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Abstract20

Volunteered Geographic Information (VGI) offers a potentially inexpensive source of reference data for21

estimating area and assessing map accuracy in the context of remote-sensing based land-cover22

monitoring. The quality of observations from VGI and the typical lack of an underlying probability23

sampling design raise concerns regarding use of VGI in widely-applied design-based statistical inference.24

This article focuses on the fundamental issue of sampling design used to acquire VGI. Design-based25

inference requires the sample data to be obtained via a probability sampling design. Options for26

incorporating VGI within design-based inference include: 1) directing volunteers to obtain data for27

locations selected by a probability sampling design; 2) treating VGI data as a “certainty stratum” and28

augmenting the VGI with data obtained from a probability sample; and 3) using VGI to create an29

auxiliary variable that is then used in a model-assisted estimator to reduce the standard error of an30

estimate produced from a probability sample. The latter two options can be implemented using VGI31
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data that were obtained from a non-probability sampling design, but require additional sample data to32

be acquired via a probability sampling design. If the only data available are VGI obtained from a non-33

probability sample, properties of design-based inference that are ensured by probability sampling must34

be replaced by assumptions that may be difficult to verify. For example, pseudo-estimation weights can35

be constructed that mimic weights used in stratified sampling estimators. However, accuracy and area36

estimates produced using these pseudo-weights still require the VGI data to be representative of the full37

population, a property known as “external validity”. Because design-based inference requires a38

probability sampling design, directing volunteers to locations specified by a probability sampling design39

is the most straightforward option for use of VGI in design-based inference. Combining VGI from a non-40

probability sample with data from a probability sample using the certainty stratum approach or the41

model-assisted approach are viable alternatives that meet the conditions required for design-based42

inference and use the VGI data to advantage to reduce standard errors.43

44
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inference; Volunteered Geographic Information (VGI); crowdsourcing46

47

1. Introduction48

Volunteered Geographic Information (VGI) is defined as “tools to create, assemble, and49

disseminate geographic data provided voluntarily by individuals” (Goodchild 2007). For land-cover50

studies, VGI may provide the reference condition or the information used to determine the reference51

condition of a spatial unit. The reference condition, defined as the best available assessment of the52

ground condition, plays a critical role in accuracy assessment and area estimation (Olofsson et al. 2014).53

When used in map production, VGI could form all or part of the data used to train the land-cover54

classification algorithm. The focus of this article is the contribution of VGI to the reference data used for55
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accuracy assessment and area estimation. Accuracy assessment is an essential component of a rigorous56

mapping-based analysis of remotely sensed data as without it the obtained products are little more than57

pretty pictures and simply untested hypotheses (McRoberts 2011; Strahler et al. 2006). In addition an58

accuracy assessment adds value to a study, especially when estimates of class area (e.g. deforestation)59

are to be obtained (Olofsson et al. 2014). Fonte et al. (2015) examined the use of VGI for land cover60

validation, including the types of VGI that have been used, the main issues surrounding VGI quality61

assessment, and examples of VGI projects that have collected data for validation purposes. We build62

upon this past work to focus on the issue of statistical inference when incorporating VGI in applications63

of accuracy and area estimation, but our work is also relevant to application of citizen science data in64

general (Bird et al. 2014).65

Map accuracy assessment is a spatially explicit comparison of the map class label to the66

reference condition on a per spatial unit basis (e.g., pixel, block, or segment). Accuracy assessment67

typically focuses on producing an error matrix and associated summary measures including overall,68

user’s, and producer’s accuracies (see Section 2 for details). Estimates of area of each land-cover class69

or type of land-cover change based on the reference condition are often produced in conjunction with70

the accuracy estimates (Olofsson et al. 2013, 2014). Sampling, defined as selecting a subset of the71

population, is almost always necessary because it is too costly to obtain a census of the reference72

condition. VGI represents a subset of the population and as such may be viewed as a sample. Whether73

the VGI data were collected via a probability sampling design is a key consideration when evaluating the74

utility of VGI for design-based inference. Design-based inference is a standard, widely used approach75

adopted in environmental science for furthering knowledge and understanding on the basis of a sample76

of cases rather than a study of the entire population.77

We describe options for incorporating VGI into map accuracy assessment and area estimation78

within the design-based inference framework (Figure 1). We evaluate how the potential cost savings of79
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VGI can be transformed into more precise estimators (i.e., smaller standard errors, a desirable outcome80

of an effective sampling strategy) within the scientifically defensible framework provided by design-81

based inference. If the VGI data are obtained via a probability sampling design, application of design-82

based inference is straightforward and can be informed by good practice guidelines (Olofsson et al.83

2014). Alternatively, if the VGI data are not obtained via a probability sampling protocol, the VGI data84

can be combined with additional data from a probability sample to produce estimates that satisfy the85

conditions underlying design-based inference. In such cases the VGI data from a non-probability sample86

serve as a means to reduce standard errors of estimates rather than as the sole data from which the87

area and accuracy estimates are produced.88

89

Figure 1. Schema for methodologies using VGI in accuracy assessment and area estimation.90

91

This article has two major objectives. First, it illustrates how statistically rigorous and credible92

inference may be drawn from studies that use VGI and thereby helps ensure that the vast potential of93

VGI that has recently arisen is realized fully. This in turn will help remote sensing achieve its full94
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potential as a source of land cover information which is often constrained by lack of ground reference95

data. Second, the article provides methodological rigor and good practice advice for the use of data96

acquired via popular sample designs, ranging from judgmental to probability sampling. As such this97

article articulates methodology for producing credible inference from data sets that often do not98

conform to the requirements of widely used statistical inferential methods for two common and99

important application areas of remote sensing, accuracy assessment and area estimation. To do this,100

we, for the first time, synthesize methods developed in the general sampling literature into a101

comprehensive treatment of the theory and methods for using VGI in design-based inference. This102

includes translating methods developed for the use of non-probability samples for accuracy assessment103

and area estimation applications. As such we will show how VGI may be constructively used to decrease104

costs and reduce uncertainty (e.g., yield smaller standard errors and hence narrower confidence105

intervals) while following a methodology that allows for rigorous design-based inference. Throughout106

this article, guidance for using VGI in design-based inference is framed by examining the direct107

connection of the inference process to the three component protocols of accuracy assessment, the108

response design, sampling design, and analysis (Stehman and Czaplewski 1998).109

The article is organized as follows. In Section 2, we define inference and describe the conditions110

needed to satisfy design-based inference. Considerations regarding the use of VGI in design-based111

inference are then explained in Section 3 in regard to the response design, sampling design and analysis112

protocols. Section 4 provides the details of two methods for incorporating VGI in estimation of accuracy113

and area that satisfy conditions of design-based inference, with both methods requiring that an114

additional probability sample exists or could be acquired if the VGI did not originate from a probability115

sampling design. Options for analysis when the only data available are VGI from a non-probability116

sample are discussed in Section 5. Sections 6 and 7 provide discussion and a summary of the article.117

118
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119

2. Inference120

Following Baker et al. (2013, p.91), we define statistical inference as “… a set of procedures that121

produces estimates about the characteristics of a target population and provides some measure of the122

reliability of those estimates.” Statistical inference focuses on the use of sample data to estimate123

parameters of a target population, where a parameter is defined as a number describing the population124

(e.g., the population mean and population proportion are two common parameters). Determining the125

numerical value of a parameter would require a census of the study region, but in practice parameters126

are estimated from a sample. Statistical inference also includes how bias and variance of these sample-127

based estimators are defined. Baker et al. (2013, p.91) further specify that “A key feature of statistical128

inference is that it requires some theoretical basis and explicit set of assumptions for making the129

estimates and for judging the accuracy of those estimates.” Consequently, sampling design and analysis130

protocols must adhere to certain rules of implementation to ensure that the underlying mathematical131

basis of the inference framework is satisfied. Failure to adhere to these rules may lead to substantial132

bias in the estimators of parameters of interest or even nullify the ability to implement design-based133

inference entirely (see Section 3.3).134

Two general types of inference are design-based inference and model-based inference (De135

Gruijter and Ter Braak 1990; Särndal et al. 1992; Gregoire 1998; Stehman 2000; McRoberts 2010, 2011).136

In design-based inference, bias and variance of an estimator are determined by the randomization137

distribution of the estimator which is represented by the set of all possible samples that could be138

selected from the population using the chosen sampling design. This randomization distribution is139

completely dependent on the sampling design hence the origin of the name “design-based” inference.140

The inclusion probabilities of the sampling design are the critical link to the randomization distribution141
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that underlies design-based inference (Särndal et al. 1992, section 2.4). The practical considerations for142

using VGI in design-based inference are explained in detail in Section 4.143

A probability sampling design must satisfy two criteria related to the inclusion probabilities144

determined by the sample selection protocol. The inclusion probability of a particular element of the145

population (e.g., a pixel) is defined as the probability of that element being included in the sample. An146

inclusion probability is defined in the context of all possible samples that could be selected for a given147

sampling design. For example, if the design is simple random sampling of n elements selected from the148

N elements of the population, the inclusion probability of each element u of the population is πu=n/N.149

That is, in the context of all possible simple random samples of size n from this population, element u150

has the probability of n/N of being included in the sample selected. The two requirements of a151

probability sampling design are that πu must be known for each element of the sample and πu>0 for152

each element of the population (Särndal et al. 1992; Stehman 2000). Probability sampling requires a153

randomization mechanism to be present in the selection protocol. Convenience, judgment, haphazard,154

and purposive selection of sample elements are examples of protocols that do not satisfy the criteria155

defining a probability sampling design (Cochran 1977, Sec. 1.6). Use of such samples for inference156

carries considerable risk due to lack of representation of the population.157

An alternative to design-based inference is model-based inference (Valliant et al. 2000). As the158

name implies, model-based inference requires specification of a statistical model and inference is159

dependent on the validity of the model. Consequently, verifying model assumptions is a critical and160

often challenging feature of model-based inference. Model-based inference does not require a161

probability sampling design, although implementation of a probability sampling design is often162

recommended to ensure objectivity in sample selection because of the randomization (Valliant et al.163

2000, p.20). Applications of model-based inference are briefly discussed in Section 5.3.164

