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Abstract

The relationship between structure and function in the human brain is well established, but not yet
well characterised. Large-scale biophysical models allow us to investigate this relationship, by leveraging
structural information (e.g. derived from diffusion tractography) in order to couple dynamical models
of local neuronal activity into networks of interacting regions distributed across the cortex. In practice
however, these models are difficult to parametrise, and their simulation is often delicate and computa-
tionally expensive. This undermines the experimental aspect of scientific modelling, and stands in the
way of comparing different parametrisations, network architectures, or models in general, with confi-
dence. Here, we advocate the use of Bayesian optimisation for assessing the capabilities of biophysical
network models, given a set of desired properties (e.g. band-specific functional connectivity); and in
turn the use of this assessment as a principled basis for incremental modelling and model comparison.
We adapt an optimisation method designed to cope with costly, high-dimensional, non-convex problems,
and demonstrate its use and effectiveness. Using five parameters controlling key aspects of our model,
we find that this method is able to converge to regions of high functional similarity with real MEG data,
with very few samples given the number of parameters, without getting stuck in local extrema, and
while building and exploiting a map of uncertainty defined smoothly across the parameter space. We
compare the results obtained using different methods of structural connectivity estimation from diffusion
tractography, and find that one method leads to better simulations.
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1. Introduction

Large-scale biophysical models (LSBMs) [60, 52, 4]
offer a plausible mechanistic relationship between
brain structure (anatomical properties) and func-
tion (dynamical properties). This relationship has
previously been established by correlating anatomi-
cal connectivity (AC) with resting-state functional
connectivity (FC) [32, 37, 44], leading to the hy-
pothesis that resting-state activity is an emergent
property of the brain, resulting from structured
interactions between spatially distributed popula-
tions of neurons [19]. As such, it would be one of
the few measurable forms of structure-function in-
teraction at the macro-scale, and the ideal activity
to compare against large-scale biophysical simula-
tions.

Although the nature of these interactions remains
to be characterised, this hypothesis is consistent
with more functionally-oriented views, in which the
brain is seen as a network of spatially segregated
units, cooperating transiently over time in order to
carry out the neural computations required for cog-
nition [17, 26]. This view is generally accepted, but
still poses many challenges (e.g. cortical parcella-
tion, connectome estimation, multimodal integra-
tion), some of which affect the large-scale models
that we study here. This should be kept in mind
when discussing the results obtained with partic-
ular models, but the modelling approach itself re-
mains relevant and attractive for many reasons.

Briefly, these reasons pertain either to a method-
ological, theoretical or clinical perspective.
Methodologically, LSBMs offer a unified frame-
work in which previously independent methods —
such as diffusion tractography, neuronal population
modelling and functional connectivity estimation
— are allowed to interact. The ability to connect
multiple aspects of brain structure and function via
their dedicated fields of study is crucial if we are to
build a coherent theory of brain activity. From a
theoretical standpoint, these models are designed
to provide a mechanistic summary of brain activity
in terms of biologically interpretable parameters.
A particular model then effectively encodes our
understanding of some underlying process, at
least to the extent that the empirical data can
support. Finally, clinical considerations derive

from the theoretical ones; reliable estimates of
biologically interpretable parameters can be used
to characterise different conditions, or discriminate
between them [62].

Here, we focus on the theoretical perspective;
specifically with regards to the inference of model
parameters from imaging data. Biophysical mod-
els typically describe the observed data (e.g. fMRI
BOLD contrast or MEG) in terms of interpretable
parameters (e.g. local balance of excitation and in-
hibition or the hemodynamic response). Because
of this formulation, they are gemerative in nature:
for a given set of parameters, one can easily gen-
erate synthetic data according to the model, which
can then be compared to imaging data. However
the reverse — estimating the parameters that best
fit a given observation, also called model inversion
— can be very difficult, depending on the number of
parameters, the complexity of the model, and the
amount of information in the observed data. Un-
fortunately in practice, empirical estimates of the
model parameters are rarely available, and there-
fore model inversion is required in order to gain
insight into the observed data. In this paper, we
frame the inversion of LSBMs as an optimisation
problem, propose a powerful method for solving
this problem which can handle the computational
burden usually associated with simulations, and
demonstrate its effectiveness on a simple yet chal-
lenging example given the current state-of-the-art.

