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Abstract 

 

There has long been a fascination in the DNA Repair pathways of archaea, for two main reasons. Firstly, 

many archaea inhabit extreme environments where the rate of physical damage to DNA is accelerated. 

These archaea might reasonably be expected to have particularly robust or novel DNA repair pathways to 

cope with this. Secondly, the archaea have long been understood to be a lineage distinct from the bacteria, 

and to share a close relationship with the eukarya, particularly in their information processing systems. 

Recent discoveries suggest the eukarya arose from within the archaeal domain, and in particular from 

lineages related to the TACK superphylum and Lokiarchaea. Thus, archaeal DNA repair proteins and 

pathways can represent a useful model system. This review focuses on recent advances in our 

understanding of archaeal DNA repair processes including Base Excision Repair (BER), Nucleotide Excision 

Repair (NER), Mismatch Repair (MMR) and Double Strand Break Repair (DSBR). These advances are 

discussed in the context of the emerging picture of the evolution and relationship of the three domains of 

life. 

 

Introduction 

 

Although double-stranded DNA is a stable, chemically inert molecule, damage to DNA is largely 

unavoidable, and can have serious consequences for a cell, including mutation and death. While some level 

of mutation is acceptable, and indeed constitutes the raw material for evolution, high mutational load is 

incompatible with life. Efficient repair of DNA damage is therefore essential for all forms of life. The 
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Archaea are no exception, and indeed they often inhabit challenging environments and are thus exposed to 

extremes of temperature, salinity, pressure or pH. Archaea would thus be expected to have particularly 

robust DNA repair pathways, and they do, but we don’t yet understand them very well. As has been noted 

in previous reviews of the topic, there are many enigmas in the field of archaeal DNA repair (Grogan, 1998, 

White, 2003, Rouillon & White, 2011, Grogan, 2015). Some of these are gradually being resolved whilst 

others remain stubbornly opaque. In this review, we focus on recent research that illuminates aspects of 

the four universal DNA repair pathways: Base Excision Repair (BER), Nucleotide Excision Repair (NER), 

Mismatch Repair (MMR) and Homologous Recombination / Double Strand Break Repair (HR/DSBR) (Figure 

1). 

 

The last few years have seen rapid advances in several areas. Genomics has given us vast new datasets and 

unveiled a diverse array of new archaeal species that are shaking our view of the tree of life (Adam et al., 

2017, Spang et al., 2017). Genetic systems are being developed for key model organisms such as the 

Halophiles, Methanogens, Sulfolobales and Thermococcales that allow the increasingly-sophisticated study 

of archaeal gene function (Farkas et al., 2013). Biochemical and structural studies are revealing mechanistic 

detail on individual DNA repair proteins and pathways. Used in combination, these approaches can lead to 

swift and significant advances in understanding. A good example is the discovery of a non-canonical 

Mismatch Repair pathway, based on the EndoMS nuclease, by the Ishino lab (Ishino et al., 2016). This 

advance, described in detail below, has the potential to answer one of the major outstanding questions of 

the archaeal DNA Repair field.  

 

This is a field in transition. Much of the early work on DNA replication and repair in the archaea arose from 

a desire to study simpler model systems of eukaryal (ultimately, human) processes. This approach led to 

many notable successes. However, as the need for model systems has faded, there is a growing realisation 

that the archaea are not a niche player in the biosphere but rather a major, significant component that 

deserves study in their own right. Their cellular and molecular biology is often distinct from those of the 

bacteria and eukarya, and this is certainly true for their DNA repair pathways.  

 

DNA repair and the origin of the eukarya 

 

Although still not universally agreed, the recent discovery of new archaeal lineages known collectively as 

the “ASGARD” archaea, which includes the species Lokiarchaeota and Thorarchaeota, have caused a 

Downloaded from https://academic.oup.com/femsre/advance-article-abstract/doi/10.1093/femsre/fuy020/4993143
by University of Nottingham user
on 08 May 2018



 

reassessment of the relationship between the archaeal and eukaryal domains (reviewed in (Eme et al., 

2017). The large number of gene families previously thought to be specific to the eukarya that are found in 

ASGARD genomes has led to the suggestion that Eukarya arose from an archaeal species related to the 

ASGARD archaea. Other experts however disagree with this interpretation of the data (Da Cunha et al., 

2017). What can the distribution of DNA repair genes across the archaea add to this hot topic (Figure 2)?  If 

we take the example of the XPF nuclease, it comes in two “flavours” in archaea. The short version consists 

only of a nuclease domain, which interacts with PCNA, and is found only in the TACK superphylum (Rouillon 

& White, 2011). The long version has a nuclease fused to a helicase domain matching eukaryal XPF. This is 

present predominantly in the euryarchaea, but also in the ASGARD archaea. Similarly, a eukaryal-type 

Replication Protein A (RPA, a single stranded DNA binding protein) is present in most archaea with the 

exception of the crenarchaea and Thermoplasma, which have a short version (Rouillon & White, 2011). 

Focussing on the two examples of ASGARD archaea in Figure 2, it is apparent that Lokiarchaea and 

Thorarchaea have the complement of eukaryal-type repair proteins one would expect for an ancestor of 

the eukarya. This includes copies of the bacterial-type mismatch repair proteins MutS and MutL, which are 

also present throughout the eukaryal lineage. Intriguingly, the ASGARD archaea have also picked up the 

bacterial UvrABC NER system. Overall, the distribution pattern of DNA repair genes in the archaea, and the 

ASGARD lineage in particular, is consistent with the hypothesis that the latter gave rise to the eukaryal 

domain of life. 