165
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166

3. Component Protocols of Accuracy Assessment and Area Estimation167

We describe the role of each of the three components of the methodology (response design,168

sampling design, and analysis) in determining how VGI can be incorporated in rigorous design-based169

inference. The response design is the protocol for determining the reference condition (i.e., the best170

available assessment of the ground condition). The response design includes all steps leading to171

assignment of the reference condition label of a point or spatial unit (e.g., a land-cover class or change172

versus no change label). The sampling design is the protocol for selecting the sample units at which the173

response design will be applied. Lastly, the analysis consists of defining parameters to describe174

properties of the population (e.g., overall accuracy, proportion of area of each class) and the formulas175

required to estimate these population parameters from the sample data. To justify the requirements of176

each step to achieve the final accuracy or area estimates, our description starts with the analysis177

(Section 3.1) focusing on how the VGI data would be used, followed by the steps of the response design178

(Section 3.2) and the sampling design (Section 3.3).179

180

3.1 Analysis: Accuracy and Area Estimation Based on Totals181

The details of the analysis protocol that specify how the estimates of accuracy and area are182

produced yield insights into how VGI should be evaluated for use in design-based inference. The183

analysis focuses on summarizing information contained in an error matrix. We define the population to184

be a collection of N equal-area units partitioning the region of interest. The population error matrix185

resulting from a census can be constructed in terms of area as illustrated by the numerical example in186

Table 1 for a simple two-class legend, “crop” and “not crop” for a population (target region) of 1000187

km2. The error matrix expressed in terms of area (Table 1) could easily be converted to proportion of188

area by dividing each cell of the error matrix by 1000 km2. However, it is useful to focus on the error189



9

matrix expressed in terms of area because we can formulate the population parameters of interest for190

accuracy and area as totals or ratios of totals of areas. For example, overall accuracy is the total area of191

agreement obtained from the sum of the area of the diagonal cells (930 km2) divided by the total area of192

the target region (1000 km2) to yield overall accuracy of 0.93 or 93%. User’s accuracy for the crop class193

is the total area where both the map and reference condition are crop (840 km2) divided by the total194

area mapped as crop (890 km2) to yield the parameter 0.94 or 94%. Producer’s accuracy for the crop195

class is the total area where both the map and reference condition are crop (840 km2) divided by the196

total area of reference condition of crop (860 km2) to yield the parameter 0.98 or 98%. Lastly, the area197

of reference condition of the crop class is also simply a total, in this case the sum of the two cells in the198

“crop” column of reference condition (840+20 = 860 km2).199

200

Table 1. Population error matrix expressed in terms of area (km2) for a hypothetical target region of201

1000 km2. Overall accuracy is 93% (930/1000).202

Reference Condition203

Map Crop Not Crop Total User’s204

Crop 840 50 890 0.94205

Not Crop 20 90 110 0.82206

Total 860 140 1000207

Producer’s 0.98 0.64208

209

Given that the parameters of interest for accuracy and area can be expressed in terms of totals,210

the analysis focuses on estimating these totals. Basic sampling theory provides an unbiased estimator of211

a population total in the form of the Horvitz-Thompson estimator (Horvitz and Thompson 1952). The212

population total of the variable yu is defined as213
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ܻ = ∑ ௨௉ݕ [1]214

where the summation is over all N elements of the population, P. For example, if yu is the area of crop215

(as determined from the reference condition) for element u, then Y is the total area of crop. The216

population total Y can be estimated from a sample using the Horvitz-Thompson estimator217

෠ܻ= ∑
௬ೠ

గೠ
௦ [2]218

where the summation is over all elements of the sample s.219

The Horvitz-Thompson estimator is an unbiased estimator of a population total for any sampling220

design as long as the inclusion probabilities of the sample elements are known for that design. A useful221

re-expression of the Horvitz-Thompson estimator highlighting the sample estimation weights is222

෠ܻ= ∑ ௨௦ݕ௨ݓ [3]223

where wu = 1/πu is the estimation weight for element u of the sample. Because wu≥1, the yu value for224

each sampled element is multiplied by an “expansion factor” wu to estimate a total. In effect each225

sample element must account for itself along with some additional elements of the population that226

were not selected into the sample. For example, for simple random sampling wu = N/n so yu for each227

sampled element is “expanded” by the multiplier wu to account for N/n elements of the population. The228

critical importance of known inclusion probabilities for rigorous design-based inference is evident via229

the role of the weights wu = 1/πu in the estimator ෠ܻ(equations 2 and 3).230

Parameters such as user’s accuracy and producer’s accuracy are ratios of totals and231

consequently can be estimated by the corresponding ratio of estimated totals (Särndal et al. 1992,232

section 5.3). For example, if we define Y as the total area of the population for which both the map and233

reference condition are crop and X as the total area mapped as crop, the ratio of population totals Y/X234

would be the population parameter for user’s accuracy of crop. User’s accuracy could then be estimated235

from the sample data using a ratio of Horvitz-Thompson estimators, ෠ܻ/ ෠ܺ, where both ෠ܻand ෠ܺare236

estimated totals based on equation (2), considering, respectively, yu=area of pixel u with both map and237
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reference condition of crop and xu=area of pixel u mapped as crop. In the case of a pixel-based238

assessment and assuming all pixels are equal area, user’s accuracy of crop estimated using a ratio of239

Horvitz-Thompson estimators would simply require defining yu=1 if pixel u has both map and reference240

labels of crop (yu=0 otherwise) and defining xu=1 if pixel u has map label of crop (xu=0 otherwise). In this241

formulation of user’s accuracy, the ratio Y/X is the proportion of pixels mapped as the target class that242

have the reference label of that class.243

Formulas for the variance and estimated variance of the Horvitz-Thompson estimator are244

provided by Särndal et al. (1992, section 2.8). The square root of the estimated variance (standard245

error) would be used to construct a confidence interval for the parameter of interest so issues of246

inference obviously extend to variance and confidence interval estimation. Although we do not delve247

into the details of the formulas for variance estimators, we emphasize that known inclusion probabilities248

are an essential feature of variance estimation. Consequently, the requirement of implementing249

probability sampling to ensure known inclusion probabilities for estimating a total applies as well to250

estimating the variance of an accuracy or area estimator.251

The conditions required for VGI to be used in design-based inference are apparent from the252

analysis protocol. The accuracy and area parameters of interest can be expressed as population totals253

or ratios of population totals and these totals can be estimated using the Horvitz-Thompson estimator.254

From the Horvitz-Thompson estimator formula (equations 2 and 3) we observe that the key features of255

VGI relevant to estimating a total are quality of the observation yu and knowledge of the inclusion256

probability πu. In other words, the questions pertinent to evaluating the utility of VGI for design-based257

inference are: 1) What is the quality of yu (an issue to address in the response design) and 2) Is πu known258

(an issue to address in the sampling design)? The following two subsections address issues of VGI259

related to the response and sampling designs.260

261
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3.2 Response Design262

The response design is the protocol for determining the reference condition of an element of263

the population. In the case of a land-cover legend based on a conventional hard classification, the264

response design results in a reference land-cover label assigned to each pixel (i.e., if the legend consists265

of C classes, one and only one of these class labels is assigned to the pixel). The reference class labels266

can be translated to a quantity by the simple process of defining yu = 1 if pixel u has reference class c and267

yu = 0 otherwise. Thus for example if class c is forest, all pixels with reference class forest would be268

assigned yu = 1 and all non-forest pixels would have yu = 0. Evaluating and assuring the quality of VGI is269

critical because high quality reference data are absolutely essential to accuracy and area estimation. If270

the reference labels are not accurate, these errors can have a substantial impact on accuracy and area271

estimates (Foody 2009, 2010). Very accurate reference data obtained within a timeframe corresponding272

to the date of remote sensing image acquisition are a necessity for every application of accuracy273

assessment and area estimation from remote sensing. VGI has considerable potential as a source of274

reference data, notably in facilitating the collection of a large set of observations over broad275

geographical regions. However, the use of volunteers rather than experts in assigning the reference276

class labels may exacerbate concerns regarding label accuracy, although amateurs can sometimes be as277

accurate as experts in labeling (See et al. 2013). Further, VGI tends to be collected continuously rather278

than within a narrow time frame which can limit its value, especially for studies of land-cover change.279

Applications in which VGI has been collected for land cover and land use studies are becoming280

increasingly common. Fonte et al. (2015) reviewed several applications including:281

1) Geo-Wiki project, which uses the crowd for interpretation of very high resolution satellite282

imagery (Fritz et al. 2012);283

2) VIEW-IT, which is a validation system for MODIS land cover (Clark and Aide 2011); and284
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3) geo-tagged photographs for land cover validation from different applications such as the285

Degree Confluence Project, Geograph, Panoramio and Flickr (Antoniou et al. 2016; Fonte et al.286

2015; Iwao et al. 2006).287

Another source of VGI for land-cover studies is the LACO-Wiki system, an online land cover validation288

tool intended as a repository of openly available validation data crowdsourced from different users (See289

et al. 2017). More recently, land cover and land use have been crowdsourced in the field through the290

FotoQuest Austria app, which sends users to specific locations and loosely follows the LUCAS protocol291

for data collection (Laso Bayas et al. 2017). Hou et al. (2015) describe geo-tagged web texts as an292

alternative to photographs as yet another source of VGI useful for land-cover studies.293

The quality of the VGI data collected for land cover and land use studies has received recent294

attention. A substantial body of literature focuses on the positional quality and completeness of295

OpenStreetMap (OSM), the most commonly cited VGI project (e.g., Ciepłuch et al. 2010; Girres and 296 

Touya 2010; Haklay 2010). Other elements of quality include thematic accuracy (which is relevant to297

land cover and land use), temporal quality, logical consistency, and usability, all of which are set out in298

ISO 19157 (Fonte et al. 2017a). In addition, Antoniou and Skopeliti (2015) outline quality indicators that299

are tailored to VGI such as data indicators, demographic and other socio-economic indicators, and300

indicators about the volunteers. Due to the specificities of VGI when compared to traditional301

geographic information and the diversity of uses of these data, additional methodologies are starting to302

be developed that aim to integrate several quality measures and indicators into quality assessment303

workflows, enabling quality data to be combined to produce more reliable quality information (e.g.,304