We model MEG resting-state data using delay net-
works of oscillatory neuronal masses, with five pa-
rameters controlling key structural and functional
properties (e.g. average delay between brain regions
or local frequency responses). This model is for-
mulated mathematically as a large system of non-
linear coupled delay-differential equations with over
a hundred state-variables, which is numerically sen-
sitive and computationally expensive to solve. To
further add to the challenges, reliable estimations
of functional connectivity patterns (which are com-
pared against empirical measurements from MEG)
require on the order of a minute worth of data, and
numerical integration methods require timesteps
below the millisecond. Therefore, exploring the dif-
ferent ways in which our model behaves as a func-
tion of the controlled parameters poses immediate
difficulties in terms of computational tractability.



These circumstances call quite naturally for
Bayesian optimisation methods; these methods op-
erate under the assumption that the true objec-
tive function is computationally expensive to esti-
mate, and instead proceed to learning it through
iterative cycles of careful exploratory sampling
and information consolidation. Specifically, the
method presented in this paper is designed for high-
dimensional (in practice up to a dozen parame-
ters with typical LSBMs), non-convex and compu-
tationally costly problems [41]. It is able to ex-
plore the parameter space simultaneously at mul-
tiple scales, allowing local optima to compete for
the best solution, and using uncertainty estimates
to prioritize unexplored regions.

The remainder is organized as follows. We present
the optimisation method in §2.1 and illustrate the
algorithm on a toy-example in Fig. 2. We then in-
troduce the LSBM used in our experiments in §2.2,
and define the optimisation problem for model in-
version (parameters and objective function) in §2.3.
The data used in our experiments is described in
§3.1, and implementation details are given in §3.2.
Finally the results of our experiments are presented
in §3.3 and discussed in §3.4.

2. Methods

2.1. Gaussian-Process Surrogate Optimisation

The method proposed is adapted from [41], and be-
longs to the family of Bayesian optimisation meth-
ods [6]. These methods are designed to tackle com-
putationally expensive black-box global optimisa-
tion problems — that is, optimisation problems for
which a global solution is sought, but where the
objective function is expensive to evaluate, and an-
alytics (e.g. the objective’s gradient) are not avail-
able. It is worth noting that this method is inde-
pendent from the particular problem at hand, and
may be applied to any other context with similar
constraints.

In general, efficient optimisation methods exploit
the structural properties of the problem (e.g. con-
vexity) in order to devise a strategy which guar-
antees rapid convergence to a solution. But in the
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Figure 1: Algorithmic summary of Gaussian-Process Sur-
rogate Optimisation (GPSO). The search space is initially
rescaled to normalise the bounds in each dimension to (0, 1).
The iterations of the algorithm can be summarised in three
main steps; i) exploration, where selected leaves are parti-
tioned, and children are assessed using GP-UCB; ii) evalu-
ation, where we evaluate leaves with maximal UCB at each
scale, using the objective function; iii) update, where we
re-train the GP including newly evaluated points.

case of black-box functions, these properties cannot
be theoretically determined, and therefore an effi-
cient strategy needs to discover them empirically
and adapt as the optimisation progresses. More-
over in the case of expensive objective functions,
the strategy needs to restrict the exploration of the
search space to a minimum, in order to remain com-
putationally tractable. This excludes in practice all
strategies which rely on the gradient or Hessian (be-
cause numerical estimates require many function
evaluations), but also stochastic sampling methods
(e.g. MCMC, particle filters or genetic algorithms)
which typically rely on large numbers of samples
(either for diversity or statistical validity).

