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Measuring sustainable intensification: Combining composite indicators and 1 

efficiency analysis to account for positive externalities in cereal production  2 

Abstract 3 

We combine the use of a stochastic frontier analysis framework and composite 4 

indicators for farm provision of environmental goods to obtain a farm level composite 5 

indicator reflecting sustainable intensification. The novel sustainable intensification 6 

composite indicator that is developed accounts for multidimensional market and non-7 

market outputs, namely the economic performance of cereal farms (i.e. market 8 

production value) and the associated positive environmental impacts of production (e.g. 9 

positive environmental externalities). The composite indicator integrates three different 10 

indicators for the provision of environmental goods into a stochastic frontier analysis: a) 11 

agri-environmental payments; b) the ratio of rough grassland and permanent pasture 12 

area to total utilised agricultural area; and c) land use diversity, as measured by the 13 

Shannon Index. We apply this approach to a panel of data for 106 cereal farms in 14 

England and Wales during the period 2010-2012. Results indicate that farm rankings on 15 

the indicator vary substantially depending on the weight given to the different 16 

environmental aspects/indicators, suggesting that single indicators of the provision of 17 

environmental goods may not provide a true reflection of the environmental 18 

performance of farms. We illustrate a simple approach that captures the aspects of 19 

sustainable intensification of farms in a much more holistic way, i.e. by producing a 20 

distribution of sustainable intensification scores for each farm reflecting different 21 

weightings of evaluation criteria. To reduce the dimensionality of this distribution farms 22 

are classified into four distinct groups according to the shape of this distribution, with 23 

some farms found to perform well under all combinations of weights for evaluation 24 

criteria, while others always perform poorly. This distribution-based analysis provides a 25 

greater depth of information than traditional approaches based on the generation of a 26 

single sustainable intensification score. 27 

 28 

1. Introduction 29 

A growing awareness of the externalities associated with agricultural production has 30 

been a key driver of the development of agricultural policies in the EU for more than 30 31 

years (Potter and Goodwin, 1998). Following decades of policies oriented towards 32 
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increased productivity in the decades after 1945 (Stoate et al., 2001), without much 33 

consideration for the environmental consequences of such an approach, the focus of EU 34 

agricultural policy changed from the mid-1980s toward the promotion of a more 35 

sustainable agriculture, through provision of incentives to farmers “to work in a 36 

sustainable and friendly manner”, providing a “better balance between food production 37 

and the environment” (European Commission, 2014; Buckwell et al., 2014).  Initially, 38 

such policies focussed on protection of natural resources, biodiversity and cultural 39 

landscapes. In the last 10 years, since the volatility in commodity prices of 2007/8 and 40 

growing concerns about food security, attention has moved towards measures aimed at 41 

promoting ecosystem services beneficial to production (Plieninger et al., 2012; 42 

Tittonell, 2014) and their role in contributing to ‘sustainable intensification’ (Tilman et 43 

al., 2011). 44 

A narrow definition of ’sustainable intensification’ (SI) is simply improved resource use 45 

efficiency, i.e. ‘producing more with less’. However, a more complete understanding 46 

has to encompass the positive and negative externalities of agriculture, i.e. the supply of 47 

ecosystem services beyond provisioning. However, the interlinkages between 48 

agricultural production and these environmental outputs, and the trade-offs between 49 

them, are complex, making it extremely difficult to envision what sustainable 50 

agriculture (or for this matter sustainable intensification) actually comprises (Pretty, 51 

1997). The difficulty in generating models of sustainable intensification in agriculture is 52 

compounded by two factors. First, the spatial heterogeneity of both the environments in 53 

which agriculture operates and the production systems employed. Second, sustainable 54 

intensification in agriculture is an anthropogenic concept that is also subject to 55 

heterogeneity, as individuals and societies value the ecosystem services provided by 56 

agriculture differently and have different levels of awareness and understandings of the 57 

interlinkages and trade-offs between these ecosystem services. These differences mean 58 

that the definition of sustainable intensification in agriculture, as a concept, varies, even 59 

amongst international organisations, although some overlap exists. Thus, for example, 60 

the Montpellier Panel and Save and Grow report (FAO, 2011) define sustainable 61 

intensification as: “producing more outputs with more efficient use of all inputs - on a 62 

durable basis - while reducing environmental damage and building resilience, natural 63 

capital and the flow of environmental services”; The Royal Society (2009) defines 64 

sustainable intensification as “… yields are increased without adverse environmental 65 
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impact and without the cultivation of more land”; and the UK Foresight Report 66 

(Foresight Report, 2011) states, when referring to sustainable intensification, 67 

“simultaneously raising yields, increasing the efficiency with which inputs are used and 68 

reducing the negative environmental effects of production”. While the first and third 69 

definitions are similar, the second definition highlights a slight but important difference, 70 

i.e. that SI is considered to be achieved by increasing provisioning services while 71 

simultaneously not increasing negative environmental externalities. Taking all these 72 

definitions into account, and for the purposes of this study, sustainable intensification 73 

can be understood as increasing the market-based dimension of sustainability (i.e. 74 

agricultural yield) without decreasing the capacity to provide (largely) non-market 75 

dimensions, i.e. environmental services. This understanding of SI evokes the more 76 

generalised definition offered by Jules Pretty (Pretty, 1997) that SI represents: 77 

“increasing food production from existing farmland while minimising pressure on the 78 

environment”. These different interpretations of SI have generated a debate about the 79 

pathways to achieving SI, with various models being put forward, including land 80 

sparing, land sharing, and competitive advantage (Franks, 2014).  81 

While there are different interpretations of what constitutes SI, and consequently 82 

different proposed pathways to achieving it, all these approaches face the common 83 

problem of how to measure success. The questions arising from this are: (a) what 84 

dimensions of SI need to be measured; (b) what metrics are appropriate to capture these 85 

dimensions; and (c) how can these metrics be combined into a composite measure of SI 86 

that truly reflects the relative importance of each dimension, i.e. under what weighting 87 

system? 88 

It seems clear from the definitions above that any meaningful SI measure/metric needs 89 

to take into account both provisioning outputs and the environmental impacts of land 90 

management, i.e. the inclusion of environmental externalities into technical efficiency 91 

analysis. Traditionally, metrics of the environmental dimension have focussed solely on 92 

the negative externalities associated with agricultural production. However, there can 93 

also be ‘positive’ environmental outputs associated with productive land management, 94 

for example the provision, or improvement, of semi-natural habitats and the positive 95 

effects on wildlife and biodiversity that result (Mattison and Norris, 2005; OECD, 96 