Bishr and Mantelas 2008; Jokar Arsanjani and Bakillah 2015; Meek et al. 2016).305

Although concern with reference data error may be heightened when VGI is used, there are306

methods such as latent class analysis, which can be used to characterize volunteers in terms of their307

quality in labeling classes and could therefore be used to filter or weight the data when used308
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subsequently in applications (Foody et al. 2013, 2015). These issues of data quality associated with the309

response design are critical to the overall process of accuracy and area estimation. In reality, reference310

data quality issues are equally impactful whether the source of the reference classification is VGI or311

expert interpretation (See et al. 2013).312

313

3.3 Sampling Design314

The sampling design is the protocol used to select the subset of locations (e.g., pixels) at which315

the reference condition is determined. As noted earlier, the inclusion probability of pixel u is denoted as316

πu, and the two criteria defining a probability sampling design are: 1) πu is known for all pixels in the317

sample and 2) πu > 0 for all pixels in the population. Because probability sampling is a requirement of318

rigorous design-based inference, the sample selection protocol must ensure that these two conditions319

of πu are satisfied. Moreover, randomization of the sample selection is required of all probability320

sampling designs as it is this randomization that creates the probabilistic foundation for design-based321

inference. The sampling design is linked to the analysis via the inclusion probabilities that are322

incorporated in the Horvitz-Thompson estimator (equations 2 and 3).323

Because design-based inference requires known inclusion probabilities, it is critical to establish324

whether a probability sampling design was the basis for collecting VGI data. The distinction between325

active and passive VGI is relevant in this regard. Active VGI refers to directing volunteers to specific326

sample locations (e.g., See et al. 2016) and therefore allows for implementing a probability sampling327

design for collecting VGI. Conversely, passive VGI refers to allowing volunteers to choose where they328

will collect data and typically leads to purposive or convenience sampling with attendant concern329

regarding lack of representation of the full population. The protocols that determine where VGI data330

are collected span a continuum ranging from rigorous probability sampling to selection by judgment or331

convenience without an underlying random mechanism.332
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The Degree Confluence Project (Iwao et al. 2006) is an example in which VGI data are collected333

via a probability sampling protocol. These data are obtained at locations defined by the intersection of334

lines of latitude and longitude and therefore originate from a design akin to systematic sampling (due to335

the Earth’s shape the distances between sample points vary with latitude so the inclusion probabilities336

would not all be equal but would still be known). A second example of VGI based on a probability337

sampling design is the FotoQuest Austria app which uses the Land Use/Cover Area frame Survey (LUCAS)338

sample (which is based on a systematic sample of points spaced 2 km apart in the four cardinal339

directions across the European Union) followed by a stratified sample (Martino et al. 2009). That is, land340

cover and land use were crowdsourced via the FotoQuest Go mobile app in which volunteers were sent341

to specific locations that formed part of the LUCAS systematic sample for Austria, and the LUCAS sample342

was then augmented with additional sample units (Laso Bayas et al. 2016).343

Several VGI applications include sample data originating from both probability sampling designs344

and volunteer chosen locations. The Geo-Wiki project is used to collect land cover and land use data via345

different campaigns (See et al. 2015). These campaigns have all had different purposes and hence were346

driven by different sampling designs. For example, the first campaign to validate a map of land347

availability for biofuels was driven by a stratified random sample with equal sample size in both the land348

available stratum and the land unavailable stratum. To this an additional sample from cropland areas349

was added although the data were not used to undertake an accuracy assessment as such but to modify350

the statistics on how much land is available (Fritz et al. 2013). Other studies have made use of Geo-Wiki351

data from previous campaigns for validation that were not obtained using a probability sampling352

approach for the specific product to be validated (see, for example, Schepaschenko et al. (2015) and353

Tsendbazar et al. (2015) for review of reference datasets including those from Geo-Wiki). The VIEW-IT354

application (Clarke and Aide 2011) either directs users to specific locations selected based on a355

probability sampling design or users can provide information about the land cover at any location, which356
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means these latter sample locations would not be part of a probability sampling design. The LACO-Wiki357

system (See et al. 2017) has built-in probability sampling schemes although users can upload their own358

sample locations that do not necessarily conform to a probability sampling design.359

Photograph repositories such as Panoramio, Flickr, and Instagram are examples of passive VGI360

and therefore do not conform to any probability sampling design. For example, photographs made361

available by citizens may be positioned at any location chosen by the volunteer (such as the362

photographs available in Flickr or Instagram), or collected at predefined locations. Similarly, the data363

available in collaborative projects such as OSM are created at locations of interest to the citizen364

volunteers, and consequently these data have no underlying probability sampling design. The amount365

and quality of the OSM data are known to be correlated with demographic or socio-economic factors366

(e.g., Mullen et al. 2014; Elwood et al. 2013) and this offers some possibility for adjusting estimates to367

account for misrepresentation of the population (see Section 5.1).368

The Geograph project asks users to take photographs in every square kilometer of the United369

Kingdom and classify them (now also extended to other locations in the world). Since 2005, 83.4% of370

the 1 km2 squares in Great Britain and Ireland have photographs (http://www.geograph.org.uk/,371

accessed 29 October 2017) and nearly 5.5 million images are available within this time period.372

Volunteers may choose locations within each square kilometer at which photographs are taken.373

Therefore, if each photograph is viewed as representing a point location or, for example, the 30 m x 30374

m pixel surrounding the photograph’s location, the data would not meet the criteria defining a375

probability sampling design due to the lack of randomization in the selection protocol. Directing the376

volunteers to cover the 1 km2 squares provides a better degree of spatial representation of the VGI than377

might otherwise occur if volunteers are allowed to choose locations completely on their own.378

Specifically, the 1 km2 squares effectively serve as spatial (geographic) strata, and with over 83% of379

these strata visited, the Geograph project data achieve the desirable design criterion of being spatially380
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well distributed (Stehman 1999, Figure 3). The Geograph project data collection protocol illustrates the381

fact that within the class of non-probability sample designs, features can be built into the protocol to382

enhance representation of the VGI data.383

384

4. Methods to Use VGI in Design-based Inference385

In this section, we address how to incorporate VGI into design-based inference focusing on386

sampling design and estimation considerations (Figure 2). The label quality issues of VGI remain a387

concern but are not addressed in this section. The most straightforward approach to ensure the utility388

of VGI for design-based inference is to direct volunteers to collect data at locations specified by a389

probability sampling design (which is possible with “active VGI”). Several examples of VGI collections390

based on a probability sampling design were documented in Section 3.3. Specifying sample locations391

selected via probability sampling has the potential drawback that volunteer participation may be392

reduced if volunteers are unable to choose locations of personal interest. Consequently, additional393

effort may be necessary to obtain yu at those locations neglected by volunteers.394

395
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396

Figure 2. Schema for using VGI in design-based inference.397

If a large quantity of VGI obtained from a non-probability sampling design exists, the VGI data398

may be augmented with data from a probability sampling design (Figure 2). Two options are described399

in the following subsections. In the first option, the VGI data are treated as a “certainty stratum” and400

combined with data from a probability sample selected from the locations not already included in the401

VGI data. In the second option, the probability sample is selected from the full population and the VGI402

data are used to construct an auxiliary variable that is then incorporated in a model-assisted estimator403

to reduce the standard errors of the estimates based on the data from the probability sample.404

405

4.1 VGI Incorporated as a Certainty Stratum406

VGI data can be combined with data obtained from a probability sample by treating each VGI407

sample unit (e.g., a pixel) as belonging to a “certainty stratum” in which the inclusion probability is πu=1408

(Overton et al. 1993).  By assigning πu=1 to each VGI sample unit, we acknowledge that these sample409

units were not selected via a randomized selection protocol, and instead we view these units as having410
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been purposely selected to be included with certainty in the sample. From the remaining units of the411

population not included in the VGI certainty stratum, a probability sampling design is implemented and412

these newly selected sample units are combined with the VGI data to produce the accuracy and area413

estimates. In this approach the VGI data are used directly in the estimation of accuracy and area, so the414

quality of the VGI data is a critical concern.415

All sample units selected via the probability sampling design will have a known inclusion416

probability and the data from these sample units can be combined with the VGI data using the Horvitz-417

Thompson estimator. Specifically, suppose there are N1 elements for which we have no VGI and N2418

elements for which VGI provides yu (N=N1+N2). Further, let G denote the subset for which VGI is419

available (the “G” is from the middle letter of VGI) and ෨denoteܩ the subset of the population for which420

VGI is not available. The population total Y can then be partitioned into summations over the two421

subpopulations ෨andܩ G,422

ܻ = ∑ ௨ݕ + ∑ ௨ݕ = ܻ ෨ீீ෨ீ + ܻீ [4]423

Because YG (total of yu for the VGI data) is known, it is only necessary to estimate ܻ ෨ீ from the sample.424

Therefore, an estimator of Y can be expressed as425

෠ܻ= ∑ ௨ߨ/௨ݕ +௦ ∑ ௨ீݕ = ෠ܻீ෨+ ܻீ [5]426

where the first summation is over the elements selected in the sample from the N1 elements of the427

population ෨forܩ which VGI is not available. The variance of ෠ܻis ܸ൫ܻ෠൯= ܸ( ෠ܻீ෨) because the total of the428

VGI data is a known quantity with no uncertainty attributable to sampling. That is, the only uncertainty429

attributable to sampling arises from estimating the total ܻ ෨ீ for the non-VGI portion of the population,430

෨.431ܩ

The benefit of the VGI data when incorporated as a certainty stratum is to reduce the standard432

errors of the accuracy and area estimators and accordingly to decrease the width of confidence intervals433

for the parameters of interest. To illustrate the potential reduction in standard error, we focus on the434



20

objective of estimating area based on the reference condition obtained for each sample unit. The435

benefit of the VGI data can then be quantified by comparing the variance of the estimator of total area436

without using VGI data to the variance of the estimator using the certainty stratum approach (equation437

