

The fatigue test specimens for the machining processes were made from Ti-6Al-4V supplied by All Metal Services 

Ltd. and prepared in line with the route described in Fig. 2. Rectangular blanks were initially cut from a larger 

block of material and the faces ground down to the dimensions as shown in Fig. 2(a). The test surface of the 

specimens was then produced by reducing the height of the blanks from 13 to 10 mm as shown in Fig. 2(b), using 

each of the individual machining processes according to the corresponding parameters detailed in Table 2. The 
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selected parameter levels are representative of finishing conditions for the respective processes. The sharp 

longitudinal edges/corners bordering the primary evaluation surface were then machined using a special 1 mm 

radius milling tool to negate any edge concentration effects during fatigue testing, see Fig. 2(c). The parameters 

utilised for the radiusing operation was a cutting speed of 80 m/min, feed rate of 0.1 mm/rev and depth of cut of 

0.1 mm.  

 

Fig. 2 Preparation route of machined fatigue test specimens, (a) rectangular blanks, (b) machining of the 

test surface, (c) radiusing of specimen edges and (b) the exact demensions of the specimens. 
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Table 2 Operating parameters employed for the machining processes evaluated 

Machining process Machining process parameters 

Milling 

Cutting speed = 80 m/min 

Feed-rate = 0.1 mm/rev 

Depth of cut= 0.1 mm 

Tool: 10 mm diameter end mill (4 fluted) 

Cutting environment = Water based emulsion (15 bar) 

Surface grinding 

Grinding speed = 30 m/s 

Feed-rate = 400 mm/min 

Depth of cut = 6 µm per pass 

Wheel rotational speed = 3750 rpm 

Wheel abrasive = SiC 

Cutting environment = Flood coolant 

AWJ 

Pressure = 1000 bar 

Stand-off =100 mm 

Relative grit feed = 4/9 

Speed = 4000 mm/min 

Abrasive particles = Garnet 

LAEBM 
Cathode voltage = 40 kV 

No. of shots = 20 

WEDM 

Voltage = 80 V 

Ignition current = 5 A 

Pulse off-time = 8 µs 

Pulse on-time = 0.7 µs 

Dielectric = Deionised water 

  

2.3. Fatigue testing procedure 
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The areal surface roughness (Sa) of all specimens was measured with an Alicona Infinite Focus microscope prior 

to test commencement. The three-point flexure fatigue test was carried out using an RUMUL Testronic machine. 

All tests were undertaken at room temperature (20 ± 2°C). Specimens were tested using a three-point bending 

arrangement, as shown in Fig. 3, with a loading frequency of between 80-82 Hz. Several preliminary trials were 

carried out to determine the appropriate mass (inertia) for the oscillating components of the test machine in order 

to ensure that the correct load frequency (~80 Hz) is consistently applied during the fatigue experiments. 

 

Fig. 3 Three-point flexure fatigue testing arrangement schematic 

Stresses induced were calculated using the bending relationship outlined in Equation 1 [33]: 

𝝈𝒎𝒂𝒙 =
𝟑 ∙ 𝑷𝒎𝒂𝒙 ∙ 𝑳
𝟐 ∙ 𝒃 ∙ 𝒕𝟐

 

Equation 1 

where σmax is the maximum stress level, Pmax is the maximum applied load, L is the distance between supports, b 

is the specimen width and t is specimen thickness. As the results presented are a ranking/comparison of the as–

received samples to the shot peened samples, no correction factor has been applied to this equation. All samples 

were tested under the sample conditions (geometry, load, etc.). 

The stress ratio (R), which is defined as the minimum stress applied divided by the maximum applied stress was 

set to 0.1 based on a study conducted to examine the effect of load ratio on stress intensity in Ti-6Al-4V [34] and 

to enable comparison of the current work with other similar investigations. Fatigue testing parameters employed 

are shown in Table 3. For each stress level, 3 tests were carried out. 