1999). Therefore, measuring SI is not the same as measuring sustainability, as the SI 97 

measure excludes some key dimensions of sustainability, such as social impacts. In part, 98 
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this results from limitations on the information available to produce SI, such as, for 99 

example, the Defra Farm Business Survey (FBS) data, as used in this study. 100 

Approaches to incorporating environmental externalities into technical efficiency 101 

analysis began with Färe et al. (1989). While the focus of this early work was solely 102 

directed towards the negative externalities associated with agricultural production (Färe 103 

et al., 1989, 1996, 2001; Lansink and Reinhard, 2004; Murty et al., 2006; Reinhard and 104 

Thijssen, 2000; Reinhard et al., 1999, 2002) more recent technical efficiency analysis 105 

has also incorporated the provision of positive externalities (Omer et al., 2007; Areal et. 106 

al., 2012; Sipiläinen and Huhtala, 2013; van Rensburg and Mulugeta, 2016). More 107 

recently, work by Ang et al. (2015) analysed the impact of dynamic profit maximisation 108 

on biodiversity, for a sample of UK cereal farms, using a DEA approach.  109 

The limitation of some of the approaches adopted to date, i.e. that use composite 110 

indicators to account for different dimensions of SI, is that these composite indicators 111 

can only reflect fixed and usually pre-determined relative weightings of these 112 

dimensions. Some other approaches to developing composite indicators of SI have not 113 

relied on pre-determined weights, but have used statistical procedures such as DEA and 114 

factor analysis to determine them. For instance, Barnes and Thomson (2014) used a 115 

form of factor analysis to provide weights to individual indicators to form composite 116 

indicators of SI. However, the weights for SI indicators obtained in all these previous 117 

studies are presented as a single set of numbers, based on the averages of the weight 118 

distribution, while variation of these weights is not explored. This may give these 119 

composite indicators a form of starting point bias and makes them of limited value to 120 

policy makers, who would view the choice of weights for these dimensions as a fully 121 

anthropogenic decision. This paper explores the potential for the use in composite SI 122 

indicators of a number of different indicators of environmental outputs under multiple 123 

weightings, on the basis that all of these alternatives capture some valid aspect of 124 

environmental goods at the farm level. To explore the feasibility of constructing such an 125 

indicator this study uses a stochastic frontier framework to undertake technical 126 

efficiency analysis at the farm level to test a mechanism to create a composite indicator 127 

of sustainable intensification combining provisioning outputs with indicators 128 

representing multiple dimensions of environmental goods provision.  129 
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Since we face farms with multiple outputs (e.g. market and non-market/environmental 130 

outputs) we estimate farm level efficiency through the use of an output distance 131 

function (Coelli et al., 2005), where the farm production frontier directly accounts for 132 

both market and non-market goods. 133 

To overcome the problem of there being no single correct weighting of the relative 134 

importance of the different dimensions of environmental output, we explore a method to 135 

capture all potential integer weighting combinations within and between the multiple SI 136 

indicator. We therefore estimate 66 efficiency stochastic frontier models that account 137 

for different combinations of weights for the dimensions of environmental goods 138 

provision, to create a single composite indicator for SI. This approach provides a much 139 

more nuanced picture (i.e. a probability distribution) of SI at the farm level, than would 140 

relying on the use of a single snap-shot, based on a single set of weights.  141 

Methods 142 

1.1. Data 143 

The analysis reported here uses data in the form of a balanced panel of 106 specialist 144 

cereals farms drawn from the annual Defra Farm Business Survey (FBS) for England and 145 

Wales, between 2010 and 20121. Data were drawn solely for the ‘specialist cereals’ farm 146 

type, to minimize the level of heterogeneity due to differences in farming system. While 147 

the FBS provides financial data on each farm business, alongside crop, livestock and land 148 

use data, it has been historically more limited with respect to environmental metrics (e.g. 149 

metres of hedges or pond areas) and physical measures of inputs (e.g. kilograms of 150 

nitrogen fertiliser).  This has led to the analysis herein drawing on a more limited range 151 

of data, and using environmental payments as a composite metric for some environmental 152 

outputs, i.e. where these payments can reasonably be assumed to capture public benefit 153 

from environmental activities.  While drawing on such proxy metrics limits, in part, the 154 

results generated, these data are sufficient to demonstrate an approach for quantifying SI 155 

that can be further refined in the future through the use of better data. To illustrate, the 156 

most recent FBS year (2016/17) captures, for the first time, the areas of certain landscape 157 

features, including buffer strips, hedges and catch/green cover/nitrogen fixing crops. 158 

                                                           
1 We selected all Specialist Cereals farms that were in the FBS within the period of the study that had all 
information required for the model (i.e. 106 farms).  
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Farm provisioning outputs were captured using two separate metrics: a) cereals enterprise 159 

output (£)2; and b) other agricultural outputs, i.e. other crops and livestock (£)3. Farm 160 

environmental outputs were captured by the three metrics described below. To capture 161 

inputs, the following metrics were included: utilised agricultural area (ha); labour use 162 

(hours per annum); machinery costs (£); other costs, including crop protection and animal 163 

costs (£). Also employed, as explanatory variables in the modelling, were a set of socio-164 

economic variables, such as farmer age and education level, financial pressure (debt/asset 165 

ratio) and membership of certification and assurance schemes. Farmer age has been 166 

included as a covariate as this may be related to SI, with younger farmers being more 167 

concerned about sustainability. We also hypothesise that more educated farmers may 168 

have more knowledge of the approaches required to increase production in a sustainable 169 

way. We hypothesise that farmers under financial pressure may de-emphasise 170 

sustainability goals in favour of output, or profit-based, business goals, and so achieve 171 

lower SI scores than farmers not under financial pressure. Additionally, these three 172 

factors, have been previously identified as determinants of technical efficiency (Hadley, 173 

2006; Wilson et al., 2001). Finally, assurance scheme membership has been included as 174 

such schemes often include sustainability requirements, and so we hypothesise that 175 

farmers with assurance schemes have higher SI scores. This last factor has, to our 176 

knowledge, has not been examined as a potential driver of SI or efficiency in previous 177 

studies. 178 

The FBS contains information on the geographical location of the farm as associated with 179 

the landscape type (‘National Character Area’) 4 in which the farm lies. This information 180 

has been used to identify and map any spatial influences on SI.  181 

Summary descriptive statistics for the sample of farms, based on the variables used in 182 

the analysis, can be found in Table 1. 183 

                                                           
2 The FBS dataset reflects input use by farms primarily in value terms. For consistency sake, therefore, 
both outputs and inputs are denominated in value terms. However, for the purpose of this analysis 
these deflated data can be assumed to act as proxies for measures of volume. Data has been deflated 
using the agricultural price indices for inputs and outputs and the CPI for the environmental payments.   
3 Although our data is obtained for specialised cereal farms, some of these farms will have livestock, 
although this will be a minority enterprise. 
4 National Character Areas are landscape units defined by geology, topography, soil type, land cover, 
history, and cultural and economic activity. Their boundaries follow natural linear features in the 
landscape rather than administrative boundaries. 
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 184 