5). Several conditions are imposed to simplify the variance comparison: 1) the sample of non-VGI units438

is selected by simple random sampling; 2) the VGI data have the same variability as the non-VGI data439

(i.e., the variance of yu for the VGI subpopulation G is the same as the variance of yu for the non-VGI440

subpopulation ;(෨ܩ and 3) the sample size n is the same regardless of whether VGI is present (i.e., the VGI441

data are viewed as obtained at no cost so n is the same with or without VGI). If no VGI data are442

available and a simple random sample is selected from the full population of N elements (i.e., N2=0443

because no VGI data exist), the variance of the estimated total is444

ܸ൫ܻ෠൯= ܰଶቀ1 −
௡

ே
ቁ ௬ܸ/݊ [6]445

The variance of ෠ܻwhen VGI is available for N2 elements of the subpopulation G is derived as follows. A446

simple random sample of n elements is selected from the N1 non-VGI units. The variance of the447

estimated total combining the VGI data with the non-VGI sample (equation 5) depends only on the448

variance of the total estimated from the non-VGI sample units,449

ܸ൫ܻ෠ீ෨൯= ܰଵ
ଶቀ1 −

௡

ேభ
ቁ ௬ܸ/݊ [7]450

To quantify the reduction in variance achieved by the VGI data, we examine the ratio of the two451

variances,452

ܴ =
௏൫௒෠ಸ෩൯

௏(௒෠)
=

ேభ
మቀଵି

೙

ಿ భ
ቁ

ேమቀଵି
೙

ಿ
ቁ

[8]453

The Vy/n term common to both equations (6) and (7) cancels in the ratio R by virtue of the assumption454

that the variability of yu is the same in the VGI and non-VGI subpopulations (if Vy is different in the two455

subpopulations, R will be impacted by the ratio of the variances of the two subpopulations, G and ෨).456ܩ
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Under the assumption of equal variance for the two subpopulations, the benefit of VGI to457

reduce variance depends on the proportion of the population that is covered by the VGI data, which is458

defined as k=N2/N. If we define f=n/N to be the proportion of the total population selected for the459

probability sample, then R can be re-written as460

ܴ = (1 − )݇(1 − ݂− )݇/(1 − )݂. [9]461

If no VGI data exist, then k=0 and R=1 as expected because there would be no reduction in variance462

from VGI. Conversely, if k=1, then R=0 as expected because the VGI would constitute a census and the463

population total Y would be known yielding a variance of 0. As the quantity of VGI gets larger (i.e.,464

k=N2/N increases), R decreases indicating a greater benefit accruing to the availability of the VGI data.465

Numerical values of √ܴ (ratio of standard errors) for several combinations of k and f are presented in466

Table 2. For a fixed value of f=n/N, √ܴ decreases approximately linearly with increasing k. For a fixed467

value of k, the decrease in √ܴ is much less prominent as f increases except for the case with f=0.25 and468

k=0.75 which represents a census so ܸ൫ܻ෠ீ෨൯= 0. To simplify the problem still further, assume that the469

spatial unit of the assessment is a pixel and that N is so large that f = n/N = 0. Then setting f = 0 in470

equation (9), we obtain R = (1 - k)2 which leads directly to471

√ܴ = 1 − ݇ [10]472

Thus for very large populations the reduction in standard error achieved by VGI will be directly related473

to k, the proportion of the population for which VGI is available – the greater the quantity of VGI474

available (i.e., larger k) the greater the reduction in standard error.475

476

477

478

479
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Table 2. Reduction in standard error achieved by using VGI in the certainty stratum approach. Values480

shown in the table are √ܴ where R is the ratio of the variance of the estimated total with VGI data481

incorporated in a certainty stratum divided by the variance of the estimated total in the absence of VGI482

(see equations 8 and 9). Ratios are provided for different combinations of k=N2/N (the proportion of the483

region of interest covered by VGI) and f=n/N (proportion of the study region covered by the simple484

random sample).485

f = n/N486

k 0.00 0.01 0.05 0.10 0.25487

0.01 0.99 0.99 0.99 0.99 0.99488

0.05 0.95 0.95 0.95 0.95 0.94489

0.10 0.90 0.90 0.90 0.89 0.88490

0.25 0.75 0.75 0.74 0.74 0.71491

0.50 0.50 0.50 0.49 0.47 0.41492

0.75 0.25 0.25 0.23 0.20 0.00493

0.90 0.10 0.10 0.07 0.00 0.00494

495

Equation (9) and the results of Table 2 can be used to examine the benefit of VGI arising from496

photographs contributed by volunteers (Antoniou et al. 2016), a common source of VGI for land-cover497

studies. Suppose we assume a photograph to be representative of a 30 m x 30 m pixel and consider a498

region of interest that covers 8 million km2 (roughly the size of the conterminous United States,499

excluding Alaska and Hawaii). This region would have approximately N = 9 billion pixels. To achieve a500

5% reduction in the standard error of the estimated area of a targeted class (i.e., √ܴ changes from 1 to501

0.95) the certainty stratum approach would require k=N2/N=0.05 which translates to needing N2 = 450502

million photographs. As a second example, suppose the target region of interest covers 100,000 km2503

(area slightly larger than Portugal). This population would have N = 100 million pixels (30 m x 30 m) so504
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for VGI data to contribute a 5% reduction in standard error we would need N2 = 5 million photographs.505

Typically the VGI photographs will have to be processed to obtain the land-cover information of interest506

(e.g., a land-cover class). Consequently, the large number of photographs needed in these examples to507

achieve only a 5% reduction in standard error would require substantial computer processing capability508

and possibly automated methods to identify the land-cover class from the photographs. Accordingly,509

the response design effort to process such large numbers of photographs may make this use of VGI cost510

prohibitive in some applications.511

The certainty stratum approach may have greater utility when the VGI data are in the form of512

fully mapped areas classified to a land-cover or change type (i.e., in contrast to individual, unlabeled513

photographs as in the previous paragraph). For example, Fonte et al. (2017b) described an application514

in which OSM provided land-cover information for two study areas of 100 km2 in London and Paris.515

OSM coverage was 88% for the London region and 97% for the Paris region. Because of the substantial516

portion of area covered by OSM (k=0.88 for London and k=0.97 for Paris) a large reduction in standard517

error of accuracy and area estimates would be expected by using these OSM data in the certainty518

stratum approach. For example, if k=0.88 and f=0.1 (the London example), we obtain R=0.00266519

(√R=0.05) indicating that the standard error of the certainty stratum estimator would be 5% of the520

standard error of the estimated area when not using the VGI from OSM. Obviously the areas of the521

regions of interest for the OSM examples in this paragraph are much smaller than for the examples in522

the previous paragraph and k would surely be smaller if OSM were to be used for national estimates.523

524

4.2 Use of VGI in a Model-Assisted Estimator525

Brus and de Gruijter (2003) developed an approach to use data from a non-probability sampling526

design to produce estimates within the design-based inference framework. In this approach, a spatial527

interpolation method is applied to the non-probability sample of VGI data to construct an auxiliary528
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variable for all N elements of the population. The auxiliary variable is then used in a model-assisted529

estimator to achieve a reduction in standard error. Model-assisted estimators represent a broad class of530

estimators in which one or more auxiliary variables are incorporated in the estimator. Common531

examples of model-assisted estimators include difference, ratio, and regression estimators as well as532

post-stratified estimators (Särndal et al. 1992; Gallego 2004; Stehman 2009; McRoberts 2011; Sannier et533

al. 2014). The auxiliary variables are expected to covary with the target variable of interest and the534

information in the auxiliary variables, when incorporated in the model-assisted estimator, thus serves to535

reduce standard errors (Särndal et al. 1992, Chapter 6).536

The Brus and de Gruijter (2003) approach could be applied to VGI as follows. Consider the537

objective of estimating the proportion of area of a class (e.g., area of forest) based on the reference538

condition. Suppose the spatial unit of the analysis is a pixel and the VGI data consist of N2 pixels labeled539

as forest or non-forest. The Brus and de Gruijter (2003) approach uses these VGI data to construct an540

auxiliary variable xu for all N pixels in the population. For example, for a binary classification of forest /541

non-forest, the auxiliary variable would be defined as xu=1 if the class is forest and xu=0 if the class is542

non-forest. The auxiliary variable xu is known for the N2 pixels comprising the VGI, and the Brus and de543

Gruijter (2003) approach would then implement a spatial interpolation method such as indicator kriging544

(e.g., Isaaks and Srivastava 1989) to predict values of xu for the N-N2 pixels not included in the VGI subset545

of the population. The binary forest / non-forest classification of the region predicted from the VGI data546

could be used in the same manner as auxiliary data from any forest / non-forest map. For example, to547

estimate the proportion of area of forest based on the reference condition (yu), a probability sample548

from all N pixels would be selected for which the reference class of each sampled pixel would be549

obtained. If the reference observation is also a binary forest / non-forest classification (i.e., yu=1 if the550

reference condition is forest, yu=0 otherwise), an error matrix could be estimated from the sample551

based on the reference class data and the map classification of forest or non-forest created from the VGI552



25

data. The error matrix information could then be combined with the VGI generated forest / non-forest553

map information to produce a post-stratified estimator of the proportion of area (Card 1982; Stehman554

2013). The expectation is that the auxiliary variable created from the VGI would yield a reduction in555

standard error of the post-stratified estimator relative to an estimator that did not incorporate the VGI.556

That is, the map generated via spatial interpolation of the VGI data would be used in the same way that557

a forest / non-forest map derived from remotely sensed data would be used in a post-stratified558

estimator.559

The Brus and de Gruijter (2003) method requires a probability sample to provide the reference560

data (yu) for the accuracy and area estimates. This probability sample must be selected from the full561

population of N units, including those units for which VGI is available. In contrast, the certainty stratum562

use of VGI (section 4.1) does not require a sample from the subpopulation G that has VGI. The Brus and563

de Gruijter (2003) approach does not use the VGI data as the observed response (i.e., the reference data564

value, yu) so the quality of the class labels associated with the VGI data will not impact the estimates in565

terms of potential bias attributable to labeling error of the VGI. However, better quality (i.e., more566

accurate) VGI data would likely yield a greater reduction in standard error in the same manner that a567

more accurate map yields a greater reduction in standard error when the map data are used in a post-568

stratified estimator (Stehman 2013). In the context of land-cover accuracy and area estimation569

applications, remote sensing information is almost always available to produce a map that would570

provide auxiliary information that could be used in a model-assisted estimator. Spatial interpolation of571