Table 3 Fatigue testing parameters (R=0.1) 

No. Maximum stress /MPa Mean stress /MPa Minimum stress /MPa Amplitude /MPa 
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1 900 495 90 405 

2 800 440 80 360 

3 700 385 70 315 

4 600 330 60 270 

5 475 261.25 47.5 213.75 

 

A Nikon ECLIPSE LV100ND microscope was applied to check the as-processed and post-processed surfaces. A 

Hitachi SEM TM3030 and Nikon Stereo Microscope was used to image the shot peened and fractured specimen 

surfaces. All of the micrographs presented in the following sections were from tests undertaken at 800 MPa.  

3. Results 

The specimens, upon testing, deformed towards one fixed direction as shown in Fig. 4. There exists a neutral axis 

along which the stress is zero. The compressive and tensile stress zones are located next to the neutral axis as 

shown in Fig. 4. The stress distribution in tested specimens is explained in Fig. 5. The stress changed from tensile 

gradually to compressive, with the largest stress magnitude at the midpoint of treated surface. This is therefore 

expected to be the origin of fracture [33]. Apart from the treated surface, all the other faces were ground and 

should possess similar fatigue resistance.       

 

Fig. 4 The specimen’s profile during fatigue testing 
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Fig. 5 Stress distribution in the cross section of tested specimen 

The basic surface response of the treated specimens before (as-processed) and after (post-processed) shot peening 

is shown in Fig. 6. In general, post-processing significantly affected the surface appearance in all cases. The 

distinct surface features/topography produced by the different machining techniques were partially or totally 

eliminated by shot peening. Table 4 lists the typical surface roughness results due to each process and following 

shot peening. 

 

Fig. 6 The basic surface response of (a) milled, (b) ground, (c) AWJ, (d) LAEBM and (e) WEDM 

specimens, in which AP stands for as-processed, PP indicates post-processed   
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Table 4 Surface roughness (Sa) of the as-processed and post-processed specimens 

Sa (µm) Milling Grinding AWJ LAEBM WEDM 

AP 1.23 1.38 10.93 1.88 0.47 

PP 1.74 1.72 6.13 1.87 1.53 

 

Fig. 7 shows the fracture surfaces of treated specimens after fatigue testing. Crack progression marks can be 

clearly seen in all of the specimens. The distance between the fracture initiation sites and the treated surface are 

listed in Table 5. 

 

Fig. 7 Fracture surfaces of fatigue tested (a) milled, (b) ground, (c) AWJ, (d) LAEBM and (e) WEDM 

specimens, where IS indicates fracture initiation site, TS indicates treated surface   

The results shown in Fig. 7 indicate that the fracture initiation site is not consistently on the treated surface but 

sometimes closer to the neutral axis on the side face of the specimens. This is an indication of the enhancement 

in mechanical properties (fatigue strength of the material) due to the surface treatment, particularly in the case of 

the milled and AWJ workpieces. Therefore, despite being at a position of lower applied stress, failure initiated on 

the untreated side edge of the material instead of the treated surface (where the stress was higher). Furthermore, 
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this behaviour was evident in all of the post process shot peened specimens, irrespective of the initial machining 

operation.  

Table 5 Location of fracture initiation sites in the evaluated specimens (as shown in Fig. 7 ) and the 

distance between the treated surface and the initiation sites position on the side surface 

Specimens AP PP 

Milled Side surface: ~870µm Side surface:~1800µm 

Ground Treated surface Side surface:~1300 µm 

AWJ Side surface:~1530 µm Side surface:~1670 µm 

LAEBM Treated surface Side surface:~2100 µm 

WEDM Treated surface Side surface:~1000 µm 

 

3.1. S-N curves 

Fig. 8 shows the S-N curves of all tested specimens. Apart from the main (primary) logarithmic axis, a secondary 

Y-axis has been included to show the absolute stress value equivalent to the values shown on the primary axis.  