Variable  Mean Std. Dev 

Cereals (£)   237,417 274,964 

Other output (£)  30,215 42,124 

EI (Agri-env payments) (£)  15,737 22,790 
EI (Permanent grassland) (proportion 
of UAA) 

 
0.157 0.147 

EI (Land use diversity) (Index)  0.598 0.134 

UAA (ha)  333 313 

Labour (number of hours per annum)  47,220 58,156 

Machinery (£)  131,311 125,514 

Crop and animal cost (£)  122,242 136,991 
Table 1. Descriptive statistics for sample farms (average 2010-2012).  Key: EI = Environmental Indicator, 185 

UAA = Utilised Agricultural Area. 186 

1.2.Measurement of efficiency 187 

Buckwell et al. (2014) explored the use of such multi-dimensional composite indicators 188 

within the framework of economic theory, and suggested that provisioning and 189 

environmental dimensions can be seen as two dimensions of a production possibilities 190 

frontier (PPF), where the PPF serves to ‘depict the challenge of sustainable 191 

intensification’. We accept this principle in our analysis and incorporate composite 192 

indicators for the provision of environmental goods as another dimension to the standard 193 

technical efficiency analysis.  194 

We use an output distance function approach to describe technology in a way that allows 195 

efficiency to be measured for multi-input, multi-output farms (Coelli et al., 2005). More 196 

specifically, we describe the degree to which a farm can expand its outputs given its input 197 

vector.  198 

𝑃(𝑥) = {𝑦 ∈  𝑅+
𝑀: 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦} = {𝑦: (𝑥, 𝑦) ∈ 𝑇}    (1) 199 

Where 𝑦 refers to all 𝑀 = 3 market-based, plus environmental outputs of the farm, where 200 

environmental outputs are represented by either a single or composite indicator for the 201 

provision of environmental goods; 𝑥 represents all 𝐾 inputs used in the farm; and 𝑇 202 

represents the technological set. The distance function is defined on the output set 𝑃(𝑥) 203 

as 204 

𝐷𝑂(𝑥, 𝑦) = min {𝜃: (
𝑦

𝜃
) ∈ 𝑃(𝑥)}  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑅+

𝐾       (2) 205 
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 206 

We posit that a translog function for the parametric distance function with 𝑀 outputs and 207 

𝐾 inputs offers some attractive properties, such as flexibility and allowing the imposition 208 

of homogeneity, which makes it the preferred form in the literature (Lovell et al., 1994; 209 

Coelli and Perelman, 1999; Brümmer et al., 2002, 2006; Areal et al., 2012). 210 

ln 𝐷𝑂𝑖 = 𝛼0 + ∑ 𝛼𝑚 ln 𝑦𝑚𝑖 +
1

2
∑ ∑ 𝛼𝑚𝑛 ln 𝑦𝑚𝑖 ln 𝑦𝑛𝑖 + ∑ 𝛽𝑘 ln 𝑥𝑘𝑖 +

𝐾

𝑘=1

𝑀

𝑛=1

𝑀

𝑚=1

𝑀

𝑚=1

 211 

 +
1

2
∑ ∑ 𝛽𝑘𝑙 ln 𝑥𝑘𝑖 ln 𝑥𝑙𝑖 + ∑ ∑ 𝛿𝑘𝑚ln 𝑥𝑘𝑖 ln 𝑦𝑚𝑖   ; 𝑖 = 1, … , 𝑛𝑀

𝑚=1
𝐾
𝑘=1

𝐾
𝑙=1

𝐾
𝑘=1   (3) 212 

where 𝑖 denotes the ith farm in the sample. Using linear homogeneity of the output 213 

distance function in outputs, equation (3) can be transformed into an estimable regression 214 

model by normalising the function by one of the outputs5 (Lovell et al, 1994). From 215 

Euler’s theorem, homogeneity of degree one in output implies  216 

∑ 𝛼𝑚 + ∑ ∑ 𝛼𝑚𝑛 ln 𝑦𝑛𝑖 + ∑ ∑ 𝛿𝑘𝑚 ln 𝑥𝑘𝑖 = 1𝐾
𝑘=1

𝑀
𝑚=1

𝑀
𝑛=1

𝑀
𝑚=1

𝑀
𝑚=1     (4) 217 

which will be satisfied if ∑ 𝛼𝑚 = 1,  ∑ 𝛼𝑚𝑛 = 0 for all 𝑛, and ∑ 𝛿𝑘𝑚 = 0𝑀
𝑚=1

𝑀
𝑚=1

𝑀
𝑚=1  218 

for all 𝑘, which is equivalent to normalising by one of the outputs leading to 219 

ln 𝐷𝑂 (
𝑦𝑖

𝑦2𝑖
, 𝑥) = ln 𝐷𝑂

1

𝑦2𝑖
(𝑦𝑖, 𝑥)       (5) 220 

and 221 

− ln 𝑦2 = 𝛼0 + ∑ 𝛼𝑚 ln
𝑦𝑚𝑖

𝑦2𝑖
+

1

2
∑ ∑ 𝛼𝑚𝑛 ln

𝑦𝑚𝑖

𝑦2𝑖
ln

𝑦𝑛𝑖

𝑦2𝑖
+ ∑ 𝛽𝑘 ln 𝑥𝑘𝑖 +

𝐾

𝑘=1

𝑀−1

𝑛=1

𝑀−1

𝑚=1

𝑀−1

𝑚=1

 222 

+
1

2
∑ ∑ 𝛽𝑘𝑙 ln 𝑥𝑘𝑖 ln 𝑥𝑙𝑖 + ∑ ∑ 𝛿𝑘𝑚ln 𝑥𝑘𝑖 ln

𝑦𝑚𝑖

𝑦2𝑖
+ 𝜀𝑖 − 𝑧𝑖 

𝑀−1
𝑚=1

𝐾
𝑘=1

𝐾
𝑙=1

𝐾
𝑘=1    (6) 223 

where 𝜀𝑖 is a symmetric random error term that accounts for statistical noise and 𝑧𝑖 is a 224 

non-negative random variable associated with technical inefficiency.  225 

 226 

2.3 Indicators of the provision of environmental goods  227 

We make use of three indicators of the provision of environmental goods, with these being 228 

commonly employed in the literature: agri-environmental payments (Hasund, 2013); the 229 

area of rough grazing and permanent pasture as a proportion of the total utilised 230 

                                                           
5 We normalised the function using the cereals value. 
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agricultural area (Barnes et al. 2011; Areal et al., 2012; Barnes and Thomson, 2014) and 231 

the widely used Shannon Index for land use diversity (LUD) (Westbury et al., 2011).  232 