 

Mismatch Repair (MMR) 

 

The canonical MutL-MutS pathway 

Mismatch Repair (MMR) is the process by which bases incorporated in error by the DNA replication 

machinery are detected and corrected. The MutL-MutS MMR pathway first characterised in E.coli is present 

in most bacteria (with the notable exception of the actinobacteria) and in the eukarya, but is the exception 

rather than the rule in the archaea (Kelman & White, 2005). Most archaea lack plausible MutS and MutL 

homologues, and those that have them tend to be temperature mesophiles such as halophiles and 

methanogens that most likely captured these genes by lateral gene transfer from bacteria (Figure 2). The 

mode of inheritance of a bacterial-type MMR pathway from bacteria to the eukarya is a matter of 

conjecture. One possibility is that endosymbiotic event that led to the evolution of the mitochondrion from 

an alpha-proteobacterium allowed the bacterial genes for MMR to become established in the early 

eukaryal genome. An alternative possibility is that the eukarya inherited the bacterial MMR machinery via 

their archaeal lineage. It is notable that the ASGARD archaea including Lokiarchaeum and Thorarchaeum, 
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which have been proposed as the most closely related extant archaea to the progenitor of the eukarya 

(Eme et al., 2017), possess clear MutS and MutL homologues. 

 

The emerging role of EndoMS 

The lack of canonical MMR in most archaea is not reflected in high mutation rates (Grogan, 2004), and 

deletion of MutS-MutL in Halobacterium salinarum did not give rise to a hypermutation phenotype (Busch 

& DiRuggiero, 2010). These observations suggest that alternative pathways exist to detect and remove 

mismatches post DNA replication. 

 

To search for this pathway, Ishino and colleagues devised a functional screen for enzymes capable of 

cleaving DNA mismatches in Pyrococcus furiosus (Ishino et al., 2016). This resulted in the identification of 

an enzyme, which was named EndoMS for endonuclease mismatch-specific, capable of cleaving a range of 

mismatched DNAs by the introduction of staggered cleavages in both strands of the DNA, leaving 5 nt 5’-

overhangs (Ishino et al., 2016). EndoMS had originally been identified in the Millikallio lab and named NucS, 

based on its activity against single-stranded DNA (Ren et al., 2009). The structure of NucS revealed a 

dimeric, two-domain organisation, and the enzyme was shown to form a physical interaction with the 

sliding clamp PCNA (Proliferating Cell Nuclear Antigen) (Ren et al., 2009). As the enzyme has a much higher 

specificity for mismatches than for branched or ssDNA, the nomenclature “EndoMS” will be used 

henceforth. The recent DNA:protein co-crystal structure reveals that EndoMS wraps around mismatched 

DNA substrates, flipping out two bases and cleaving the DNA backbone in a manner reminiscent of type II 

restriction enzymes (Nakae et al., 2016)(Figure 3). The enzyme is active against G-T, G-G, T-T, T-C and A-G 

mismatches, but not against C-C, A-C or A-A mismatches in vitro (Ishino et al., 2016), which is consistent 

with higher binding affinities for substrates with a mismatched G or T (Nakae et al., 2016).  

 

EndoMS has a complex distribution in the archaea (Figure 2), with examples in the halophiles, various 

thermophiles from the crenarchaeal and euryarchaeal phyla, and Thorarchaeum from the ASGARD phylum. 

EndoMS is also present in some bacterial genomes, particularly the phylum Actinobacteria where MutS-

MutL is generally absent. A screen for mutation avoidance genes showed that deletion of the gene 

encoding EndoMS in Mycobacterium smegmatis resulted in a hypermutation phenotype, increasing 

background mutation rate by about 100-fold (Castaneda-Garcia et al., 2017). The higher rates of mutation 

were due to elevated levels of transitions (A:T to G:C or G:C to A:T), which is a hallmark of a MMR defect, 

and similar effects were observed when EndoMS was deleted in Streptomyces coelicolor. Mycobacterial 
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EndoMS has no nuclease activity when presented with mismatched DNA substrates in vitro, suggesting that 

further components in this non-canonical MMR pathway remain to be identified (Castaneda-Garcia et al., 

2017). 

 

Taken together, the studies in archaea and bacteria make a compelling case that EndoMS participates in a 

MMR pathway. However, many important aspects of this pathway remain to be elucidated. The generation 

of double strand breaks by P. furiosus EndoMS is suggestive of an MMR process that functions via 

homologous recombination / DSBR (Ishino et al., 2016). This has the advantage that there is no need to 

identify nascent DNA strands to pinpoint the mismatched base, as both will be resected during DSBR. The 

observation that EndoMS is sometimes found in an operon with the RadA recombinase lends further 

support to this hypothesis (Ren et al., 2009). However, generation of a double strand break each time a 

mismatch is detected seems a risky strategy, unless homologous recombination is very efficient. This is 

probably the case in many of the euryarchaea, which are highly polyploid. It is much less obvious for the 

crenarchaea, which have a eukaryal-like cell cycle with monoploid and diploid stages (Lundgren & 

Bernander, 2007). Clearly, dissection and reconstitution of the pathway using genetic and biochemical 

techniques is a pressing priority. The interaction of archaeal EndoMS with the sliding clamp PCNA may 

provide a means to locate EndoMS at the replication fork to interrogate newly synthesised DNA, and could 

give the opportunity for co-location of a variety of DNA manipulation enzymes on the PCNA toolbelt 

(Beattie & Bell, 2011). In this regard, it will be interesting to see whether the bacterial EndoMS protein 

requires an interaction with the bacterial sliding clamp for activity. 

 

Nucleotide Excision Repair (NER) 

 

NER is a pathway that removes bulky, helix-distorting lesions such as photoproducts from DNA (Figure 1). 