VGI using the methods described by Brus and de Gruijter (2003) provides another option for producing a572

map of auxiliary information, and incorporating remote sensing imagery in linear spatial models (Diggle573

et al. 1998) might further enhance the precision benefit of the Brus and de Gruijter (2003) approach.574

To summarize, the model-assisted estimator based on spatially interpolated data does not rely575

on the VGI data to provide the yu values that are the basis of the parameter estimates thus decreasing576
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the concern with bias attributable to inaccurately labeled VGI data. Instead, the approach employs the577

VGI to create an auxiliary variable xu that is then used in a model-assisted estimator to reduce the578

standard errors of the accuracy and area estimates. The magnitude of the reduction in standard error579

would depend on the quality of the VGI. While this approach would have great utility if no other580

auxiliary information were available, we typically have access to remotely sensed data that could be581

used to produce a classification that would serve the same purpose as a map derived from spatially582

interpolating VGI data. Consequently, for land-cover studies the primary benefit obtained by spatial583

interpolation of VGI may occur in circumstances where a map produced from remotely sensed data is584

not available.585

586

5. Use of VGI from Non-Probability Samples587

If the VGI data are the only source of reference data (i.e., there is no probability sample and588

unable to acquire one), it will be challenging to use these VGI data in the manner of design-based589

inference (Figure 3). One option for using VGI in this context is to replace the estimation weights590

wu=1/πu (equation 3) by pseudo weights that depend on assuming the sample can be treated as though591

it had been obtained via a probability sampling design. For example, suppose the reference data for592

accuracy assessment and area estimation are land-cover interpretations extracted from a non-593

probability sample of photographs.  If the inclusion probabilities (πu) of the spatial units represented by594

these photographs are unknown, one approach to estimate totals is to assume that the VGI locations595

represent a stratified random sample (see Section 5.1 for details). Using this approach it is possible to596

construct pseudo-weights such that estimated totals will match known parameters of the population.597

Although this weighted estimation approach can adjust a VGI sample to achieve estimates that598

correspond to the correct proportional representation of the population, the question of “external599

validity” of the VGI data must be addressed. External validity is defined and applied in Section 5.2.600
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Model-based inference is a second option for using VGI data that were not obtained from a probability601

sampling design. The application of model-based inference to accuracy and area estimation is discussed602

in Section 5.3.603

604

605

Figure 3. Schema for using VGI collected via a non-probability sampling design.606

5.1 Estimation Based on Pseudo-Weights607

If the only reference data available for accuracy and area estimation are VGI that did not originate608

from a probability sampling design, an obvious initial step in the analysis is to examine the proportional609

distribution of the VGI sample relative to known characteristics of the population. For example, using a610

land-cover map of the study region, we could compare the proportion of the VGI data found within each611

land-cover class to the proportion of each class in the entire population. For the hypothetical numerical612

example of Table 3, the VGI sample shows preferential selection from the developed and crop classes at613

the expense of representation of the “other” and natural vegetation classes reflecting the relative ease614

of access to the classes associated with the transport network. Representativeness of the VGI data615
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could also be assessed by examining the distribution of distances to the nearest road or distances to the616

nearest population center. For example, we could compare the mean distance to the nearest road for617

the VGI locations to the mean distance for all N pixels in the population. If the mean for the VGI618

locations was less than the mean for the population, this discrepancy would indicate preferential619

selection of VGI closer to a road. A relevant question is then whether this preferential selection could620

introduce bias because map accuracy may differ depending on proximity to a road.621

622

Table 3. Hypothetical data illustrating evaluation of the proportional representation of VGI. The623

distribution of the percent area of the map classes is compared between the VGI sample (n=100) and624

the population (i.e., entire region) known from a land-cover map of the study region.625

626

Area (%)627

Map Class VGI Population628

Developed 25 10629

Crop 35 20630

Natural vegetation 30 50631

Other 10 20632

633

In general, we could attempt to adjust estimates to account for recognized non-proportionality of634

the VGI data relative to known population characteristics (Dever et al. 2008). For the example data of635

Table 3, the difference between the distribution of the VGI and population data suggests that weighting636

the data to adjust for this discrepancy would be a good idea when producing estimates. One approach637

would be to construct weights such that the estimates based on the weighted analysis of the VGI data638

correspond to known population quantities. A simple way to achieve this is to treat the non-probability639
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sample as having arisen from a stratified design (e.g., Loosveldt and Sonck 2008). Inclusion probabilities640

for each stratum are then defined as ௨ߨ = ௛݊/ܰ௛ where nh is the observed sample size (from the VGI641

sample) in stratum h and Nh is the population size in stratum h. The estimation weight for pixel u is then642

௨ݓ = ,௨ߨ/1 and these weights could be used in the Horvitz-Thompson estimator. These stratified643

estimation pseudo-weights for the hypothetical data of Table 3 are presented in Table 4. Referring to644

weights constructed in this manner as “pseudo-weights” highlights the fact that they are not derived645

from inclusion probabilities generated by a probability sampling protocol.646

647

Table 4. Pseudo-weights for VGI sample units based on distributions by class shown in Table 3 (nh and648

Nh represent the number of pixels for each class in the VGI sample and in the population).649

650

nh Nh651

Class VGI Map wu =Nh/nh652

Developed 25 1000 40653

Cultivated 35 2000 57654

Natural veg 30 5000 167655

Other 10 2000 200656

Total 100 10000657

658

To illustrate how the stratified estimation approach using pseudo-weights is implemented, consider659

estimating the proportion of area mapped as the developed class. From Table 3, we know this660

proportion is 0.10 because we have the map for the entire population. How well does the VGI sample661

estimate this parameter? We observe that 25 out of 100 VGI pixels are mapped as developed so the662

estimated proportion of mapped developed is then 0.25 from the VGI data, greater than the known663
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parameter of 0.10 for the population. To produce the estimator using the stratified pseudo-weights of664

Table 4 we define yu=1 if the sample pixel has the map label of developed and yu=0 otherwise. Then for665

the developed class stratum, yu=1 for all 25 sample pixels and each of these pixels has a weight of666

wu=40, so the estimated total contributed from this stratum is 40 x 25 = 1,000 pixels (using equation 3).667

For the other three strata, yu=0 for all sample pixels so these strata contribute no additional pixels to the668

estimated number of mapped developed pixels. Dividing the estimated total number of map pixels669

labeled as developed (1,000) by the number of pixels in the population (N=10,000) yields an estimated670

proportion of 0.10 which matches the population proportion of mapped developed area from Table 3.671

Thus the sample estimate using the pseudo-weights matches this known population proportion.672

In general, the pseudo-weights can be constructed so that the sample estimates will equal known673

population values. In the example of Table 4, the pseudo-weights reproduce the known values674

Nh=population size of each stratum, a property known as “proportional representation.” These same675

estimation pseudo-weights are then applied to estimate the target population parameters and the676

assumption is that estimation weights that effectively adjust the VGI sample data to match known677

population parameters will also work well when estimating the target parameters for which we do not678

have full population information. Other more complex methods for creating estimation weights include679

raking, general calibration estimators (Deville and Särndal 1992), and propensity scores (Valliant and680

Dever 2011). Models can be used to produce the pseudo-weights used in lieu of weights that are the681

inverse of the inclusion probabilities of a probability sampling design, but Valliant (2013, p.108) points682

out that this approach has not yielded promising results because the models are weak and the683

requirements excessive for covariates to be used in the models.684

685

5.2 External validity686
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Pseudo-estimation weights can be used to produce estimates that capture the proportional687

distribution of known population characteristics (i.e., covariates). However, another important aspect of688

representativeness of non-probability sample data is external validity, defined as the parameter estimates689

being “generalizable outside the sample, say to the population of interest” (Dever and Valliant 2014). For690

the pseudo-weight estimation approach described in the previous section, establishing external validity691

would require that accuracy for the subset of the population represented by the VGI locations be692

equivalent to accuracy of the full region. Proportional representation of the estimates (Table 4) produced693

from non-probability sample data is one aspect of external validity, but proportional representation is not694

sufficient to establish external validity (Dever and Valliant 2014).695

External validity may also require establishing that the population represented by the VGI is the696

same as the population of the full study region. Two examples are provided to illustrate this practical697

issue. In both examples, the objective is to estimate the accuracy of a map. For the first example, suppose698

that volunteers avoid locations of complex land cover and provide reference data exclusively for locations699

that are surrounded by homogeneous land cover. Antoniou et al. (2016) suggest such a strategy may be700

beneficial when using photographs to avoid difficulties of determining the ground condition. Because701

homogeneous regions are typically more likely to be classified correctly, the accuracy estimates produced702

from such data would be expected to have higher accuracy than is true of the study region as a whole.703

Consequently external validity of these data would be suspect because the estimates based on the non-704

probability sample would not be generalizable to the target population. As a second example, suppose705

because of convenient access the VGI data have been collected primarily at locations near roads.706

Evaluating external validity would then require determining whether accuracy near roads was equivalent707

to accuracy distant from roads.708

Verifying external validity of VGI may be extremely challenging and in some cases impossible709

(Dever and Valliant 2014). Verification requires comparing characteristics of the VGI data with710
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characteristics of the full study region. Consider the example of VGI data concentrated along roads. To711

establish that accuracy does not vary with distance from a road, we could collect additional reference712

data distant from roads based on a probability sampling design, and compare the accuracy estimates713

from this sample to accuracy estimates for sample data constrained to locations near roads. But the714

additional effort to obtain the sample data distant from roads would negate much of the value of VGI715

for reducing the cost of accuracy assessment. That is, to definitively establish the equivalence of716

accuracy near roads to accuracy distant from roads, we may need a large probability sample, and the717

primary value of VGI is to reduce the cost and effort of collecting sample data.718