𝐿𝑈𝐷 = − ∑ 𝑎𝑐 × ln(𝑎𝑐) , 𝐿𝑈𝐷𝐶
𝑐=1 ≥ 0     (7) 233 

where 𝑎𝑐 is the proportion of the area occupied by crop 𝑐 and 𝐶 is the total number of 234 

crops. The Shannon index provides a metric of the number of land use classes on the 235 

farm and their proportional representation.  A high index value therefore indicates 236 

higher crop diversity.   237 

Although the data employed in this study is restricted to agricultural land uses and does 238 

not capture total diversity of land cover on the farm, i.e. non-agricultural areas, there is 239 

growing evidence that biodiversity is positively affected by heterogeneity in agricultural 240 

crop types (Siriwardena et al. 2000; Benton et al. 2003).  Indeed, it is for this reason that 241 

a crop diversity requirement has been incorporated into the cross-compliance measures 242 

of the 2015 CAP. 243 

 244 

All the above three measures for the provision of environmental goods are relevant from 245 

a policy viewpoint. For example, the latter two are reflected in the EU Common 246 

Agricultural Policy (CAP), which makes receipt of direct payments contingent on a 247 

minimum level of crop diversity and maintenance of the permanent grassland area. 248 

Agri-environmental payments under Pillar II of the CAP are taken to reflect the positive 249 

value attributed by society to the local provision of environmental goods through 250 

modification of land management practices. These goods include protection of soil and 251 

water resources, conservation of farmland biodiversity, protection of historic features and 252 

cultural landscapes and the provision of opportunities for recreation and amenity. 253 

The indicator capturing the ratio of permanent pasture plus rough grazing area6 to total 254 

utilized agricultural area allows for the identification of farms undertaking low-intensity 255 

management, which enhances the provision of areas of high nature value semi-natural 256 

habitats. These areas provide a number of environmental benefits such as soil structure 257 

improvement, renewal of ground water and flooding control through enhanced 258 

infiltration, reductions in water runoff and higher soil organic carbon density (Altieri, 259 

1999: Menta et al., 2011; Leifeld et al., 2005). Indicators based on the presence of 260 

                                                           
6 Permanent area refers to land used permanently, for 5 years or more, for herbaceous forage crops, 
either cultivated or growing wild (European Council, 2003) whereas rough grassland is non-intensive 
grazing grassland. 
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permanent grassland have been previously used in SI related studies by Areal et al. (2012) 261 

and Barnes and Thomson (2014). 262 

 263 

Undoubtedly, the three environmental indicators used here reflect the provision of a wide 264 

range of environmental outputs associated with the management of agricultural land, with 265 

each indicator capturing a different dimension of environmental provision, although there 266 

is some overlap between them.  267 

 268 

2.4. Sustainable intensification indicators 269 

As discussed above, a number of indicators have been used in the literature to capture the 270 

provision of environmental goods at the farm level. In this study we explore the extent to 271 

which the use of different indicators of the provision of environmental goods leads to 272 

different SI outcomes. To achieve this, we carry out a stochastic frontier analysis (SFA) 273 

using each of these environmental indicators in separate models to estimate farm level 274 

efficiency, see models M1-M4 shown in Table 2. The farm efficiency estimates obtained 275 

from models M2-M4 we equate with three different indicators of SI, with each of these 276 

indicators reflecting the provision of different environmental goods (i.e. different 277 

components of the totality of farm provision of environmental goods). The use of 278 

‘efficiency’ measures as an indicator of ‘sustainable intensification’ follows the work of 279 

Gadanakis et al. (2015), who used DEA to create a composite SI. Hence, we equate the 280 

farm efficiency scores obtained from efficiency measures when augmented with 281 

provision of environmental goods with what could be called eco-efficiency measures. 282 

Eco-efficiency and SI indicators are therefore assumed to be synonymous, i.e. eco-283 

efficiency and SI are closely related concepts, where both are based on the same principle 284 

of generating more output while using fewer resources and generating fewer 285 

environmental externalities. The OECD defined eco-efficiency as: “Eco-efficiency is 286 

reached by the delivery of competitively-priced goods and services that satisfy human 287 

needs and bring quality of life, while progressively reducing ecological impacts and 288 

resource intensity throughout the life cycle, to a level at least in line with the earth’s 289 

estimated carrying capacity” OECD (1998). This is similar to the definitions of SI. Eco –290 

efficiency brings together environmental and economic goals contributing towards 291 

sustainable development (OECD, 1998). The eco-efficiency literature also makes use of 292 

holistic indicators. Indicators for eco-efficiency began by using ratios that relate the 293 

economic value of goods and services produced to the environmental impacts or pressures 294 
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associated with the production process. These made use of simple, solitary indicators such 295 

as GDP/emissions of pollutants, or units of output per unit of environmental impact or 296 

pressure (Picazo-Tadeo et al., 2012). However, this type of ratio-based indicator was not 297 

suitable for the incorporation into the same indicator of a number of different outputs 298 

(economic output) and inputs (environmental impact). As a consequence of this 299 

limitation, new indicators were developed where a set of inputs and outputs were 300 

aggregated using weights, the values for which were typically assigned by a panel of 301 

experts, or individual assessment (i.e. no mathematical/statistical methods were used). 302 

Our approach integrates environmental indicators into efficiency analysis in a different 303 

way (i.e. incorporating a set of composite indicators for the provision of environmental 304 

goods into stochastic frontier analysis obtaining farm level distributions of SI rather than 305 

single ‘snap shot’ composite indicator.  306 

The comparison of SI indicators obtained from the models M1-M4 sheds light on both 307 

the quantity and the type of provisioning and environmental goods being provided by 308 

farms.   309 

 310 

 311 

Table 2. Description of the models 312 

 313 

 314 

2.5. Composite indicators 315 

Model  Description 

M1  Baseline technical efficiency model not accounting for 

environmental externalities 

M2 

S
I 

In
d
ic

at
o
rs

 

Technical efficiency plus provision of environmental goods using 

agri-environmental payments as indicator 

M3 Technical efficiency plus the ratio of rough and permanent pasture 

area to total utilized agricultural area as an indicator of provision of 

environmental goods 

M4 Technical efficiency plus LUD as an indicator of provision of 

environmental goods 
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When combining indicators into composites, the weights given to each indicator have a 316 

significant bearing on the interpretation of that composite indicator (Barnes and 317 

Thomson, 2014; OECD, 2008). Consequently, the allocation of weights needs to be well 318 

informed to ensure that the composite indicator captures the ‘true’ or ‘optimal’ relative 319 

importance of these dimensions of the environment, i.e. as reflected in human values. 320 