Because it does not rely on direct detection of the lesion, but rather the resultant structural perturbation, it 

can repair many different types of DNA damage. The NER pathway in bacteria is catalysed by the UvrABC 

proteins, where UvrA is involved in damage recognition, UvrB is the helicase that opens the dsDNA and 

UvrC the nuclease that cuts on both sides of the lesion. In eukarya, an analogous and more complex 

pathway exists, which involves damage recognition by XPC-hr23b, DNA opening by Transcription factor IIH 

(TFIIH), subsequent binding of the XPA and RPA proteins, resulting in recruitment of the nucleases XPF-

ERCC1 and XPG to cut on either side of the lesion. Archaea have a diverse and, frankly, confusing range of 

NER proteins encoded in their genomes (Figure 2), (Rouillon & White, 2011). In archaea that have co-opted 

the bacterial NER genes encoding UvrABC, the bacterial system seems to be dominant for NER. For 
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example, the NER patch repair size of 10-11 bp for Methanothermobacter thermautotrophicum is 

consistent with UvrABC function (Ogrunc et al., 1998). Likewise, deletion of the genes for UvrA, UvrB or 

UvrC in Halobacterium NRC-1 resulted in a severe UV sensitivity despite the fact that this organism also has 

homologues of the eukaryal-type NER proteins XPF, XPB and XPD (Crowley et al., 2006). Furthermore, there 

are no recognisable orthologues of the damage recognition proteins XPC and XPA in archaea. The SSB 

protein, which can melt damaged DNA specifically (Cubeddu & White, 2005) and can bind quickly and 

cooperatively on ssDNA (Morten et al., 2015) could conceivably carry out this function.  

 

Since most archaea have at least some eukaryal type NER genes, the question of their function is pertinent.  

Genetic studies of the putative archaeal NER pathway have been limited. Deletion of the XPD and XPB 

genes in Thermococcus kodakaraensis resulted in only very mild repair phenotypes (Fujikane et al., 2010). 

In contrast, deletion of the XPF homologue Hef in this organism resulted in a marked sensitivity to the 

crosslinking agent mitomycin C (MMC), methylmethanesulfonate (MMS) and gamma radiation, suggesting 

an important role for Hef in multiple repair pathways including crosslink repair and replication restart 

(Fujikane et al., 2010). This is consistent with the known roles of the eukaryal XPF and Mus81 proteins, 

which share a common ancestor with Hef (Rouillon & White, 2011). Both the helicase and nuclease 

activities of Hef were shown to be important, suggesting that Hef needs to unwind and cleave DNA during 

repair (Fujikane et al., 2010). In the crenarchaeon Sulfolobus islandicus, deletion of the XPD, XPB and Bax1 

genes has been reported with no resulting phenotype (She et al., 2009). Although these results should be 

viewed as preliminary until published in more detail in a peer reviewed journal, they are consistent with 

the work in T. kodakaraensis. Overall then, genetic studies have shown that putative NER proteins are not 

essential, but have not progressed our understanding of the archaeal NER pathway very far. This has led 

Grogan to speculate that there is no NER pathway per se in archaea lacking UvrABC – raising the possibility 

that bulky NER-type lesions, which would represent a barrier to the replication fork, are removed by 

pathways that restart stalled forks (Grogan, 2015). Although this is an interesting hypothesis, it does beg 

the question: why do most archaea have XPB and XPD genes? After all, they must be doing something. 

 

XPD helicase 

Although we still have a rather limited understanding of archaeal NER, study of the XPD and XPB helicases 

has none-the-less been quite revealing. XPD is a 5’ to 3’ helicase with an essential iron-sulfur cluster (Rudolf 

et al., 2006). In eukarya, XPD exists in the ten-subunit transcription factor TFIIH, along with the XPB 

helicase. TFIIH is involved in both NER, where DNA around a lesion is unwound, and transcription initiation, 

where RNA polymerase II promoters are unwound. XPD is essential for DNA unwinding in NER, but its 
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activity is not required in transcription (Kuper et al., 2014). Until recently, TFIIH was difficult to study at a 

structural level and the archaeal XPD, which is a monomer, was thus an attractive model system. Three 

groups independently reported the structure of archaeal XPD (Fan et al., 2008, Liu et al., 2008, Wolski et al., 

2008), revealing a four-domain organisation with two motor domains, an Arch and FeS domain (Figure 4). 

The mutations that cause the genetic condition xeroderma pigmentosum in humans, which arises from 

defective NER, could be mapped onto the archaeal XPD structures. The residues targeted by mutation are 

highly conserved, and cluster in areas involved in the catalytic mechanism of the archaeal enzyme – a 

striking example of conservation of function spanning the archaeal and eukaryal domains (Liu et al., 2008). 

 

In eukaryal NER, XPD has been shown to “proofread” for the presence of a DNA lesion in the translocated 

strand as a mechanism to increase the specificity of the NER reaction (Mathieu et al., 2013). A lesion 

recognition pocket, close to the FeS cluster and immediately adjacent to the pore through which XPD pulls 

ssDNA, was identified. Two amino acids, Tyr-192 and Arg-196, were identified as an important part of this 

pocket, and mutations at these positions reduced DNA repair in a eukaryal system (Mathieu et al., 2013). 

The authors went on to make the same changes in XPD from the archaeon Ferroplasma acidophilum 

(FacXPD), which correspond to residues Tyr-171 and Lys-175. This enzyme had been shown previously to 

stall at CPD lesions on the translocated strand (Mathieu et al., 2010). They found that mutation of these 

residues did indeed abrogate the ability of FacXPD to stall at a CPD lesion, although helicase activity was 

unaffected (Mathieu et al., 2013).  However, XPD from S. acidocaldarius is not stalled by CPD or extrahelical 

fluorescein adducts in model substrates (Rudolf et al., 2010). This may point to differences in the functions 

of XPD in the eury- and crenarchaea. Both SacXPD and FacXPD display only modest (~2-fold) increases in 

binding affinity for damaged versus undamaged DNA (Rudolf et al., 2010, Ghoneim & Spies, 2014), 

suggesting that damage recognition, when it occurs, could be subtle. This picture is further complicated by 

the observation from Atomic Force Microscopy studies that TacXPD binds to extrahelical fluorescein lesions 

in the translocated strand, but CPDs in the displaced strand (Buechner et al., 2014). Furthermore, single 

molecule studies of FacXPD revealed the unexpected ability of the enzyme to bypass a bound single-strand 

DNA binding protein without either protein dissociating from the nucleic acid – a phenomenon that is still 

not fully understood (Honda et al., 2009). Clearly, further work in this area would be desirable to improve 

our understanding of damage recognition by the XPD helicase. 