2.1.1. Optimism in the face of uncertainty

The problem of finding a suitable strategy given the
previous constraints is best formulated within the
framework of game theory, where computing-time
is seen as a limited resource. The goal is to find the
right balance between exploring the search space, in
order to discover new places of interest with respect
to the objective, and exploiting the knowledge ac-
cumulated by previous iterations, in order to priori-
tize a more detailed search in places of known inter-



est. This is known as the exploration-exploitation
dilemma, the simplest instance of which is the so-
called multi-armed bandit problem (MAB) [2].

In short, the MAB problem consists in picking it-
eratively from a finite set of possible choices, with
repetitions allowed, where the outcome of each
choice is random with unknown distribution. For
any fixed number of picks, the goal is to maximise
the cumulative outcome, by taking the best-known
choice as often as possible (exploitation), while reg-
ularly trying out unknown or uncertain choices (ex-
ploration). A posteriori, the difference between the
outcome achieved and the best possible outcome is
called the regret; minimising the regret or maximis-
ing the reward is equivalent.

In this context, a successful balance between explo-
ration and exploitation can be achieved by adopt-
ing an optimistic strategy, whereby at each turn,
the best possible outcome for each choice is con-
sidered, given an estimate of uncertainty from pre-
vious trials. We then iteratively pick the choice
with the best expected outcome, and update our
uncertainty according to the result obtained. This
strategy is known as the upper confidence-bound
method (UCB), and in the next paragraphs we ex-
plain how it can be implemented in the context
of non-linear optimisation. More detailed explana-
tions about UCB can be found in [§].

2.1.2. Gaussian-Process surrogate

The previous paragraphs give an overview of the
strategy adopted, but do not provide a practical
solution to our problem. The first issue is that
the MAB applies to finite sets of choices, whereas
we consider search spaces in which each point is
a candidate set of parameters for our models. In
fact, adapting the UCB strategy to the latter goes
even deeper than considering an uncountable set
of choices, it also introduces the notion of a neigh-
bourhood for each choice, which should be exploited
to enforce smoothness assumptions and propagate
knowledge about the objective.

The second issue concerns the representation of
this knowledge. Bayesian optimisation methods are
only able to tackle such difficult problems because

they effectively learn the objective as the optimi-
sation progresses, and adapt their search for a so-
lution according to the current state of belief at
each iteration. This learned representation is typi-
cally defined smoothly across the search space, and
much cheaper to evaluate than the true objective
function. It can therefore be used as a surrogate
for the true objective function during optimisation,
allowing for computationally tractable analysis and
exploration planning. To achieve this, a powerful
mathematical tool is required; one not only capa-
ble of regressing any sample of points from the ob-
jective function (multivariate in general), but also
providing smooth estimates of confidence (or un-
certainty) across the search space.

Fortunately, this is exactly what Gaussian process
regression (GPR) does, and it has been used suc-
cessfully in the past to solve this second issue [15].
Moreover, resorting to Gaussian processes (GP)
also provides intuition into the first issue; GPs can
be thought of as an extension of multivariate Gaus-
sian distributions to the infinite case, where any
finite subset of points in the search space is itself
Gaussian distributed, and the dependence between
any pair of points is specified by the covariance
function, which usually encodes the idea of neigh-
bourhood (typically chosen as a decreasing function
of the distance between two points). More details
about GPs can be found in [49].

Using GPs enables the regression of any finite sam-
ple of points to represent arbitrary objective func-
tions; provides us with a smooth estimate of un-
certainty; and encodes the idea of neighbourhood
explicitly via the covariance function. The only
missing ingredient is a method to overcome the fact
that points in the search space cannot be indexed
like discrete choices (they are uncountable); with-
out it, the present context of continuous optimisa-
tion cannot relate to the MAB problem, and the
UCB strategy cannot be applied.