However, there is often no way to judge the relative importance of different 321 

environmental indicators, either because appropriate weights have never been 322 

systematically generated, or because consensus on the relative importance of environment 323 

dimensions cannot be reached (Mauchline et al., 2012). The default response in these 324 

circumstances is to assume that each indicator represents a different but equally valid 325 

dimension of environmental goods provision, regardless of whether this is actually the 326 

case.  As a means to circumventing this uncertainty, we apply a methodology developed 327 

by Areal and Riesgo (2015), which obviates the need to manually, or statistically, allocate 328 

weights to the components of aggregate indicators. This methodology is based on the 329 

assumption that the use of a set of composite indicators using every possible weighting 330 

combination accounts for both the range of possibilities that farmers have available to 331 

provide environmental outputs and the range of values that society puts on those 332 

environmental outputs. The validity of this approach is based on the further assumption 333 

that sustainable agriculture is not achieved by delivering a combination of outputs in fixed 334 

proportion, but rather can be achieved by a distribution across different combinations of 335 

outputs.  336 

 337 

We obtain only a partial picture of SI (i.e. the efficiency level once the provision of 338 

environmental output is taken into consideration in the production function) from models 339 

M2, M3, and M4, since each of these indicators only account for the provision of a 340 

fraction of the environmental output generated by each farm (i.e. SI status will differ 341 

depending on which indicator is used). We therefore build a 106 × 3 matrix 𝐸𝐺 using the 342 

3 indicators for the provision of environmental goods. Each indicator is normalised using 343 

the distance method (𝐸𝐺𝑖 =
𝑒𝑔𝑖

𝑚𝑎𝑥(𝑒𝑔)
), which measures the relative position of an 344 

indicator to a reference point, in this case the maximum value of the indicator in the 345 

sample. This allows us to rescale each indicator to a dimensionless scale (0, 1].  346 
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We weight and aggregate7 the individual indicator matrix 𝐸𝐺 as follows: 347 

 348 

𝐶𝐸𝐺 = 𝐸𝐺 × 𝑊′     (8) 349 

 350 

where the weighting matrix 𝑊 is generated with the following features: each element of 351 

the matrix can take values {0,0.1,0.2, … ,1}, and the rows of the weighting matrix are a 352 

combination of elements (weights) where the sum of elements in each row equals 1. The 353 

total number of combinations holding these rules is 66, meaning that 𝑊 is a 66 × 3 354 

weighting matrix. We then obtain 𝐶𝐸𝐺, a 106 × 66 matrix. Finally, we estimate the 355 

model from equation (6) using the matrix 𝐶𝐸𝐺 of 66 composite indicators for the 356 

provision of environmental values to create a composite indicator of SI, i.e. the Composite 357 

Sustainable Intensification (𝐶𝑆𝐼) indicator. Hence, we run 66 models using each of the 358 

weighting combinations to obtain 66 CSI per farm. Farms are then ranked, relative to 359 

other farms, according to how well they score in each of the 66 CSI.  This information is 360 

summarised in a farm rank distribution representing individual farm SI performance. As 361 

an illustration of the possibilities of using this information for policy purposes, farms are 362 

grouped into four distinct classes according to their performance on all 66 indicators. 363 

 364 

2.6. The Stochastic Frontier Analysis (SFA) 365 

We use a Bayesian Markov Chain Monte Carlo (MCMC) procedure (see Koop, 2003 for 366 

a detailed explanation) for the model estimation. One advantage of the MCMC approach 367 

is that the distribution of the individual farm inefficiencies is automatically mapped as 368 

part of the estimation process, rather than having to be estimated ex-post as in the classical 369 

approach. The standard stochastic output distance function model, and the extended 370 

model to account for the provision of environmental outputs, can be specified as equations 371 

9 and 10 (below) respectively. 372 

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝜀𝑖𝑡 − 𝑧𝑖     (9) 373 

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑒𝑖𝑖𝑡𝜓 + 𝜀𝑖𝑡 − 𝑧𝑖    (10) 374 

with the inefficiency term being common for both approaches 375 

𝑧~𝐺(𝐾𝜙, 𝜔)      (11) 376 

                                                           
7 Equation (8) implies that we use the additive aggregation rule for the sustainable intensification 
composite indicator. 
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where 𝑦𝑖𝑡 is a vector of  𝑁 observations of the logarithm of cereal production for farm 𝑖 377 

in year 𝑡; 𝑥𝑖𝑡 is an 𝑁 × 𝑚 matrix of the logarithm of other outputs (excluding 378 

environmental externalities) and inputs and interlinkages between them, given a 379 

translog function for farm 𝑖 in year 𝑡; 𝑒𝑖𝑖𝑡 is a matrix for the environmental indicator 380 

(i.e. provision of environmental goods indicator) and its interlinkages with other outputs 381 

and inputs for farm 𝑖 in year 𝑡; 𝜓 is the coefficient associated with the environmental 382 

indicator; 𝜀 and 𝑧 are vectors that account for a normally distributed error and farm 383 

inefficiency respectively.  384 

The farm inefficiency term 𝑧 follows a gamma distribution with parameters α and farm 385 

mean efficiency (𝐾𝜔); 𝐾 is a 𝑇 × 𝑟 matrix of explanatory variables for inefficiency 386 

and 𝜔 is an 𝑟 × 1 vector of parameters associated with the explanatory variables for 387 

inefficiency. 388 

 389 

 390 

3 Results 391 

The Bayesian Markov Chain Monte Carlo (MCMC) procedure generated 30,000 392 

random draws from the conditional distributions with, 5,000 draws discarded and 393 

25,000 draws retained. These 25,000 draws can be considered as a sample from the joint 394 

posterior density function of the parameters. Table 3 shows the coefficient estimates 395 

obtained from the four models shown in Table 2.  396 

 397 

As Table 3 shows, all models produced similar results for the coefficients associated 398 

with production inputs. Thus, all coefficient signs are as expected. The UAA and crop 399 

and animal costs were the two most important inputs in terms of cereal production, 400 

excepting for M4 (land use diversity) where UAA and labour are the two most 401 

important inputs.  A percentage increase in these inputs leads to relatively high 402 

increases in the outputs compared to other inputs such as labour, for example. Very 403 

much as expected, the production of other outputs on the farm and rising values on the 404 

environmental indicator(s) (i.e. a greater area of the two land-based EI measures and 405 

less land cover specialisation) reduced the production of cereals, holding everything else 406 

constant, i.e. there is a trade-off between market output (i.e. cereals) and the provision 407 

of environmental goods, regardless of the type of environmental good. This is possibly 408 

due to a redistribution of resources, especially of land, away from cereals production to 409 
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other uses, as is the case for model M3, where an increase in the proportion of UAA 410 

given over to rough and permanent grassland reduces the area allocated to cereal 411 

production. The results in Table 3 suggest that the environmental output draws land 412 

away from cereals production, as land use diversity captures increasing complexity, i.e. 413 

reducing reliance on one, or a few cereals crops.  414 

Table 3 also shows the role of a number of potential explanatory variables in driving SI. 415 

Past research into the impact of farmer age on efficiency has produced mixed results 416 

(Wilson et al, 2001; Iraizoz et al., 2006). Replicating the findings of Tan et al. (2010) 417 

this analysis finds a clear positive relationship between both age and level of education 418 

with level of efficiency, irrespective of the model used. Conversely, Hadley (2006) 419 

found a small but significant negative relationship between age and efficiency for cereal 420 

farms in England and Wales. 421 

 422 
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 423 

Table 3. Slope parameters for Models M1-M4 424 

 425 

     

  M1 – Baseline (Non-env.) M2 - AEP M3- Grass M4 - LUD 

     

  Coeff. 
95% posterior 

coverage regions Coeff. 