 

Further studies of archaeal XPDs have revealed mechanistic insights into DNA binding and associated 

conformational changes. The Kisker lab succeeded in co-crystallising TacXPD with a short piece of ssDNA, 

demonstrating unequivocally the polarity of unwinding by the enzyme (Kuper et al., 2012). The DNA was 

bound by motor domain 2, and the authors predicted that, since XPD can unwind bubble structures (Rudolf 
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et al., 2010) and eukaryal NER functions on DNA without ends, full engagement with DNA would require 

the opening of the interface between the Arch and FeS domains to allow DNA passage. This hypothesis was 

confirmed by the observation of transient opening of the interface in a single molecule study by the Spies 

lab (Ghoneim & Spies, 2014) and recently nailed down by a study which covalently closed the interface with 

a crosslinker (Constantinescu-Aruxandei et al., 2016). Constantinescu and co-workers demonstrated that 

TacXPD can still bind DNA with high affinity when the interface between the Arch and FeS domain is 

covalently closed, but cannot function as a helicase. They proposed a two stage binding mechanism for 

XPD, with ssDNA initially bound tightly by motor domain 2, followed by transient opening of the Arch 

domain to allow passage through the central pore (Constantinescu-Aruxandei et al., 2016). This mechanism 

is likely to hold true for eukaryal XPD in the context of TFIIH.  

 

XPB helicase (or not?) 

XPB has historically been considered to be a 3’ to 5’ DNA helicase, however the evidence supporting this 

assignment is rather thin. Helicase activity was ascribed to XPB from Archaeoglobus fulgidus (Fan et al., 

2006), but was not detected in either XPB protein from S. solfataricus (Richards et al., 2008). The structure 

of AfuXPB revealed an unusual conformation, with the motor domains rotated away from the canonical 

structure by 170 °. The structure revealed two accessory domains, which were named the Damage 

Recognition domain (DRD) and Thumb (Fan et al., 2006). The White lab reported that XPB is often found in 

an operon with a protein they named Bax1, and that the two proteins from a 1:1 complex (Richards et al., 

2008). Subsequently, Bax1 was shown to be a nuclease (Roth et al., 2009), and a detailed study revealed 

that XPB and Bax1 function in concert to extend bubble structures and cleave DNA (Rouillon & White, 

2010). The Thumb domain was shown to be essential for DNA unwinding by XPB, and the DRD was shown 

to be essential for the function of the XPB-Bax1 complex, as no unwinding or nuclease activity was 

observed when it was deleted (Rouillon & White, 2010). In the past few years, evidence from studies of 

eukaryal TFIIH has accumulated that supports a role for XPB as a dsDNA translocase rather than a helicase. 

In this model, XPB binds dsDNA and catalyses opening of a DNA bubble downstream of the binding site in 

an ATP-dependent reaction (He et al., 2016). Recent cryo-EM studies of the structural biology of 

transcription initiation appear to place this model beyond doubt (Schilbach et al., 2017), at least for 

transcription and most likely for NER too. The work on archaeal XPB is largely consistent with a function as 

a dsDNA translocase rather than a helicase. The XPB-Bax1 complex could thus function as a stripped-down 

version of the eukaryal NER apparatus by binding at the site of helix-destabilising lesions, opening a bubble 

through XPB’s ATP-dependent translocase activity and cleavage at the lesion by Bax1. Such a mechanism is 

still largely speculative however, requiring further study.  
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Transcription coupled repair (TCR) 

TCR differs from Global Genome Repair (GGR, described above) in being initiated by stalling of RNA 

polymerase on the transcribed strand of genes. A coupling factor (Mfd in bacteria; CS-B/RAD26 in eukarya) 

is then recruited to the stalled complex and in turn recruits the NER machinery to repair the damage. This 

alternative NER pathway typically has faster kinetics than GGR, meaning that DNA lesions in transcribed 

strands are repaired more quickly than those in non-transcribed ones. RNA polymerase from the archaeon 

Thermococcus kodakarensis has been shown to stall when encountering a variety of DNA lesions in 

template strands during transcription, suggesting that stalled RNA polymerase molecules are a common 

sensor for DNA damage in all domains of life (Gehring & Santangelo, 2017). Accelerated TCR has been 

observed in the halophiles and shown to be dependent on UvrA in H. salinarum (Stantial et al., 2016). This 

suggests a mechanism similar to that in bacteria, although there is no clear Mfd orthologue in in archaea. 

On the other hand, two independent studies have demonstrated that TCR is not faster than GGR in S. 

solfataricus (Dorazi et al., 2007, Romano et al., 2007). A comparison of the rates of repair of transcribed 

and non-transcribed strands in S. solfataricus, E. coli and S. cerevisiae suggests that the archaeon has a 

significantly faster rate of GGR, which may explain the apparent lack of accelerated TCR (Dorazi et al., 

2007). At any rate, the identification of coupling factors in archaea that link stalled RNA polymerase to the 

NER pathways is an important area for further study.  

 

DNA transfer systems 

 

Two independent studies of the transcriptional response to UV radiation in the Sulfolobales highlighted the 

upregulation of an operon comprised of 5 genes of unknown function (Fröls et al., 2007, Götz et al., 2007). 

UV treatment was also observed to result in significant and reversible cell aggregation in S. acidocaldarius. 