Results from regression analysis (BS 2864, 1976 and ASTM E-739-91, 2004) were also incorporated to offer 

insight into the quality of the perceived linear relationship. These graphs can be used to predict performance at 

other stress levels within the linear region and are thus useful to design engineers. Fatigue run-out was set at 

1,000,000 cycles to shorten the overall experimental time. The run-out data showed in Fig. 8 were excluded from 

the regression computations, as the trend lines were only intended to describe the S-N region between low-cycle 

fatigue and eventual run-out. A description of the run-out tests in each category are given in Table 6. Included in 

Fig. 8 are the respective equation of linear regression and the associated coefficient of determination (R2), which 

indicates the relative strength of the linear relationship between the variables. As a negative correlation is expected 

for such relationships, only the absolute values are displayed on the graphs. Correlations (R2) greater than 0.8 in 

value are generally considered strong, whereas values less than 0.5 are deemed to be weak. Equations and 

coefficients of determination for the as-processed groups are listed on the bottom left of the graphs, while the 

post-processed equivalents can be found on the top right corners. As shown in Fig. 8, an obvious improvement in 

fatigue performance can generally be observed due to post-processing. The LAEBM specimens, however, 

demonstrated a more notable rise in fatigue resistance since there doesn’t appear to be any significant overlap 
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between the data of the as-processed and post-processed conditions, whereas the benefit of post-processing on 

milled and AWJ specimens in particular was less pronounced. 

 

Fig. 8 Log-scale S-N curves following fatigue testing of (a) milled, (b) ground, (c) AWJ, (d) LAEBM and 

(e) WEDM specimens 

There are some data points within, for example, the as-processed data at 800MPa shown in Fig. 8(b), which are 

suspect due to their deviation from the data set. However, according to Chauvenet’s Criterion [35], used for 
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assessing suspect results, these data points are within a reasonable range. A particularly suspect example, 

highlighted in Fig. 8(b), has been evaluated as follows: 

The three measurements (in Log10 form) of cycles to failure at 800MPa are 4.659, 4.733 and 5.933. The value of 

5.933, highlighted in Fig. 8(b), is much larger than the other two and is therefore a suspect measurement (𝑥./.). 

The mean (𝑥) and standard deviation (𝜎1) of these measurements are 5.109 and 0.715, respectively. Based on the 

calculation process provided by Chauvenet’s Criterion [35], the measure of difference (𝑡./.) between the suspect 

value 5.933 and the mean value of 5.109 is:  

𝑡./. =
𝑥./. − 𝑥
𝜎1

=
5.933 − 5.109

0.715
= 1.15 

Equation 2 

Referring to the Normal Error Integral table [35], in this case, the probability (𝑃𝑟𝑜𝑏 𝑜𝑢𝑡𝑠𝑖𝑑𝑒	𝑡./.𝜎 ) that a 

measurement will differ from 𝑥 by 𝑡./.𝜎1 or more is: 

𝑃𝑟𝑜𝑏 𝑜𝑢𝑡𝑠𝑖𝑑𝑒	1.15𝜎 = 1 − 𝑝𝑟𝑜𝑏 𝑤𝑖𝑡ℎ𝑖𝑛	1.15𝜎 = 1 − 0.7499 = 0.25 

Equation 3 

Therefore, for the 3 measurements at this stress level, the expected number (n) of measurements which will be as 

deviance as 5.933 is: 

𝑛 = 3×𝑃𝑟𝑜𝑏 𝑜𝑢𝑡𝑠𝑖𝑑𝑒1.15𝜎 = 3×0.25 = 0.75 

Equation 4 

Since 0.75 is bigger than 0.5 set by Chauvenet’s Criterion [35], which indicates three-fourth of a measurement 

will be as deviance as the suspect value 5.933, it is reasonable. 