95% posterior 
coverage 
regions Coeff. 

95% posterior 
coverage regions Coeff. 

95% posterior 
coverage 
regions 

Constant 0.112 0.080 0.143 0.059 0.035 0.092 0.064 0.036 0.098 0.090 0.058 0.100 

Other outputs -0.295 -0.351 -0.244 -0.214 -0.271 -0.161 -0.189 -0.251 -0.126 -0.102 -0.124 -0.060 

EO (environmental output)    -0.193 -0.255 -0.128 -0.122 -0.163 -0.083 -0.667 -0.651 -0.506 

UAA 0.597 0.441 0.757 0.731 0.600 0.652 0.587 0.444 0.765 0.257 0.218 0.394 

Labour 0.063 0.003 0.142 0.050 0.002 0.127 0.044 0.002 0.114 0.024 -0.036 0.079 

Machinery and general costs 0.014 3.E-04 0.051 0.010 4.E-04 0.039 0.011 5.E-04 0.039 0.007 -0.056 0.099 

Crop and animal costs 0.214 0.095 0.328 0.105 0.026 0.192 0.169 0.049 0.300 0.014 -0.017 0.112 

Constant 0.494 0.371 0.678 0.446 0.336 0.607 0.472 0.356 0.648 0.435 0.328 0.594 

Farmer's age -1.287 -1.705 -0.871 -1.233 -1.646 -0.817 -1.301 -1.725 -0.881 -1.268 -1.667 -0.868 

Education -0.849 -0.391 0.091 -0.546 -0.994 -0.072 -0.755 -1.233 -0.255 -0.641 -1.079 -0.180 

Finance pressure -1.118 -0.553 0.028 -0.583 -1.133 0.001 -0.352 -0.902 0.238 -0.716 -1.220 -0.167 

Assurance Scheme -0.253 0.642 1.742 0.631 -0.312 1.760 0.001 -0.963 1.163 0.567 -0.335 1.681 
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The average technical efficiency (TE) of the sample for the model that does not account 426 

for environmental outputs (M1) is 0.88 whereas for models M2, M3, and M4, efficiency 427 

(i.e. SI) is 0.90, 0.90 and 0.91 respectively. Sample medians are 0.90, 0.92, 0.91 and 428 

0.92 respectively. Figure 1 shows the kernel distributions of the posterior means of farm 429 

technical efficiency evaluated over models M1- M4. The results suggest that including 430 

environmental goods in total farm outputs shifts the efficiency distribution toward the 431 

right (i.e. the aggregate SI score of farms is, on average, higher with the addition of non-432 

market outputs). This suggests that farmers are as efficient at producing environmental 433 

outputs as they are provisioning outputs, if not more efficient. However, it is worth 434 

noting that improving SI requires more than increasing the area of permanent pasture, 435 

land in stewardship or a greater diversity of crops diversification. In a wider sense, SI 436 

should also capture the farmer’s use of the crop(s), and extending the analysis through 437 

the inclusion of this information into the model would improve the SI measure. 438 

 439 

Figure 1. Kernel distributions of the posterior means of technical efficiency across all 440 

farms for M1, M2, M3 and M4.  441 

 442 

As noted by Areal et al. (2012), when generating SI scores using different model 443 

specifications it is worth investigating their differential impacts on individual farm SI 444 

rankings. Figure 2 shows that farm efficiency rankings (i.e. farm SI rankings) vary 445 

across the four models. These figures allow us to see the extent to which the addition of 446 

the different environmental outputs changes the farm efficiency score. As is apparent, 447 

the addition of the agri-environment indicator has least impact on farm efficiency score, 448 

i.e. the data points are fairly tightly clustered along the no-change line. Conversely, 449 

models M3 and M4, i.e. using the ratio of rough and permanent pasture area to total 450 
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agricultural area and the LUD indicator respectively, produce the most widely 451 

distributed data points, indicating significant changes in farm efficiency score.  452 

 453 

 454 

M1 vs M2 M1 vs M3 

  
M1 vs M4 M2 vs. M3 

 
 

M2 vs. M4 M3 vs. M4 

 
 

 455 
Figure 2. Scatter plots of rankings of efficiency scores 456 

 457 
 458 

 459 
 460 

Figure 2 shows that farm SI scores vary markedly on the basis of the environmental 461 

indicator chosen. Farm SI scores also vary according to the type of landscape in which 462 

the farm is located.  To explore this issue further, we analysed changes in SI and SI 463 

rankings after grouping farms according to landscape type, following the Swanwick 464 
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typology of the 159 National Character Areas in England (Swanwick et al., 2007)8. 465 

Figure 3 shows that when using the LUD indicator, SI scores are higher for farms in 466 

upland fringe dairy and stock rearing landscape types than they are in other landscape 467 

types. However, this same region is the least efficient when the other environmental 468 

indicators are considered. Eastern arable landscapes are consistently efficient, except 469 

when weighting heavily for LUD, as there is greater specialisation of farming systems 470 

here and simpler crop rotations with more focus on cereals. 471 

 472 

Figure 3. SI scores by model and landscape type 473 

 474 

 475 

Figure 4 shows how farms change in average efficiency within each landscape type 476 

when different environmental indicators are added to farm outputs. The figure shows 477 

that farms in the intensive arable eastern claylands significantly drop in SI rank, and 478 

those in the upland fringes increase in SI rank, when using LUD as the indicator of 479 

provision of environmental goods (M4). When the permanent and rough grassland 480 

indicator is added (M3) farms in south eastern wooded and mixed agricultural 481 

                                                           
8 Note that the FBS farm classification (i.e. cereal farms) is different from the landscape type 
classification. 
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landscapes tend to increase in SI ranking, whereas farms in the upland fringes decrease 482 

in SI rank. These findings present compelling evidence that the use of different 483 

indicators for the provision of environmental goods may lead to different SI rankings at 484 

the farm level, and that the extent of this variation depends to some extent on landscape 485 

type. 486 

 487 

Figure 4. Changes in SI rank resulting from the inclusion of environmental outputs, 488 

compared to the baseline model (M1) by landscape type 489 

 490 

Figure 5 shows the extent of changes in SI ranking, when provision of environmental 491 

goods (permanent grassland and LUD) is accounted for, in interaction with landscape 492 

type  493 

 494 

5a: Permanent pasture and rough grazing (M3) 
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5b: Land use diversity (M4) 

 