Subsequent analysis revealed that the operon encoded genes specific for a type IV pilus structure, leading 

the renaming of the operon as the ups operon (for UV-inducible pili operon of Sulfolobus) (Fröls et al., 

2008). These findings led to the hypothesis that the Ups system represents a machinery for the exchange of 

DNA following DNA damage (Fröls et al., 2008). Pili were shown to mediate species-specific aggregates and 

to support large increases in the rate of homologous recombination, providing a survival advantage in 

following DNA damage (Ajon et al., 2011). Downstream of the ups operon in S. acidocaldarius are four 

conserved genes predicted to encode a ParB-like nuclease, a glycosyl transferase, an EndoIII-like nuclease 

and a helicase. Deletion of these genes did not abrogate UV-induced aggregation, but did result in a 

significant decrease in survival following UV irradiation, suggesting that this operon likely plays a role in 

DNA repair that is related in some way to the UV-inducible DNA transfer pathway (van Wolferen et al., 
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2015). A further twist to the story came with the identification of the Ced (Crenarchaeal system for 

exchange of DNA) system for DNA import. The UV-inducible ced genes encode CedA – an integral 

membrane protein, and CedB - a membrane bound hexameric DNA translocase related to HerA (van 

Wolferen et al., 2016). CedA and CedB are thought to assemble to form a machine for the import of DNA 

following Ups-mediated cell aggregation, thus enhancing recombination and DNA repair. This fascinating 

system seems to be unique to the crenarchaea – no other examples of a DNA import (rather than export) 

machinery is currently known in the prokaryotes (van Wolferen et al., 2016). 

 

Base Excision Repair and Alternative Excision Repair 

 

Damage to individual bases, caused for example by hydrolytic deamination, oxidation or methylation, is the 

most common and unavoidable type of DNA damage. Therefore, it is perhaps not surprising that the DNA 

repair pathway responsible for detection and correction of these lesions, Base Excision Repair (BER) is 

ubiquitous and fundamentally conserved across all domains of life. The canonical BER pathway is initiated 

when a glycosylase specific for a particular damaged base detects the lesion, usually by base flipping, and 

cleaves the glycosidic bond, generating an abasic (AP) site. The AP site in DNA is detected by AP 

Endonuclease, which cleaves the phosphodiester backbone on the 5’ side of the lesion, allowing DNA 

polymerase to initiate repair synthesis. Depending on circumstances, BER is completed by flap 

displacement and subsequent removal by the Fen1 nuclease (long patch repair), or by removal of the 

abasic nucleotide by RP lyase (short patch repair) – with both pathways resulting in nicked DNA that can be 

ligated (reviewed in (Grasso & Tell, 2014)). The Alternative Excision Repair (AER) pathway is imitated by an 

endonuclease (rather than a glycosylase), which nicks the DNA backbone next to a DNA lesion (reviewed in 

(Yasui, 2013)).  

 

Since rates of hydrolytic deamination increase with growth temperature, this type of damage is particularly 

problematic for thermophiles and hyperthermophiles. Deamination of uracil, guanine and adenine, which 

give rise to uracil, xanthine and hypoxanthine respectively, are a particular problem as they have the 

potential to result in altered base pairing and hence mutation if not repaired quickly. Endonuclease V 

(EndoV) is a nuclease found in all domains of life that cuts at the 3’ side of hypoxanthine residues in DNA, 

initiating the AER pathway Many archaeal genomes, including the majority of the thermophiles, possess a 

gene encoding EndoV (Kiyonari et al., 2014). Biochemical studies that the EndoV enzyme from A. fulgidus 

and P. furiosus has the canonical specificity for inosine (Liu et al., 2000); (Kiyonari et al., 2014). In contrast, 

EndoV from Ferroplasma acidarmanus has a broader specificity for deaminated bases (Kanugula et al., 
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2005). Recently, a second nuclease, Endonuclease Q (EndoQ) has been identified in P. furiosus which 

cleaves the DNA backbone on the 5’ side of deaminated bases or abasic sites (Shiraishi et al., 2015). In 

contrast to EndoV, the EndoQ enzyme has a narrow distribution in the archaea (Shiraishi et al., 2015). 

EndoQ forms a physical and functional interaction with the sliding clamp PCNA (Shiraishi et al., 2016), 

which may help direct the enzyme to the replication fork, increase the efficiency of the enzyme and allow 

coordinated repair with Fen1, DNA polymerase and DNA ligase, which are all PCNA-interacting enzymes 

(Figure 5). PCNA is an important partner for many other DNA repair enzymes, including AP Endonuclease 

(Kiyonari et al., 2009), Uracil DNA glycosylase (Kiyonari et al., 2008), the XPF nuclease (Roberts et al., 2003) 

and the more recently characterised Nre protein (Giroux & MacNeill, 2016), which has a clear though as yet 

undefined role in DNA repair. In the future, we can expect that further BER enzymes, particularly nucleases, 

will be discovered in the distinct archaeal lineages. Orthologues of EndoQ outwith the Thermococcales, for 

example, seem very likely to exist but are as yet unidentified. 

 

Double-strand Break Repair 

 

Pathways of DSB repair 

 

Double-stranded breaks (DSBs) are arguably the most lethal form of DNA damage that cells can incur. DSBs 

have the potential to block essential processes such as transcription, DNA replication, and cell division. 

Because both strands of the DNA duplex are broken, the inaccurate repair of DSBs can lead not just to 

mutations but also to genome rearrangements. The most accurate form of DSB repair, which largely avoids 

such collateral damage, is homologous recombination (HR). However, this is a complex and energetically-

demanding process and for this reason, simpler but less accurate pathways of DSB repair operate alongside 

HR (Figure 6). 