Table 6 Descriptions of the run-out tests in each category 

 AP PP 

Milled 3 tests at 475 MPa, 1 tests at 600 MPa 3 tests at 600 MPa 

Ground 3 tests at 400 MPa, 1 tests at 475 MPa 3 tests at 600 MPa 

AWJ 3 tests at 475 MPa 2 tests at 600 MPa 
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LAEBM 3 tests at 475 MPa 3 tests at 600 MPa 

WEDM 2 tests at 600 MPa 3 tests at 600 MPa 

 

The comparison of fatigue strength due to the different machining processes prior to and following shot-peening 

is detailed in Fig. 9. A considerable spread in fatigue performance was evident between the different production 

methods in the as-processed condition, with the number of cycles to failure ranging between ~18,000 and 

~280,000 at a maximum applied stress of 800 MPa, see Fig. 9(a). The variability in fatigue life amongst the 

different processing techniques, however, was significantly reduced following shot peening as shown in Fig. 9(b), 

coupled with an enhancement of fatigue strength in all cases. The AWJ machined specimens possessed the best 

fatigue resistance particularly at high applied stress levels (³ 700 MPa). A further observation was that the as-

processed milled and WEDM specimens generally displayed similar fatigue response characteristics, with 

superior run-out levels compared to the other processes. While with the decreasing of applied stress, the failure 

cycles of all specimens become similar. 

 

Fig. 9 S-N curve sections for all (a) as-processed and (b) post-processed specimens 

3.2. Fractography 

Fig. 10 shows SEM images of the fracture surfaces in the milled specimens. Initiation sites originated at the side 

face in both the as-processed and post-processed specimens. Failure in the as-processed specimen occurred near 

the interface of the radiused corner and side face of the specimen, see Fig. 10(a), while the corresponding location 

of crack initiation in the post-processed specimen was approximately 1 mm further away from the treated surface 
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as depicted in Fig. 10(b). Faint progression marks were visible, which suggests variation in the rate of fatigue 

crack growth. Fig. 11 shows high magnification SEM micrographs of fracture initiation sites in the milled 

specimens. Large secondary cracks (longer than 50 µm) were seen in the as-processed specimen, while those 

present in the post-processed specimen were considerably smaller / shorter (less than 20 µm). This suggests that 

shot peening served to reduce the development of cracks. Fatigue striations were also evident in the high 

magnification images, which indicate the fracture propagation within these specimens.  

 

Fig. 10 Fracture surfaces in the milled (a) as-processed and (b) post-processed specimens 

 

Fig. 11 High magnification SEM images of fracture initiation sites in the milled (a) as-processed and (b) 

post-processed specimens 

Fig. 12 shows the fracture initiation sites in the AWJ specimens. In both as-processed and post-processed 

conditions, the cracks initiated at the side faces of the fatigue specimens at a distance of about 1.6 mm from the 

AWJ treated surfaces. Progression marks were similarly observed in these specimens. More detailed SEM images 

of the fracture initiation sites are shown in Fig. 13, which indicate comparable fracture conditions between the as-

processed and post-processed AWJ specimens. As with the milled specimens, striations were seen in the fractured 
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surfaces denoting the directions of damage propagation. No other signs of flaws were detected in either of the 

AWJ specimens other than the appearance of several small cracks. This was possibly due to the effects of 

compressive residual stresses most likely imposed by the AWJ operation are more effective compare to that of 

shot peening. 

 

Fig. 12 Fracture surfaces of AWJ (a) as-processed and (b) post-processed specimens 

 

Fig. 13 High magnification SEM images of fracture initiation sites in the AWJ (a) as-processed and (b) 

post-processed specimens 

Fig. 14 details the fracture surfaces of the ground, LAEBM and WEDM processed specimens. All 3 as-processed 

specimens showed failure initiating on the machined surfaces, see Fig. 14(a), (c) and (e), while the corresponding 

shot-peened specimens in Fig. 14(b), (d) and (f) showed fracture commencing from the side faces. In the high-

resolution SEM images, small secondary cracks can be seen in the as-processed specimens as shown in Fig. 15(a) 

and (c), while fewer cracks appeared in Fig. 15(e). Conversely in the post-processed specimens, several large 

cracks appeared in the WEDM processed specimen as shown in Fig. 15(f). All fracture initiation sites are again 

moving opposite to the treated surfaces and possess fracture patterns similar to those found in the milled specimens 
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(Fig. 11(b)). The fatigue striations highlighted in Fig. 15 indicate the direction of fracture propagation in these 

specimens. 