Alternatively, it may be possible to cite previous studies to establish external validity. For example,719

if previous research has demonstrated that distance from a road is not strongly related to accuracy, we720

would have some assurance of external validity to support use of VGI data collected preferentially near721

roads. In general, to more fully exploit the potential benefit of VGI, it may be necessary to document722

typical features of VGI that would commonly need to be addressed to establish external validity and723

then conduct the necessary studies to inform the decision of whether external validity is tenable.724

Distance from road, characteristics of volunteers, and complexity of landscape are just a few examples725

of features that might be explored to determine whether characteristics of populations (e.g., accuracy)726

differ by these features. If in general there are no such differences, external validity of non-probability727

sample data is supported to some degree. Developing a cohesive strategy to design and conduct such728

studies for a broadly applicable assessment of external validity of VGI would likely require a major729

research initiative.730

731

5.3 VGI and Model-Based Inference732

Model-based inference is not predicated on probability sampling so it is a potentially attractive733

option for using VGI data that did not originate from a probability sampling design. Model-based734
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inference requires specification of a model that relates yu to a set of covariates (predictors) available for735

the full population (Valliant et al. 2000). Developing appropriate models and evaluating the underlying736

assumptions may be difficult and time-consuming (Baker et al. 2013) with the difficulties exacerbated by737

the fact that in most surveys, numerous estimates are produced from a single sample. In the case of738

VGI, estimates of accuracy and area for several land-cover or land-cover change types will typically be of739

interest, and each of these estimates may be desired for several subregions within the target region of740

interest. A model will need to be developed and assumptions evaluated for all estimates as a model741

that works well for some estimates may not work well for others. An additional challenge to the model-742

based approach is that non-probability samples may have an inherent selection bias, so a substantial risk743

exists that the distribution of important covariates in the sample will differ from the distribution of these744

covariates in the target population (Baker et al. 2013). Methods to account for preferential sampling745

(e.g., Diggle et al. 2010) in a model-based framework may be considered in such cases of non-probability746

sampling.747

Numerous model-based methods can be applied to non-probability samples and evaluating the748

utility of model-based methods is case specific because it is difficult to ascribe general properties to749

these methods (Baker et al. 2013). An advantage of probability sampling and design-based inference is750

that a standard general approach is used to produce the complete array of estimates (see Section 2.1).751

Yet another challenge of model-based inference and non-probability sampling is how to define and752

quantify uncertainty. A widely accepted measure of precision does not exist for estimates from non-753

probability samples (Baker et al. 2013, p.97), whereas the standard error (or appropriately scaled754

version of standard error) is generally accepted for quantifying precision of estimates in design-based755

inference. Clearly, some of the cost savings achieved by non-probability sampling is lost due to the756

more complex analyses needed to develop models and test their assumptions (Baker et al. 2013).757

Because model-based inference encompasses an array of methods, establishing transparency of the758
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methodology is also more demanding because it is necessary to describe the specific model-based759

approach used and the possible limitations of inference uniquely associated with that approach (Baker760

et al. 2013, p.100).761

762

6. Discussion763

The increasing availability of large quantities of data obtained via non-probability sampling has764

garnered interest of survey methodologists in a variety of subject areas, so it is relevant to examine765

issues addressed in the broader survey sampling literature that go beyond just use of VGI in the remote766

sensing context. For example, internet surveys comprised of volunteer opt-in panels that use social767

media to extract information result in large quantities of data that are obtained quickly and conveniently768

but via a selection protocol that has no underlying probability sampling design. Review articles by Baker769

et al. (2013) and Elliott and Valliant (2017) provide an excellent general overview of methods and issues770

affecting inference when using data from such non-probability samples. In the broad context of survey771

sampling, the conventional practice of relying on design-based inference has been questioned because772

of the tremendous increase in non-response rates. Even if a probability sampling design is773

implemented, severe non-response will make the application of design-based inference questionable774

(Baker et al. 2013). Fortunately, in land-cover studies non-response is generally not a major problem.775

The availability of remote sensing platforms usually allows us to obtain the necessary observations that776

might otherwise be very difficult if a ground visit were required. Non-response rates are typically very777

small in accuracy assessment and area estimation applications so the dilemma of severe non-response778

that impacts current survey practice in other fields of application is typically not a problem in land-cover779

studies.780

Ensuring accurate observations (yu) is perhaps the most challenging aspect of using VGI because it781

depends on the volunteers to provide good quality data. Accurate interpretation of reference labels for782
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land cover or land-cover change is challenging even for trained experts so label quality of VGI data needs783

to be scrutinized closely. A great deal of effort has been invested in improving and evaluating the784

quality of VGI used in land-cover studies, including the assessment of traditional quality measures such785

as positional, thematic or temporal accuracy (Fonte et al. 2017a), the development of new quality786

indicators that are applicable specifically to VGI (Meek et al. 2014; Antoniou and Skopeliti 2015;787

Senaratne et al. 2017), and even combinations of indicators (Bishr and Mantelas 2008; Jokar Arsanjani et788

al. 2015). The investment in these methods will not only yield better quality VGI data but may also789

contribute to improved data quality and assessment procedures applicable to reference data obtained790

by experts.791

Baker et al. (2013) make the helpful distinction between “describers” whose purpose is to describe792

the population and “modelers” whose purpose is to characterize relationships between variables.793

Accuracy assessment and area estimation applications typically fall within the “describer” class because794

of the strong focus on descriptive parameters such as user’s and producer’s accuracies of the different795

classes and the area or proportion of area of the land-cover or land-cover change classes. Describers796

generally rely on probability sampling because of the importance of representing the target population.797

Elliott and Valliant (2017, p.262) provide a strong statement in support of probability sampling for798

descriptive objectives: “… when critical estimates of descriptive quantities such as means, quantiles or799

cell probabilities are required, nonprobability designs should be avoided or utilized only when it is800

reasonably certain that there are available covariates in both datasets related to the nonprobability801

selection mechanism that can be used to appropriately incorporate information from the nonprobability802

sample. If a sufficiently large probability sample is available for estimating descriptive statistics,803

methods to incorporate nonprobability data are likely not warranted.”804

Although design-based inference requires a probability sampling design, it is not reasonable to805

assert a recommendation that probability sampling must always be used. Other considerations such as806
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cost and “fit for purpose “may be relevant, the latter including dimensions such as “accuracy, timeliness,807

and accessibility” (Baker et al. 2013, p. 98). A quote from Kish (1965, pp. 28-29) extracted by Baker et al.808

(2013, p.92) has direct bearing on this issue: “No clear rule exists for deciding exactly when probability809

sampling is necessary, and what price should be paid for it … Probability sampling for randomization is810

not a dogma, but a strategy, especially for large numbers.” Probability sampling offers the strong811

advantage that it provides the basis for rigorous design-based inference, but there may be exceptional812

cases in which fit for purpose criteria will be such that VGI from a non-probability sample will suffice.813

While an unmistakable conclusion from our assessment of VGI for use in design-based inference is that814

probability sampling should be used, we recognize that occasionally circumstances may exist where not815

following this recommendation is justifiable.816

VGI has great potential value within remote sensing beyond its use to produce accuracy and817

area estimates within design-based inference. For example, VGI can greatly augment traditional sources818

of training data used in the classification algorithms of land cover and land use maps. The exact design819

of the training stage of a supervised classification should, however, be highly classifier-specific as820

classifiers vary greatly in how they use the training set. While conventional statistical classifiers may821

benefit from the use of a probability sample in the acquisition of training statistics to obtain a822

representative and unbiased description of each class, other classifiers, such as machine learning823

classifiers, may require only very small and distinctly non-random sample. Thus, for example, an824

effective approach to training data acquisition for a classification by a support vector machine may be to825

direct citizens to a small number of highly atypical training sites (Pal and Foody 2012). Classifiers also826

vary in their sensitivity to mis-labeling of training cases (Foody et al. 2016) which may be relevant if VGI827

is to be used.828

Land cover data from several Geo-Wiki campaigns are now available in the openly accessible829

repository Pangaea and these data could be used as training data (Fritz et al. 2017; Laso Bayas et al.830
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2017). VGI is also useful in the development of hybrid land-cover maps, where methods such as831

geographically weighted regression can use VGI to determine the most appropriate land cover class at a832

given location among several existing products. Such an approach has been demonstrated in the833

development of global land cover and forest masks (Schepaschenko et al. 2015; See et al. 2015). Finally,834

VGI can provide a preliminary check on the accuracy of a land-cover product and guide the collection of835

additional training data in areas where there is visual evidence of confusion between land-cover classes.836

837

7. Summary838

The increasing availability and quantity of VGI has generated great interest in how these data might839

be used in applications requiring land-cover data, specifically area estimation and map accuracy840

assessment. Scientifically credible use of VGI raises many of the same issues related to inference that841

McRoberts (2011) discussed pertaining to use of land-cover maps, stating that “…rules must be842

rigorously followed to produce valid scientific inferences.” The requirements for using VGI in rigorous843

design-based inference are identifiable from the analysis protocol (Sec. 3.1) used to produce the area844

and map accuracy estimates. Specifically, the estimates are derived from totals, and the Horvitz-845

Thompson estimator provides an unbiased estimator of a population total if the response design846

generates accurate observation of the attribute or measurement of interest (yu) and the sampling design847

is such that the inclusion probabilities (πu) are known. If yu is accurate and πu is known then we can848

produce unbiased estimators of the totals that form the basis for accuracy and area estimates. We849

reviewed recent literature describing methods for obtaining VGI and assessing its quality (Sec. 3.2), and850

we anticipate that ongoing research will improve reference data quality whether collected by volunteers851

within a VGI framework or by expert interpreters.852

The primary focus of this article has been on the sampling design issues related to using VGI in853

design-based inference, with attention addressing three primary cases: 1) VGI data are from a854
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probability sampling design; 2) VGI data from a non-probability sampling design are combined with data855

from a probability sampling design; and 3) the only data available are VGI data from a non-probability856

sampling design. The most direct approach to ensure that design-based inference can be invoked is to857

specify that the VGI data will be collected at locations (sample units) selected by a probability sampling858

design (“active VGI”). Implementing a probability sampling design ensures that the inclusion859

probabilities (௨ߨ) for the sampled units are known and thus the corresponding estimation weights860