 

Non-homologous end-joining (NHEJ) is initiated by binding of the Ku protein complex, which acts as a 

scaffold to recruit nucleases, polymerases and ligases that process and repair the DSB (Figure 5). It is a 

rapid and versatile pathway of repair, which can accommodate DNA ends with a variety of lesions that 

would otherwise be refractory to ligation. Although it is error-prone, NHEJ is commonly used in eukaryotic 

cells, in particular higher eukaryotes that are quiescent in the G1 phase of the cell cycle, because it does 

not depend the presence of a homologous DNA duplex. However, NHEJ in archaea is rare because it 

requires the Ku protein and this is found in only a small number of species. In fact, a complete NHEJ 
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complex, comprising Ku, polymerase, phosphoesterase and ligase, has only been found in Methanocella 

paludicola (Bartlett et al., 2013). Crystal structures of these archaeal enzymes have demonstrated a 

conservation with the bacterial NHEJ counterparts (Bartlett et al., 2016). 

 

Microhomology-mediated end-joining (MMEJ) is a primitive method of DSB repair that does not require the 

Ku complex. Instead, DSBs are resected by exonucleases to expose short single-stranded tracts of homology 

that anneal with each other. Trimming of the resulting flaps is followed by DNA synthesis and ligation 

(Figure 6); like NHEJ, this method of DSB repair can result in deletions. MMEJ has been observed in 

Haloferax volcanii (Delmas et al., 2009, Stachler et al., 2017) and S. islandicus (Zhang & Whitaker, 2018), 

but the enzymatic basis is currently unknown. 

 

Homologous recombination (HR) is the only error-free method of DSB repair, because it uses a second copy 

of DNA as a template (Figure 6). As suggested by its name, HR requires the intact template to be 

homologous to the broken DNA duplex, but genetic studies in S. acidocaldarius have found that archaea 

might utilise shorter tracts of homology than bacteria or eukaryotes (Grogan & Stengel, 2008, Rockwood et 

al., 2013). There are three steps to HR. (1) Pre-synapsis. The DSB is resected by exonucleases to generate 3’ 

single-stranded DNA tails that are bound by the RecA-family recombinase, which in archaea is RadA. (2) 

Synapsis. The nucleoprotein filament formed by RadA engages in a homology search with an intact duplex, 

whereupon it catalyses strand exchange to form a displacement loop (D-loop); the 3’ end in the D-loop is 

used to prime DNA synthesis. (3) Post-synapsis. At this point the invading strand may be displaced by a 

helicase, and the newly-synthesised section of DNA will allow it to reanneal with the other end of the DSB. 

This method of HR results exclusively in non-crossovers. Alternatively, capture of the second DSB end by 

the D-loop will result in the formation of a double Holliday junction structure. This is resolved by structure-

specific endonucleases to yield either crossover or non-crossover products, depending on the orientation of 

the cuts. 

 

HR is the best-studied pathway of DSB repair in archaea (White, 2011). In addition to its primary role in 

DNA repair (Fujikane et al., 2010, Liang et al., 2013, Zhang et al., 2013), HR is used to promote genetic 

diversity following DNA transfer between Sulfolobus species (van Wolferen et al., 2013, van Wolferen et al., 

2015, van Wolferen et al., 2016) and between Haloferax species (Naor et al., 2012, Naor et al., 2016). HR is 

also used to restart DNA replication at stalled forks, which arise at DNA damage or protein roadblocks. This 

ability to initiate DNA replication using the invading 3’ end of a D-loop is harnessed in strains of H. volcanii 

and Thermococcus kodakarensis that are deleted for replication origins. In origin-less mutants, HR is 
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essential because it is used constitutively to initiate all DNA replication (Hawkins et al., 2013, Gehring et al., 

2017). 

 

HR pre-synapsis – Mre11-Rad50 and NurA-HerA 

 

DSBs must be processed by exonucleases to generate the 3’ single-stranded DNA tails that form 

nucleoprotein filaments with RadA. In Escherichia coli, this resection is carried out by RecBCD 

helicase/exonuclease. In eukaryotes, the Mre11 and Rad50 proteins form a complex that initiates resection 

by limited 3’ to 5’ degradation, followed by extensive resection by 5’ to 3’ exonucleases. Mre11 and Rad50 

are conserved in archaea and structural studies have shown that they form a complex with DNA binding, 

unwinding and resection activities (Deshpande et al., 2014, Sung et al., 2014, Liu et al., 2016). In S. 

acidocaldarius, the Mre11-Rad50 complex undergoes post-translational methylation in response to -

irradiation (Kish et al., 2016), and in H. volcanii the Mre11-Rad50 complex act in both the repair of DSBs 

and the compaction of the nucleoid after DNA damage (Delmas et al., 2009, Delmas et al., 2013). 

 

In many archaeal species, the genes for Mre11 and Rad50 are found in an operon with those for the 

hexameric HerA helicase and the NurA nuclease, and the NurA-HerA complex has recently been the subject 

of much exciting research. Structural studies have revealed that NurA forms a toroidal dimer with a narrow 

central channel that can accommodate the two strands of an unwound duplex (Blackwood et al., 2012, 

Byrne et al., 2014). In complex with a HerA hexamer, the NurA dimer generates a continuous channel, 

indicating that HerA-driven translocation propels the DNA duplex through the NurA nuclease ring, where it 

is unwound and degraded (Figure 7) (Rzechorzek et al., 2014, Ahdash et al., 2017). The nuclease activity of 

NurA is modulated by HerA, and was found to be essential for cell viability in S. islandicus (De Falco et al., 

2015, Huang et al., 2015). Bacterial homologues of NurA-HerA have been identified in Deinococcus 

radiodurans, and play a role in HR (Cheng et al., 2015, Cheng et al., 2015). 