 

Fig. 14 The fracture surfaces in the as-processed and post-processed (a) (b) ground, (c) (d) LAEBM and 

(e) (f) WEDM specimens  
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Fig. 15 High magnification SEM images of fracture initiation sites in the as-processed and post-processed 

(a) (b) ground, (c) (d) LAEBM and (e) (f) WEDM specimens  

Closer inspection of the as-processed LAEBM surfaces revealed another possible subsurface fatigue initiation site 

as shown in Fig. 16, which was potentially caused by the surface defect. This was deduced from the appearance 

of ratchet marks [36] highlighted in the SEM images. 
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Fig. 16 (a) Subsurface fracture initiation site on the as-processed LAEBM specimen caused by surface 

defect and (b) the higher magnification SEM photo of the defect 

4. Discussion 

4.1. The influence of machining process and shot-peening on fatigue performance 

Based on the surface roughness results detailed in Table 4, shot peening led to an increase in roughness of the 

milled, ground and WEDM specimens while the LAEBM specimen remained approximately the same. 

Conversely, a reduction in roughness was obtained in the AWJ surfaces, most likely due to ‘smoothening’ of the 

high peaks inherent with such processes. The effects of surface roughness on the fatigue performance are not clear 

in this case since the residual stress generated during the manufacturing processes is another critical factor.   

Moussaoui et al. [37] obtained similar results, i.e. no obvious evidence showing that surface roughness can 

significantly affect the fatigue life of a specimens, while higher compressive residual stresses were found to 

increase the fatigue life of a specimen. 

The S-N curves in Fig. 9 show a trend of improved fatigue performance in all post-processed specimens with 

higher run-out stress levels observed in most cases (also can be told from Table 6). Post-processing significantly 

lowered the differences of fatigue performance in specimens machined with the various techniques. This may be 

due to the fact that shot peening homogenised the features [38] of the machined/built surfaces (as shown in Fig. 

6) and also applies enhanced local stress conditions [39]. The only exception was with WEDM, as shown in Fig. 

8(e), which exhibited equivalent run-out stresses in the as-processed and post-processed state (600 MPa).  
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The as-processed milled and WEDM specimens were found to have approximately equivalent fatigue 

performance in the range of 650-750 MPa, which is in agreement with results reported by Antar et al. [25] and 

Soo et al. [26] but contradicts the data published by Mower [21]. This may be the result of differences in the 

WEDM parameters and fatigue testing conditions utilised. Mower [21] carried out testing at a frequency of 10 

Hz, while the current work entailed a substantially higher loading rate ranging between 80-82 Hz with the 

specimens machined using minimum damage EDM generator technology. The post-processed milled specimens 

as shown in Fig. 8(a) however displayed erratic fatigue performance with a large spread of values where for 

example, the number of cycles to failure at 700 MPa varied between 110,000 and 1,000,000. Results for the as-

processed specimens were more uniform and they usually failed after a longer number of loading cycles. The S-

N curves for both conditions were similar, but the large scatter of data points indicates a greater magnitude of 

error.  

The surface ground specimens showed inferior fatigue performance relative to the other machining processes 

evaluated, possibly due to the relatively mild parameters employed (6 µm depth of cut per pass) and hence likely 

lack of any major compressive residual stresses. The results for the as-processed specimens again varied greatly, 

with a wide distribution of cycles to failure recorded at almost every stress level, see Fig. 8(b). Conversely, post-

processed surface ground specimens were consistent. 

Amongst the as-processed specimen groups, those machined by AWJ generally possess the best fatigue 

performance. This can be attributed to the compressive residual stresses generated on the treated surface, which 

serve to impede crack formation and growth during fatigue testing [40]. In terms of the post-processed specimens, 

the AWJ machined specimen still possessed the best fatigue performance in the high-stress range. The benefits of 

shot peening were only discernible at higher applied stress levels, for applied maximum stresses up to 800 MPa, 

results for the as-processed and post-processed AWJ specimens, as detailed in Fig. 8(c) were similar. As outlined 

by Arola et al. [13], the AWJ treated Ti-6Al-4V specimens showed a rise of 25% in endurance strength, which is 

broadly consistent with results reported here. 