This is achieved in [41] by the introduction of a
partition function, which splits the search space
into distinct subregions that can be explored in-
dependently, and can in turn be partitioned them-
selves to reach a finer resolution — that is, the par-
tition function is recursive. Recursivity confers ex-
ponential convergence towards regions of interest,



lteration 1 lteration 13 lteration 17

6 eval 25 eval 36 eval
80
* Evaluated Points
70 @ |nitial Points
60 ]
L]

aAnos[a0

(erebouing-annoalgqQ)

Figure 2: Gaussian-Process Surrogate Optimisation (GPSO) on Matlab’s peaks function. This figure shows the partition
of the search-space overlaid on top of the true objective function (top-row), and surrogate objective function (bottom-row)
for 3 different iterations (columns). Surfaces show the expected value of the GP surrogate, and colours indicate differences
with the true objective: red tones mean the true objective is higher than the surrogate (conversely for blue). Iteration 1.
Initial sample and 2 points evaluated in the first iteration; the top and bottom initial points are near a peak and a trough,
hence the slope of the surrogate. Iteration 13. The algorithm initially finds a local maximum, and converges rapidly to
its peak by refining the partition around it. Meanwhile, exploration at larger scales hits the slope of the highest peak; the
surrogate function shows that the corresponding peak is misaligned (red patch between the two peaks), but it is already
higher than the previous one. Iteration 17. The discovery of a higher peak at a larger scale froze the subdivision near
the first local maximum. The algorithm converged to the global optimum after 4 iterations. The surrogate peaks are now
both aligned with the truth (green colour).



and induces a hierarchical structure amongst sub-
regions according to their size (larger regions are
non-overlapping unions of the smaller regions con-
tained within them), which can be represented by
a partition tree. Each node in this tree corresponds
to a rectangular region of the search space, cover-
ing a unique combination of subintervals in each
dimension (each corresponding to a range of values
for each parameter), and the size of which decreases
strictly with the depth, allowing for arbitrarily high
resolutions. In other words, the partition function
allows us to identify regions in the search space
with arbitrary resolution, and since there are only
a discrete number of nodes at each level, the UCB
strategy can be applied in a multi-scale fashion.

An illustration of this algorithm is presented in
Fig. 2, using Matlab’s peaks function in a two-
dimensional context. The partition of the search-
space over three iterations is overlaid on top of
the objective function (coloured background), to
demonstrate the refinement of the resolution in
places of interest. The associated partition tree is
shown in Fig. 3, where each node corresponds to a
different region of the search space (the deeper the
node, the smaller the region), and colours indicate
either the evaluated scores or the UCBs.

2.1.8. Concrete implementation

The main challenge of global optimisation meth-
ods, as opposed to local methods, is to deal with
local extrema in the objective function. This chal-
lenge can be efficiently tackled by carrying out
multiple local searches in a sequential (e.g. sim-
ulated annealing, Metropolis-Hastings) or parallel
(e.g. particle filters, genetic algorithms) manner.
The method proposed here implements a special
case of the parallel approach, which organises can-
didate solutions hierarchically using the partition
tree introduced in the last paragraph.

The algorithm proceeds iteratively (after initial-
isation) by: selecting at each level a leaf node
with maximal UCB; subdividing selected leaves fur-
ther using the partition function; exploring chil-
dren nodes to assess their UCB; and retraining the
GP surrogate with new evaluations of the objective
function. We summarise this in the diagram Fig. 1.
Note that, because selected nodes are leaves, we

consider at each step a set of regions located in dif-
ferent parts of the search space; and because we
select at most one leaf per level in the partition
tree, we explore the search space simultaneously at
multiple scales.

From there, there are three points to clarify in order
to get a concrete implementation:

1. For any point x in the search space, the upper-
confidence bound is defined as:

UCB(@) = (@) +50(@) (1)
where p(z) corresponds to the expected value
of the objective function f at point x given by
GPR, o(zx) is the associated standard devia-
tion, and ¢ is a positive factor controlling our
optimism?.

2. Each leaf node in the partition tree is labelled
as being either: ewvaluated, meaning that the
objective function was evaluated at its centre;
or GP-based, meaning that its associated score
was estimated by UCB. Specifically, the score
associated with a GP-based leaf corresponds
to the best UCB amongst N points randomly
sampled within the corresponding area in the
search space. At each iteration, selected GP-
based leaves are evaluated prior to being parti-
tioned, and the score associated with any eval-
uated node is the value of the objective func-
tion at its centre.