 

HR synapsis – SSB, RadA and its paralogues 

 

The 3’ single-stranded tail is bound by the RecA-family recombinase RadA (Morrical, 2015). RadA 

polymerisation is driven by the insertion of an invariant phenylalanine in the N-terminal domain into a 

binding pocket of an adjacent monomer (Figure 8). The DNA in this nucleoprotein filament is stretched 
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~1.5x in length, which facilitates the search for homologous sequences and the strand exchange process 

(Figure 6). To form the nucleoprotein filament, RadA must first displace single-stranded DNA binding 

protein (SSB), a ubiquitous protein with an oligonucleotide-binding (OB) fold, a twisted β-barrel with a 

binding site that accommodates four nucleotides of ssDNA (Lin et al., 2008). The SSBs found in Euryarchaea 

are similar to the heterotrimeric eukaryotic replication protein A (RPA), which forms a heterotrimer, 

whereas the SSBs in Crenarchaea are more akin to the homotetrameric bacterial SSB; both the 

euryarchaeal RPA and crenarchaeal SSBs show a greater variety of architectures than their eukaryotic or 

bacterial counterparts. The S. solfataricus SSB has been shown to interact with RadA and inhibit its single-

stranded DNA-dependent ATPase activity (Rolfsmeier & Haseltine, 2010). In order to stimulate strand 

exchange and overcome inhibition by SSB, the Rad54 protein of S. solfataricus can interact with RadA and 

remodel the topology of the homologous duplex DNA (Haseltine & Kowalczykowski, 2009). 

 

The role of displacing SSB from single-stranded DNA and loading RadA more commonly falls to RadA 

paralogues (Lin et al., 2006) and in this capacity, they are known as recombination mediators. RadB is found 

only in Euryarchaea, it interacts with RadA (Patoli et al., 2017) and functions as a recombination mediator 

in H. volcanii, where it has been proposed to induce a conformational change in RadA and thereby promote 

its polymerisation on DNA (Wardell et al., 2017). Similarly in S. solfataricus, the RadA paralogue SsoRal1 

enhances RadA binding of single-stranded DNA and stabilises the nucleoprotein filament (Graham et al., 

2013). By contrast, the S. solfataricus paralogue Sso2452 and the Sulfolobus tokodaii paralogue stRadC2 

have been found to inhibit strand exchange and D-loop formation by RadA (McRobbie et al., 2009, Wang et 

al., 2012). An in vivo study of two RadA paralogues in S. islandicus, RadC1 and RadC2, has shown that both 

are involved in DNA repair but the effect on HR has yet to be determined (Liang et al., 2013). 

 

HR post-synapsis – Hel308, Hef and Hjc 

 

Once a D-loop is formed it can be used to prime DNA synthesis; the nascent 3’ end may then be unwound 

to reanneal with the other side of the DSB. This is known as synthesis-dependent strand annealing (SDSA) 

and yields only non-crossover products. In archaea, the enzyme responsible for unwinding the invading 

strand is likely to be Hel308, a Ski2-family helicase found in archaea and metazoans but not in bacteria or 

yeast (Woodman & Bolt, 2009). Hel308 is essential for cell viability in S. tokodaii (Hong et al., 2012, Song et 

al., 2016) but not in H. volcanii (TA, unpublished). It interacts with RPA (Woodman et al., 2011) and 

structural studies have shown that when Hel308 is bound to a 3′ single-strand tailed partial duplex (Figure 

9), the helicase domains encircle single-stranded DNA in a “ratchet” for directional translocation (Richards 

Downloaded from https://academic.oup.com/femsre/advance-article-abstract/doi/10.1093/femsre/fuy020/4993143
by University of Nottingham user
on 08 May 2018



 

et al., 2008). It has recently been found that DNA binding and unwinding by Hel308 requires a distinctive 

winged helix domain (Northall et al., 2017). Taken together, these studies suggest that Hel308 controls HR 

at the D-loop step and assists in the restart of stalled DNA replication forks (Northall et al., 2016). 

 

Instead of being unwound, the D-loop may capture the second end of the DSB and thereby form a four-way 

Holliday junction structure. An enzyme that most likely mediates this transition in Euryarchaea is Hef 

(Lestini et al., 2015). A member of the XPF/MUS81 family of structure-specific endonucleases, Hef 

comprises two distinct domains: an N-terminal domain of the DEAH helicase family and a C-terminal 

domain of the XPF endonuclease family, it acts on nicked, flapped and forked DNA (Komori et al., 2004). 

Hef forms specific localisation foci in vivo in response to replication fork arrest (Lestini et al., 2013), and has 

been shown to interact with several DNA repair and replication proteins, including RecJ-like exonucleases 

and the PCNA sliding clamp of the DNA replication apparatus (Ishino et al., 2014, Rohleder et al., 2016, 

Nagata et al., 2017). In H. volcanii, Hef is essential for cell viability when the Holliday junction resolvase Hjc 

is absent, and both the helicase and nuclease activities of Hef are indispensable (Lestini et al., 2010). It has 

been proposed that Hef and Hjc provide alternative means to restart stalled DNA replication forks by 

processing Holliday junctions. 

 

In contrast to Hef, Hjc has only nuclease activity and is specific for four-way DNA structures (Komori et al., 

1999). Enzymes of this class are known as Holliday junction resolvases and are capable of generating 

crossover products (Figure 6). A second Holliday junction resolvase, Hje, is present in Sulfolobales and a 

genetic study of Hjc and Hje in S. islandicus found that while deletion of either hje or hjc had no effect on 

cell viability, deletion of both hje and hjc is lethal (Huang et al., 2015). This parallels the redundancy 

between Hjc and Hef in H. volcanii (Lestini et al., 2010). Hjc has been observed to interact with many DNA 

repair proteins such as the RadA paralogue RadC2 (Wang et al., 2012), the Hel308 helicase (Hong et al., 

2012) and a novel ATPase from S. islandicus  termed SisPINA (Zhai et al., 2017); the latter forms hexameric 

rings, similar to the bacterial Holliday junction migration helicase RuvB. Another novel protein that has 

been reported to bind to Holliday junctions is the phMutS5 mismatch repair enzyme from Pyrococcus 

horikoshii (Ohshita et al., 2017), but unlike eukaryotic MutS homologues that act in HR, phMutS5 showed 

no nuclease activity on branched DNA. 
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Applications of DSB repair 

HR is not only an error-free method of DSB repair but also a cornerstone of archaeal genetics (Leigh et al., 

2011, Farkas et al., 2013). The ability to target a specific gene for deletion or mutation, using plasmid 

constructs with flanking regions of homology, relies on HR (Figure 10). Refinements of these methods have 

enabled the high-throughput generation and screening of targeted mutants in Pyrococcus furiosus (Farkas 

et al., 2012), S. islandicus (Zhang et al., 2013) and H. volcanii (Kiljunen et al., 2014); the latter is notable for 

using a transposon insertion library to carry out saturation mutagenesis, which facilitates the identification 

of non-essential genes in any specific pathway. 