A marked improvement in fatigue performance was prevalent in the post-processed LAEBM specimens, with the 

cycles to failure close to an order of magnitude higher than corresponding as-processed test pieces at most applied 

stress levels; see Fig. 8(d). Though the fatigue performance of the as-processed LAEBM specimens was poor 

compared to the WEDM ones, the fatigue performance was almost the same after post-processing. Fatigue life 

was typically great in post-processed WEDM specimens, especially at higher applied stresses.  
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4.2. Fractography 

Of the 5 as-processed specimens, 2 had fracture initiation sites on the side surface. All specimens had their fracture 

initiation sites moved further away from the treated surface after post-processing (as shown in Table 5), this can 

be explained as a result of the strengthening mechanism of shot peening. The treated surface and adjacent bulk 

material were strengthened by the compressive residual stress generated during shot peening, so that they can 

withstand the highest tensile stress, whilst fracture initiated from somewhere with lower fatigue strength in the 

specimen. The non-treated side faces have lower fatigue strength compared to the strengthened face, meaning that 

these sites act as fracture initiation sites after undergoing more cycles than the as-processed specimens, since the 

stress magnitudes applied on the side surfaces are lower. Similar fracture initiation sites movement, i.e. from 

strengthened area to less strengthened area, were found in the studies by Hitoshi et al. [41] and Hiroshi et al. [42]. 

The stress at the side faces is smaller than that in the treated surface, thus specimens normally exhibit a longer 

fatigue life. 

As shown in Fig. 11, the as-processed milled specimen has much larger cracks on the fracture initiation site than 

the post-processed specimen, which mainly due to the applied stress becoming smaller with the increase in 

distance between the fracture initiation site and the treated surface (as shown in Fig. 5). This also explains the 

reason for the fracture initiation sites of as-processed and post-processed AWJ specimens having similar features. 

In the as-processed ground, LAEBM and WEDM specimens, the fracture initiation sites were all located within 

the residual stress affected zone. Grinding [43] can normally lead to compressive residual stress below specimen’s 

surface with the assistance of vibration, which is able to neutralise part of the external tensile stress, while LAEBM 

[44] and WEDM [24] normally results in tensile residual stresses which will boost the detrimental effects of 

external tensile stress. Thus, a greater number of large sized cracks can be observed in the as-processed LAEBM 

and WEDM specimens (as shown in Fig. 15(c) and (e)). Since the fracture initiation sites in post-processed 

specimens were some distance away from the treated surface and with the effects (i.e. residual stress generated 

during the process) of shot peening on Ti-6Al-4V normally limited to a depth of around 200 µm [30], the features 

of the fracture initiation sites in these locations are mainly dependent on the properties of the bulk material.   

5. Conclusions 

In this study, the influence of different machining operations on the fatigue performance of Ti-6Al-4V was initially 

compared. The response following shot peening of the respective processed surfaces was also considered. The 
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milled, AWJ and WEDM machined surfaces showed better fatigue strength than the corresponding surface ground 

and LAEBM specimens although the discrepancy in performance was substantially reduced post shot-peening. 

Within the as-processed specimen group, the AWJ surfaces demonstrated the best fatigue performance, especially 

in the high applied stress zone where the number of cycles to failure was around ~500,000 at 700 MPa. This was 

likely caused by a compound peening effect from both the AWJ and conventional shot-peening operations. The 

milled and WEDM specimens were observed to have a similar fatigue life, which was comparable to AWJ at the 

lower-stress range below 700 MPa.  

In general, the fatigue strength of shot-peened specimens was superior to those in the as-processed state, which is 

attributed the induced compressive residual stresses on the test face under maximum tension during testing 

regardless of the base surface processing method. However, results from SEM imaging of the fracture surfaces 

revealed that a large majority of specimens showed cracks initiating close to the treated surface of the specimens, 

either on the processed or side face. In any case, all shot peened fatigue specimens had cracks originating from 

the side faces, instead of treated surfaces.  
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