(wu=1/πu) required for the analysis are known. The more common situation is that the VGI data do not861

originate from a probability sampling design. Implementing design-based inference in this situation862

requires combining the VGI data with data obtained from a probability sampling design, and the benefit863

of the VGI data is to reduce the standard errors of the accuracy or area estimates. Two approaches for864

combining VGI with a probability sample are to treat the VGI as a certainty stratum (i.e., set πu=1 for865

each unit from the VGI sample) or to use the VGI to create an auxiliary variable for the population and866

incorporate this variable in a model-assisted estimator. The certainty stratum approach is the more867

promising of these two options particularly if a large proportion of the population is covered by VGI. For868

land-cover studies the model-assisted estimator use of VGI likely will also incorporate maps produced869

from remote sensing imagery.870

If VGI data collected from a non-probability sampling design are the only data available, rigorous871

design-based inference is not available. Estimates of accuracy and area can be produced using the same872

estimator formulas of design-based inference by defining pseudo-estimation weights based on treating873

the VGI as if a stratified random sample had been implemented. Estimates produced in this fashion874

mimic the proportional representation of the feature of the population used to create the pseudo-875

weights. However, in contrast to the case where the weights are the inverse of known inclusion876

probabilities from a probability sampling design, the estimates based on pseudo-weights require the877

additional step of verifying that the condition of external validity is satisfied. External validity requires878
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that the population for which the VGI data are representative must have the same characteristics (e.g.,879

model relationships) as the full population that is the target of inference. Establishing external validity is880

often impractical so the pseudo-weight approach to using VGI from a non-probability sample will have881

limited utility. Model-based inference is perhaps the more promising avenue for using VGI from non-882

probability samples. Explication of model-based methods and specific example applications of accuracy883

and area estimation (McRoberts 2006; Magnussen 2015) are needed to make model-based inference884

more accessible to practitioners.885

Invoking design-based inference as the scientific basis to support the validity of inference for886

estimating area and map accuracy from sample data imposes the requirement that the sampling and887

estimation protocols implemented must satisfy certain conditions. As is apparent from the methods and888

discussion presented in this article, the requirement of a probability sampling design places fairly strong889

restrictions on how VGI can be used in design-based inference. The methods presented in this article for890

incorporating VGI in design-based inference expand the potential utility of this growing body of data for891

applications of accuracy assessment and area estimation.892

893

Acknowledgments894

This research was supported in part by the Portuguese Foundation for Science and Technology (FCT)895
under project grant UID/MULTI/00308/2013 (CF); EU-funded FP7 project CrowdLand No. 617754 and896
the Horizon2020 LandSense project No. 689812 (LS); Cooperative Agreement G12AC20221provided by897
the United States Geological Survey and NASA Carbon Monitoring System program grant898
NNX13AP48G (SS). We thank the reviewers for their constructive comments that led to improvements899

in the manuscript.900

901

References902

903

Antoniou, V., Morley, J., and Haklay, M. (2010). Web 2.0 geotagged photos: Assessing the spatial904

dimension of the phenomenon. Geomatica, 64, 99–110.905

906

Antoniou, V., Fonte, C. C., See, L., Estima, J., Arsanjani, J. J., Lupia, F., Minghini, M., Foody, G., and Fritz,907

S. (2016). Investigating the feasibility of geo-tagged photographs as sources of land cover input data.908

ISPRS International Journal of Geo-Information, 5, 64.909

910



40

Antoniou, V., and Skopeliti, A. (2015). Measures and indicators of VGI quality: An overview. In: ISPRS911

Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Presented at the912

ISPRS Geospatial Week 2015, ISPRS Annals, La Grande Motte, France, pp. 345–351.913

Baker, R., Brick, J. M., Bates, N. A., Battaglia, M., Couper, M. P., Dever, J. A., Gile, K. J., and Tourangeau,914

R. (2013). Summary report of the AAPOR Task Force on non-probability sampling. Journal of Survey915

Statistics and Methodology, 1, 90-105.916

917

Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., Stuart-Smith, R. D.,918

Wotherspoon, S., Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N., and Frusher, S. (2014).919

Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, 173,920

144-154.921

922

Bishr, M., and Mantelas, L. (2008). A trust and reputation model for filtering and classifying knowledge923

about urban growth. GeoJournal, 72, 229–237.924

925

Brus, D. J., and de Gruijter, J. J. (2003). A method to combine non-probability sample data with926

probability sample data in estimating spatial means of environmental variables. Environmental927

Monitoring and Assessment, 83, 303-317.928

929

Card, D. H. (1982). Using known map category marginal frequencies to improve estimates of thematic930

map accuracy. Photogrammetric Engineering & Remote Sensing, 48, 431-439.931

Ciepłuch, B., Jacob, R., Mooney, P., and Winstanley, A. (2010). Comparison of the accuracy of 932 

OpenStreetMap for Ireland with Google Maps and Bing Maps. Proceedings of the Ninth International933

Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, 20-23934

July, 2010, 337.935

Clark, M.L. and Aide, T.M. (2011). Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for936

collecting land-use/land-cover reference data. Remote Sensing, 3, 601–620.937

938

Cochran, W. G. (1977). Sampling Techniques, 3rd ed. (New York: John Wiley & Sons).939

940

De Gruijter, J. J., and Ter Braak, C. J. F. (1990). Model-free estimation from spatial samples: A reappraisal941

of classical sampling theory. Mathematical Geology, 22, 407-415.942

943

Dever, J. A., Rafferty, A., and Valliant, R. (2008). Internet surveys: Can statistical adjustments eliminate944

coverage bias? Survey Research Methods, 2, 47-62.945

946

Dever, J. A., and Valliant, R. (2014). Estimation with non-probability surveys and the question of external947

validity. Proceedings of Statistics Canada Symposium 2014, 8 pp.948

949



41

Deville, J. C., and Särndal, C. E. (1992). Calibration estimators in survey sampling. Journal of the950

American Statistical Association, 87, 376-382.951

952

Diggle, P., Menezes, R., and Su, T. (2010). Geostatistical inference under preferential sampling. Applied953
Statistics, 59, 191-232.954

955
Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998). Model-based geostatistics. Applied Statistics, 47, 299-956

350.957

958

Elliott, M. R., and Valliant, R. (2017). Inference for nonprobability samples. Statistical Science, 32, 249-959

264.960

961

Elwood, S., Goodchild, M.F., and Sui, D. (2013). Prospects for VGI research and the emerging fourth962

paradigm. Crowdsourcing geographic knowledge: Volunteered geographic information (VGI) in theory963

and practice, Springer, Netherlands, pp. 361-375.964

965

Fonte, C. C., Bastin, L., See, L., Foody, G., and Lupia, F. (2015). Usability of VGI for validation of land cover966

maps. International Journal of Geographical Information Science, 29, 1269-1291.967

968
Fonte, C.C., Antoniou, V., Bastin, L., Estima, J., Arsanjani, J.J., Laso-Bayas, J.-C., See, L., and Vatseva, R.969

(2017a). Assessing VGI data quality, in: Foody, G.M., See, L., Fritz, S., Fonte, C.C., Mooney, P., Olteanu-970

Raimond, A.-M., Antoniou, V. (Eds.), Mapping and the Citizen Sensor. Ubiquity Press, London, UK, pp.971

137-164.972

Fonte, C. C., Patriarca, J. A., Minghini, M., Antoniou, V., See, L., and Brovelli, M. A. (2017b). Using973

OpenStreetMap to create land use and land cover maps: Development of an application. In: Volunteered974

Geographic Information and the Future of Geospatial Data (Ed.: Campelo, C. E. C., Bertolotto, M., and975

Corcoran, P.). IGI Global. DOI: 10.4018/978-1-5225-2446-5.ch007976

Foody, G. M. (2009). The impact of imperfect ground reference data on the accuracy of land cover977

change estimation. International Journal of Remote Sensing, 30, 3275-3281.978

Foody, G.M. (2010). Assessing the accuracy of land cover change with imperfect ground reference data.979

Remote Sensing of Environment, 114, 2271-2285.980

Foody, G.M., Pal, M., Rocchini, D., Garzon-Lopez, C.X. and Bastin, L. (2016). The sensitivity of mapping981
methods to reference data quality: Training supervised image classifications with imperfect reference982
data. ISPRS International Journal of Geo-Information, 5(11), p.199.983

984
Foody, G. M., See, L., Fritz, S., Van der Velde, M., Perger, C., Schill, C., and Boyd, D. S. (2013). Assessing985
the accuracy of volunteered geographic information arising from multiple contributors to an internet986
based collaborative project. Transactions in GIS, 17, 847–860.987

988



42

Foody, G.M., See, L., Fritz, S., Velde, M. van der, Perger, C., Schill, C., Boyd, D.S., and Comber, A. (2015).989

Accurate attribute mapping from Volunteered Geographic Information: Issues of volunteer quantity and990

quality. The Cartographic Journal, 52, 336–344.991

Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., van der Velde, M., Kraxner, F., and992

Obersteiner, M. (2012). Geo-Wiki: An online platform for improving global land cover. Environmental993

Modelling & Software, 31, 110–123.994

Fritz, S., See, L., van der Velde, M., Nalepa, R.A., Perger, C., Schill, C., McCallum, I., Schepaschenko, D.,995

Kraxner, F., Cai, X., Zhang, X., Ortner, S., Hazarika, R., Cipriani, A., Di Bella, C., Rabia, A.H., Garcia, A.,996

Vakolyuk, M., Singha, K., Beget, M.E., Erasmi, S., Albrecht, F., Shaw, B., and Obersteiner, M. (2013).997

Downgrading recent estimates of land available for biofuel production. Environmental Science and998

Technology, 47, 1688–1694.999

Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D., Duerauer, M., Karner, M., Dresel,1000

C., Laso Bayas, J.C., Lesiv, M., Moorthy, I., Salk, C., Danylo, O., Sturn, T., Albrecht, F., You, L., Kraxner, F.1001

and Obersteiner, M. (2017). A global dataset of crowdsourced land cover and land use reference data.1002