 

Other pathways of DSB repair have been harnessed in genetic manipulation and genome engineering. 

MMEJ has recently been used for a high-throughput method for targeted gene inactivation in S. islandicus, 

in one case the minimal size of micro-homology for marker replacement was as few as 10 bp (Zhang & 

Whitaker, 2018). In Methanosarcina acetivorans, a system of CRISPR-Cas9-mediated genome engineering 

has been developed and it was found that  co-expression the NHEJ machinery from M. paludicola allowed 

efficient genome editing without the need for a repair template (Nayak & Metcalf, 2017). 

 

The enzymes involved in DSB repair have also found applications in vitro. For example, the thermostable 

RadA recombinase from Pyrococcus woesei enhances the specificity of simplex and multiplex PCR assays 

(Stefanska et al., 2016). Similarly, the Hel308 helicase from Thermococcus gammatolerans has found a new 

lease of life as a motor protein for nanopore sequencing. Owing to its ability to unwind duplex DNA and 

ratchet the single stranded DNA through the nanopore in a step-wise manner, Hel308 significantly 

improves the accuracy of single-molecule sequencing (Craig et al., 2015, Derrington et al., 2015, Craig et al., 

2017). 

 

Concluding Remarks 

 

Research into DNA repair in the archaea has flourished since the turn of the millennium, driven largely by 

the availability of genome sequences. However, the emerging picture fits with neither of the 

preconceptions that were held twenty years ago. Archaea are neither “odd” bacteria, a view held by 

detractors of the third domain of life, nor are they “mini-eukaryotes” as proposed by those who believed 

they would serve as simplified models for human cells. Instead, archaea have proved to be every bit as 
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unique and diverse as bacteria and eukaryotes, and the archaeal systems for DNA repair reflect this 

distinctive status. Genomic surveys have revealed a patchwork of bacterial and eukaryotic repair enzymes, 

alongside proteins that are unique to archaea, but laboratory studies have shown that these enzymes do 

not necessarily behave in the same way as their bacterial or eukaryotic counterparts. Nevertheless, one 

aspect of the field has not changed in twenty years – archaea and their systems for DNA repair continue to 

serve as a window into our evolutionary past. 
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Figure 1. Schematic of DNA damage causes, consequences and repair pathways. Further details are found 

in the main text. 

 

 

Figure 2. Distribution of DNA repair genes in the archaea. Genus names on the left are organised as 

members of the TACK superphylum and Euryarchaea. For each genus, a shaded box indicates the presence 

of the relevant gene. Bacterial genes probably acquired by lateral gene transfer are shown in green, others 

in blue. Accession numbers are shown in table S1. 
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Figure 3. Structure of the EndoMS dimer bound to DNA (Nakae et al., 2016). EndoMS subunits are shown 

in cyan and green, with the N-terminal dimerization domain at the top and the C-terminal nuclease 

domains at the bottom. The two catalytic sites are indicated by the green spheres that denote the active 

site Magnesium ions. The DNA duplex (blue) is distorted by EndoMS binding and two bases are flipped out. 
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Figure 4. Structure of XPD from T. acidophilum (Constantinescu-Aruxandei et al., 2016). Motor domain 1 

(MD1) is pink, Motor domain 2 (MD2) green, the FeS domain yellow and the Arch domain teal. The 

covalently bound 5 nt of DNA is shown in blue. The interface between the Arch and FeS domains that must 

open is indicated, and the central pore through which DNA must pass is labelled. 
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Figure 5. EndoQ pathway for Alternative Excision Repair of deaminated DNA. 1. EndoQ detects 

deaminated base, cleaving DNA backbone on 5’ side. 2. DNA polymerase extends the 3’ end of DNA, 

displacing a DNA flap including the lesion. 3. Fen1 removes the 5’ flap, leaving nicked DNA that is ligated by 

DNA ligase (4). The process may be coordinated by PCNA, which interacts with each of the enzymes. Similar 

pathways may pertain for other glycosylases and DNA repair nucleases that interact with PCNA. It is not yet 

clear whether this “molecular toolbelt” view of PCNA reflects reality, as protein partners will associate and 

dissociate in dynamic equilibrium. 
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Figure 6. Pathways of DSB repair. Double-strand DNA breaks are repaired by non-homologous end-joining 

(NHEJ), microhomology-mediated end-joining (MMEJ) or homologous recombination (HR). 

 

 

Figure 7. NurA-HerA complex. Model for how HerA and NurA might process DNA ends. Double-stranded 

DNA is channelled through HerA helicase and unwound by the ploughshare motif in NurA. Both DNA 

strands are degraded by the NurA nuclease. From (Rzechorzek et al., 2014). 
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Figure 8. RadA recombinase. Rad:DNA nucleoprotein filament formation by insertion of phenylalanine into 

binding pocket of an adjacent RadA monomer. From (Wardell et al., 2017). 

 

 

 

Figure 9. Hel308 helicase. DNA duplex is unwound into single-strands by Hel308. From (Richards et al., 

2008). 
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Figure 10. Typical strategy for gene deletion in archaea using HR. A plasmid with flanking homology is 

used to delete and replace a target gene with a selectable marker (∆). A second marker for uracil 

biosynthesis (URA) is used for selection and counter-selection (using 5-FOA) of cells that have undergone 

HR as indicated. 
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