22 
 

Figure 5. Spatial distribution of the extent of changes in SI ranking when provision of 495 

environmental goods (permanent grassland and LUD) is accounted for9 in interaction 496 

with landscape type. 497 

 498 

Farms were found to exhibit different patterns in SI scores under different indicator 499 

weightings. Figure 6 shows the kernel distributions of rankings for 6 individual farms 500 

under the 66 SI indicators. These six farms have been selected to be representative of 501 

different farm classes, where the classification is based on the way in which their 502 

efficiency changes through the addition to farm outputs, under different environmental 503 

indicator weights. As can be seen from the figures, some farms receive very high ranks, 504 

for example farms 2 and 38, regardless of how their environmental indicators are 505 

ranked. The radar diagrams show why this occurs. Both farms 2 and 38 score well on 506 

provisioning outputs, while at the same time scoring either well, or moderately well, on 507 

all three environmental indicators.  508 

Some farms, i.e. farms 5 and 7, have much more heterogeneity of ranks, leading to 509 

broader kernel distributions. This suggests that under some weighting conditions, i.e. for 510 

some environmental outputs, they score highly, but in other cases they score poorly. 511 

The radar diagram for farm 5 shows that again, provisioning outputs are relatively high, 512 

and output on one of the environmental indicators is good, but there is very little output, 513 

or no output at all, on the other two environment indicators. When these absent 514 

environmental outputs are heavily weighted, therefore, the farm’s SI rank suffers. 515 

Farms 51 and 100 illustrate the final class of farms, where SI rank score is poor 516 

regardless of the way in which the environmental indicators are weighted. In both these 517 

cases environmental outputs are low, but not non-existent. However, in this class of 518 

farms, even if performance on one environmental indicator is reasonable, the SI rank 519 

remains low due to the very low rate of provisioning output per hectare.  520 

Another interesting outcome is that most farms do well in the case of at least one of the 521 

environmental indicators, i.e. there is evidence of some sort of provision of 522 

environmental goods on most farms. 523 

                                                           
9 The location of the farms are only approximate random locations within the county in which the farm 
is located. Location of the farms has only been constrained to the farm’s landscape type. 
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 526 

Figure 6. Kernel distributions of individual farm ranking based on efficiency scores, 527 

plus radar diagrams showing the scale of a range of provisioning and environmental 528 

farm outputs. 529 

  530 
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The results shown in Figures 5 and 6 raise a question about how robustly farms can be 531 

classified according to their SI performance using simple fixed weight composite SI 532 

indicators of the type that have appeared in the literature to date. Specifically, how can 533 

policy makers, based on the use of such indicators, reward farmers for their 534 

environmental outputs, or decide on the nature of the goals to set for farms in different 535 

regions to enhance their SI performance?  536 

One way in which the outputs of the current estimation approach could be used for 537 

policy analysis would be to classify farms according to their SI distributions. For 538 

example, a sample of farms could be divided into quartiles on the basis of SI 539 

performance under all environmental outputs : a) the upper SI quartile (USIQ), i.e. 540 

farms that are within the first quartile of the distribution under at least one sustainable 541 

intensification indicator; b) the second SI quartile (SSIQ), i.e. farms that are not in the 542 

first quartile but fall into the second quartile under at least one indicator; c) the third SI 543 

quartile (TSIQ), i.e. those that are not in the first two quartiles but are in the third 544 

quartile under at least one environmental indicator; and d) the lower SI quartile (LSIQ), 545 

i.e. farms that always fall into the fourth quartile irrespective of the environmental 546 

indicator used.  547 

Figure 7 demonstrates that, using this approach, high and low levels of sustainable 548 

intensification can be found in all landscape types except for south eastern wooded and 549 

mixed agricultural landscapes, where all farms in the area are ranked within USIQ 550 

(upper quartile) or SSIQ (second quartile) on the basis of our analyses. Most of the 551 

TSIQ and LSIQ farms are located in chalk and limestone mixed arable landscapes.  It 552 

might be argued that these differences in SI performance are heavily determined by the 553 

underlying geology and topology that form these landscapes, via constraints on the 554 

environmental outputs that can be delivered from the farms within these areas.  This 555 

further highlights the policy complexity surrounding SI (Wilson, 2014; Barnes and 556 

Thomson, 2014) and strongly suggests that incentives to promote increases in SI, 557 

inclusive of environmental outputs, need to be context-specific (Armsworth et al., 2012) 558 

and feasible within the landscape or catchment where the farm exists. Promoting 559 

policies which encourage SI based on a narrowly defined concept, or measurement, of 560 

SI, i.e. a ‘one-size-fits-all’ model, are inherently flawed and likely to lead to irrational 561 

policy goals and impacts in some areas due to the heterogeneous nature of landscapes. 562 

This is as true in England, as in the rest of the world. 563 
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 564 

Figure 7. Spatial distribution of farm SI10 performance by quartiles and landscape type 565 

4 Conclusions 566 

Accounting for the interlinkages between ecological and agricultural systems in 567 

economic analysis is crucial to provide useful recommendations to policy makers. 568 

However, such relationships are difficult to model, making economic analysis of agro-569 

ecological systems and related issues challenging. Given this complexity, two main 570 

issues arguably arise in the policy context. First, what form should metrics of SI take in 571 

order to provide robust comparison between farm types in different locations?  Second, 572 

how can policy makers draw upon these metrics of SI in order to implement evidence-573 

based policies for the benefit of society through improvements in sustainability?   574 

Examining the first question, the results of this analysis demonstrate that while the 575 

choice of SI metric has clear impacts on the relative SI performance of farms, most 576 

farms are seen to be contributing to sustainability through the provision of at least one 577 

environmental output. Because the composite SI index generated in this study 578 

incorporates multiple types of environmental output without prejudicing any, it is 579 

                                                           
10 The location of the farms are only approximate random locations within the county in which the farm 
is located. Location of the farms has only been constrained to the farm’s landscape type. 
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arguable that this novel, holistic metric of SI, is an improvement on existing metrics of 580 

SI performance. The study has also shown that it is important to place any SI metric 581 

used within the context of the landscape in which the farm business operates (Koohafan 582 

et al., 2012). However, this novel approach to SI construction would surely go some 583 

way to allowing policy makers to design policies that are context specific, i.e. targeted 584 

towards location-specific outcomes (Armsworth et al., 2012).  Complementary 585 

approaches that can add value to policy decisions based on this novel composite SI 586 

indicator include the development of typology mapping of location-indicator data 587 

(Raymond et al., 2009; Andersen et al., 2007). While these approaches do need to be 588 

implemented with prior knowledge of feasible outcome possibilities to avoid 589 

unintentional consequences, this limitation can usually be overcome by embedding local 590 

knowledge within action plans and, moreover, from a bottom-up approach to enhancing 591 

positive environmental outcomes from agricultural land (Posthumus and Morris, 2010). 592 