Scientific Data, 4:170075. doi: 10.1038/sdata.2017.75.1003

Gallego, F. J. (2004). Remote sensing and land cover area estimation. International Journal of Remote1004

Sensing, 25, 3019-3047.1005

Girres, J.-F., and Touya, G. (2010). Quality assessment of the French OpenStreetMap dataset.1006

Transactions in GIS, 14, 435–459.1007

Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69, 211–1008

221.1009

1010

Gregoire, T. G. (1998). Design-based and model-based inference in survey sampling: appreciating the1011

difference. Canadian Journal of Forest Research, 28, 1429-1447.1012

1013

Haklay, M. (2010). How good is volunteered geographical information? A comparative study of1014

OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design,1015

37,682–703.1016

1017

Horvitz, D. G., and Thompson, D. J. (1952). A generalization of sampling without replacement from a1018

finite universe. Journal of the American Statistical Association, 47, 663-685.1019

1020

Hou, D., Chen, J., Wu, H., Li, S., Chen, F., and Zhang, W. (2015). Active collection of land cover sample1021

data from geo-tagged web texts. Remote Sensing, 7, 5805-5827.1022

1023

Isaaks, E. H., and Srivastava, R. M. (1989). An Introduction to Applied Geostatistics, Oxford University1024

Press, New York.1025

1026



43

Iwao, K., Nishida, K., Kinoshita, T., and Yamagata, Y. (2006). Validating land cover maps with Degree1027

Confluence Project information. Geophysical Research Letters, 33, L23404, doi:10.1029/2006GL027768.1028

1029
Jokar Arsanjani, J. and Bakillah, M. (2015). Understanding the potential relationship between the socio-1030

economic variables and contributions to OpenStreetMap. International Journal of Digital Earth, 8, 861–1031

876.1032

Kish, L. (1965). Survey Sampling. Wiley, New York.1033

Laso Bayas, J.C., Lesiv, M., Waldner, F., Schucknecht, A., Duerauer, M., See, L. et al. (2017). A global1034

reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Scientific1035

Data. 4: 170136. doi:10.1038/sdata.2017.136.1036

Laso Bayas, J.-C., See, L., Fritz, S., Sturn, T., Perger, C., Duerauer, M., Karner, M., Moorthy, I.,1037

Schepaschenko, D., Domian, D., and McCallum, I. (2017). Crowdsourcing in-situ data on land cover and1038

land use using gamification and mobile technology. Remote Sensing 8(11), 905. doi:10.3390/rs8110905.1039

Loosveldt, G., and Sonck, N. (2008). An evaluation of the weighting procedures for an online access1040

panel survey. Survey Research Methods, 2, 93-105.1041

1042
Magnussen, S. (2015). Arguments for a model-dependent inference? Forestry, 88, 317-325.1043

Martino, L., Palmieri, A., and Gallego, J. (2009). Use of auxiliary information in the sampling strategy of a1044

European area frame agro-environmental survey. Available from:1045

http://ec.europa.eu/eurostat/documents/205002/769457/LUCAS2009_S2-Sampling_20090000.pdf.1046

Eurostat.1047

McRoberts, R. E. (2006). A model-based approach to estimating forest area. Remote Sensing of1048

Environment, 103, 56-66.1049

McRoberts, R. E. (2010). Probability- and model-based approaches to inference for proportion forest1050

using satellite imagery as ancillary data. Remote Sensing of Environment, 114, 1017-1025.1051

McRoberts, R. E. (2011). Satellite image-based maps: Scientific inference or pretty pictures? Remote1052

Sensing of Environment, 115, 715–724.1053

Meek, S., Jackson, M.J., and Leibovici, D.G. (2014). A flexible framework for assessing the quality of1054

crowdsourced data. In: Huerta, J., Schade, S., and Granell, C. (Eds.), Connecting a Digital Europe through1055

Location and Place: Proceedings of the AGILE’2014 International Conference on Geographic Information1056

Science. Presented at the AGILE’2014 International Conference on Geographic Information Science,1057

AGILE Digital Editions, Castellón, Spain.1058

Meek, S., Jackson, M., and Leibovici, D.G. (2016). A BPMN solution for chaining OGC services to quality1059

assure location-based crowdsourced data. Computers & Geosciences, 87, 76–83.1060



44

Mullen, W. F., Jackson, S. P., Croitoru, A., Crooks, A., Stefanidis, A., and Agouris, P. (2014). Assessing the1061

impact of demographic characteristics on spatial error in volunteered geographic information features.1062

GeoJournal, 80, 587-605.1063

Olofsson, P., Foody, G. M., Stehman, S. V., and Woodcock, C. E. (2013). Making better use of accuracy1064

data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified1065

estimation. Remote Sensing of Environment, 129, 122-131.1066

1067

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good1068

practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment,1069

148, 42-57.1070

1071

Overton, J. M., Young, T. C., and Overton, W. S. (1993). Using ‘found’ data to augment a probability1072

sample: Procedure and case study. Environmental Monitoring and Assessment, 26, 65-83.1073

1074

Pal, M. and Foody, G.M. (2012). Evaluation of SVM, RVM and SMLR for accurate image classification with1075

limited ground data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,1076

5, 1344-1355.1077

Sannier, C., McRoberts, R. E., Fichet, L.-V., & Makaga, E. M. K. (2014). Using the regression estimator1078

with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon.1079

Remote Sensing of Environment, 151, 138-148.1080

Särndal, C. E., Swensson, B., and Wretman, J. (1992). Model-Assisted Survey Sampling. Springer-Verlag,1081

New York.1082

Schepaschenko, D., See, L., Lesiv, M., McCallum, I., Fritz, S., Salk, C., Moltchanova, E., Perger, C.,1083

Shchepashchenko, M., Shvidenko, A., Kovalevskyi, S., Gilitukha, D., Albrecht, F., Kraxner, F., Bun, A.,1084

Maksyutov, S., Sokolov, A., Dürauer, M., Obersteiner, M., Karminov, V., and Ontikov, P. (2015).1085

Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and1086

FAO statistics. Remote Sensing of Environment, 162, 208–220.1087

See, L., Comber, A., Salk, C., Fritz, S., van der Velde, M., Perger, C., Schill, C., McCallum, I., Kraxner, F.,1088

and Obersteiner, M. (2013). Comparing the quality of crowdsourced data contributed by expert and1089

non-experts. PLoS ONE 8, e69958. doi:10.1371/journal.pone.00699581090

See, L., Fritz, S., Perger, C., Schill, C., McCallum, I., Schepaschenko, D., Duerauer, M., Sturn, T., Karner,1091

M., Kraxner, F., and Obersteiner, M. (2015). Harnessing the power of volunteers, the internet and1092

Google Earth to collect and validate global spatial information using Geo-Wiki. Technological Forecasting1093

and Social Change 98, 324–335.1094

See, L., Mooney, P., Foody, G., Bastin, L., Comber, A., Estima, J., Fritz, S., Kerle, N., Jiang, B., Laakso, M.,1095

Liu, H.-Y., Milčinski, G., Nikšič, M., Painho, M., Pődör, A., Olteanu-Raimond, A.-M., and Rutzinger, M. 1096 

(2016). Crowdsourcing, Citizen Science or Volunteered Geographic Information? The current state of1097



45

crowdsourced geographic information. ISPRS International Journal of Geo-Information, 5(5), 55. doi:1098

10.3390/ijgi50500551099

See, L., Laso Bayas, J.C., Schepaschenko, D., Perger, C., Dresel, C., Maus, V., Salk, C., Weichselbaum, J.1100

Lesiv, M., McCallum, I., Moorthy, I. and Fritz, S. (2017). LACO-Wiki: A new online land cover validation1101

tool demonstrated using GlobeLand30 for Kenya. Remote Sensing 9(7), 754; doi:10.3390/rs9070754.1102

Senaratne, H., Mobasheri, A., Ali, A.L., Capineri, C., and and Haklay, M. (2017). A review of volunteered1103

geographic information quality assessment methods. International Journal of Geographical Information1104

Science, 31, 139-167.1105

Stehman, S. V. (1999). Basic probability sampling designs for thematic map accuracy assessment.1106

International Journal of Remote Sensing, 20, 2423-2441.1107

1108

Stehman, S. V. (2000). Practical implications of design-based sampling inference for thematic map1109

accuracy assessment. Remote Sensing of Environment, 72, 35-45.1110

1111

Stehman, S. V. (2009). Model-assisted estimation as a unifying framework for estimating the area of land1112

cover and land-cover change from remote sensing. Remote Sensing of Environment, 113, 2455-2462.1113

Stehman, S. V. (2013). Estimating area from an accuracy assessment error matrix. Remote Sensing of1114

Environment, 132, 202-211.1115

1116

Stehman, S. V., and Czaplewski, R. L. (1998). Design and analysis for thematic map accuracy assessment:1117

Fundamental principles. Remote Sensing of Environment, 64, 331-344.1118

1119

Strahler, A. H., Boschetti, L., Foody, G. M., Friedl, M. A., Hansen, M. C., Herold, M., Mayaux, P.,1120

Morisette, J. T., Stehman, S. V., and Woodcock, C. E. (2006). Global land cover validation:1121

Recommendations for evaluation and accuracy assessment of global land cover maps, EUR 22156 EN –1122

DG, Office for Official Publications of the European Communities, Luxembourg, 48 pp.1123

Tsendbazar, N.E., de Bruin, S., and Herold, M. (2015). Assessing global land cover reference datasets for1124

different user communities. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 93–114.1125

Valliant, R. (2013). Comment on “Summary report of the AAPOR Task Force on non-probability1126

sampling.” Journal of Survey Statistics and Methodology, 1, 105-111.1127

Valliant, R., and Dever, J. A. (2011). Estimating propensity adjustments for volunteer web surveys.1128

Sociological Methods & Research, 40, 105-137.1129

Valliant, R., Dorfman, A. H., and Royall, R. M. (2000). Finite Population Sampling and Inference: A1130

Prediction Approach, John Wiley & Sons, Inc., New York.1131

1132



46

1133

LIST OF FIGURE CAPTIONS1134

Figure 1.1135

Figure 2.1136

Figure 3.1137

1138