The results of the modelling exercise simply reveal a level of complexity (with regard to 593 

the type and extent of environmental outputs provision) that policy makers should 594 

address in policy design. The statistical approach taken here could itself be developed 595 

and used by policy makers and/or their advisors to map regional, or farm system SI, or 596 

environmental outputs provision. 597 

Although it is widely acknowledged that measuring SI may be a challenging task, since 598 

definitions of sustainability and SI are, in and of themselves, broad and unspecific, the 599 

alternative of failing to acknowledge context-specifics in SI estimation severely limits 600 

the value of such SI metrics, especially where these have been derived through the 601 

arbitrary choice of a single weighting system for environmental outputs within the 602 

indicator (EI), rather than registering a range of both environmental indicators and 603 

associated weights, as proposed here. 604 
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Appendix 769 

A.1 The conditional likelihood function 770 

We assume a normal distribution with mean 0 and covariance matrix ℎ−1𝐼 for the 771 

likelihood function; 𝑋𝑖 is vector of fixed non-stochastic variables, which include inputs 772 

and all other outputs; 𝑧𝑖  and 𝜀𝑗 (i.e. the error term and the farm inefficiency) are 773 
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independent of each other for all 𝑖 and 𝑗. The conditional likelihood functions for 774 

expressions (9) and (10), with 𝑝()  referring to the density and 𝑝(|) to the conditional 775 

density, arei: 776 

𝑝(𝑦|𝛽, ℎ, 𝑧) ∝ ℎ
𝑁

2 𝑒𝑥𝑝 [−
ℎ

2
(𝑦𝑖 − 𝑋𝑖𝛽)′(𝑦𝑖 − 𝑋𝑖𝛽)]  (12) 777 

 778 

A.2 The priors 779 

The likelihood function must be complemented with a prior distribution on the 780 

parameters (𝜌, 𝛽, 𝜓, ℎ, 𝜇𝑧
−1) to conduct Bayesian inference. An independent Normal-781 

Gamma prior is used for the coefficients in the production frontier and the error 782 

precision ℎ. We follow the approach used by Fernández et al. (2000) and Koop et al. 783 

(1997) regarding the prior for 𝑧. Hence, an r-dimensional parameter vector 𝜙 =784 

(𝜙1, … , 𝜙𝑟) is added where each of the elements of the parameter vector 𝜙 measures the 785 

effect of the inefficiency explanatory variables 𝑘𝑖𝑗 on the inefficiency distribution. 786 

Given 𝜙, 𝑧 has a probability density function given by 787 

𝑝(𝑧𝑖|𝜇𝑧
−1(𝜙)) =

𝑧𝑖
𝛼−1

𝜇𝑗Γ(𝛼)
𝑒𝑥𝑝(−𝜇𝑧

−1(𝜙)𝑧𝑖)    (13) 788 

where Γ(⋅) indicates the Gamma function and 𝑓𝐺(𝑧𝑖|𝛼, 𝜇𝑧
−1(𝜙)) is the Gamma density 789 

with parameters 𝛼 and 𝜇𝑧
−1(𝜙), mean 𝜇𝑧(𝜙), variance 𝜇𝑧

2(𝜙); being 𝜇𝑧
−1(𝜙) =790 

∏ 𝜙
𝑗

𝑘𝑖𝑗  𝑟
𝑗=1 where 𝑘𝑖𝑗 are dummy variables and 𝑘𝑖1 = 1. An exponential distribution (i.e. 791 

𝛼 = 1) is commonly assumed in the literature (Areal et al., 2012; Fernández et al., 792 

2000; Koop et al., 1997; van den Broeck et al., 1994) which makes the prior for 𝑧  793 

𝑝(𝑧𝑖|𝜇𝑧
−1(𝜙)) ∝ 𝑒𝑥𝑝(−𝜇𝑧

−1(𝜙)𝑧𝑖)    (14) 794 

The priors for each of the elements of the vector 𝜙 are taken to be independent and 795 

follow a Gamma density with hyperparameters 𝑒𝑗 = 1 and 𝑔𝑗 = −𝑙𝑛(𝑟∗) with 𝑟∗ =796 

0.80 being consistent with farms expected to be close to the frontier under a competitive 797 

market (van den Broeck et al., 1994). 798 

 799 

A.3 The joint posterior and conditional posteriors 800 

The Bayesian model is defined through the following joint posterior distribution. 801 

𝑝(𝛽, 𝜓, ℎ, 𝜇𝑧
−1, 𝑧, |𝑦) ∝ 𝑝(𝑦|𝛽, 𝜓, ℎ, 𝜇𝑧

−1(𝜙), 𝑧)𝑝(𝛽)𝑝(𝜓)𝑝(ℎ)𝑝(𝑧|𝜇𝑧
−1(𝜙))𝑝(𝜙)  (15) 802 
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After extracting the kernel for 𝛽, 𝜓 from expression (14) the conditional posterior for 803 

𝛽, 𝜓 are normal distributions   804 

𝑝(𝛽, 𝜓|ℎ, 𝜇𝑧
−1(𝜙), 𝑧, 𝑦)~𝑁(𝑏, �̅�)   (16) 805 

The conditional posterior for ℎ is a Gamma distribution  806 

𝑝(ℎ|𝛽, 𝜓, 𝜇𝑧
−1(𝜙), 𝑧, 𝑦)~𝐺(�̅�−2, �̅�)   (17) 807 

The conditional posterior for 𝜙 follows a Gamma distribution 808 

𝑝(𝜙𝑗|𝑦, 𝛽, 𝜓, ℎ, 𝜇𝑧
−1(𝜙), 𝑧) = 𝑓𝐺(𝜙𝑗|𝑒𝑗 + ∑ 𝑤𝑖𝑗, 𝑔𝑗 +𝑁

𝑖=1 ∑ 𝑤𝑖𝑗𝑧𝑖 ∏ 𝜙𝑠
𝑤𝑖𝑠

𝑠≠𝑗
𝑁
𝑖=1 )  (18) 809 

The conditional posterior for 𝑧𝑖 is 810 

𝑝(𝑧𝑖|𝛽, 𝜓, ℎ, 𝜇𝑧
−1(𝜙), 𝑦) ∝ 𝑒𝑥𝑝 (−

ℎ𝑇

2
(𝑧𝑖 − �̅�𝑖𝛽 − 𝑒�̅�𝑖𝜓 + �̅�𝑖 +

𝜇𝑧
−1(𝜙)

𝑇ℎ
)

2

) (19) 811 

where �̅�𝑖 = ∑
𝑦𝑖𝑡

𝑇
𝑇
𝑡=1 , �̅�𝑖 = ∑

𝑥𝑖𝑡

𝑇
𝑇
𝑡=1 , 𝑒�̅�𝑖 = ∑

𝑒𝑖𝑖𝑡

𝑇
𝑇
𝑡=1  812 

 813 

 

                                                           