3. The partition function is a ternary split along
the largest dimension of the subregion consid-
ered (in normalised coordinates). This is not
a trivial choice; it satisfies several desirable
properties with regards to the optimisation, al-
though none of them is required. First, it pro-
duces non-overlapping subdivisions, which en-
sures that there is only one path converging to
any specific point in the search space, avoiding
redundant competition between nodes. Sec-
ond, the centre of the parent node is also the
centre of the middle child, which saves us an
evaluation of the objective function at each
split. And third, because of this conserved

2For a GP with Gaussian likelihood kernel, the upper
bound of a p% confidence interval on the expected value
corresponds to ¢ = erfc~1(p/100), where erfc is the comple-
mentary Gauss error function.
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Ternary partition tree associated with the example shown in Fig. 2. Each node corresponds to a different

subinterval of the search space; colours correspond to the associated scores (upper-confidence bounds); and edges represent
set-inclusion (parent intervals are the union of their children). In particular, deeper nodes correspond to smaller intervals in
the search-space (resolution increases with the depth). Bigger nodes with a black rim indicate that the objective function
was evaluated at their centre, smaller nodes were assessed using the GP surrogate only. Deeper orange branches at the
centre correspond to the local maximum found initially, and red branches on the left correspond to the highest peak.

point, we can guarantee that the children of
a node do not recede, meaning that the pro-
gression within a branch is monotonic.

Finally, an improvement can be made on the selec-
tion process; it is pointless to explore regions at a
smaller scale, if some region at a larger scale has
a better expected score. Therefore, the selection
proceeds sequentially from the root to the deeper
branches, and we discard levels at which the max-
imum UCB does not improve upon the best ex-
pected score so far. In effect, this introduces com-
petition between the different scales, and prevents
dwelling around local extrema.

The benefits of this improvement are illustrated in
Fig. 2, where the exploration of the first local ex-
tremum stops after a region at a larger scale obtains
a better score. This exploration will only resume
once all regions at the same resolution are either ex-
plored (unlikely) or obtain a lower expected score
than this local extremum. Further evidence of the
ability of GPSO to converge towards the global op-
timum will be presented in the context of LSBM
optimisation (see Fig. 7), and in higher-dimensional
spaces (see appendix).

2.2. Large-Scale Biophysical Model

In this paper, we use the Bayesian optimisation ap-
proach introduced in the previous section in order
to optimise the parameters of whole-brain dynam-
ical models. Specifically, we consider networks of
interacting Wilson-Cowan oscillators with delays.
This model posits that the electrophysiological os-
cillations typically observed in MEG data result
from cycles of excitation and inhibition [61], and
has been employed previously, notably in [16] to
highlight the importance of propagation delays and
long-range couplings between distant brain regions,
with regards to synchronisation properties in the
dynamics produced.

2.2.1. Assumptions and definitions

The brain is modelled as a network of neuronal
masses, in which vertices correspond to spatially-
contiguous brain regions, and edges represent direct
interactions between these regions. Each neuronal
mass may contain several subpopulations of neu-
rons, or several state equations, and so to distin-
guish between these local entities and the differ-
ent brain regions in the network, we call nodes the



’ Symbol ‘ Description ‘ Value ‘
T Time-constant 10 ms
W Response threshold 3
o Dynamic range w/6
Cee, Cei Excitatory coupling 28,7
Cie, Cii Inhibitory coupling | —35,0
P; Inhibitory input -0.3

Table 1: Baseline parameters for the Wilson-Cowan model
(see Eq. 3,4). Where subscripts are omitted, the descrip-
tion and value of the parameter apply to both subpopu-
lations. The excitatory input P is controlled during our
experiments. The response parameters (u, o) were set such
that small inputs (compared to the dynamic range) would
cause the system to oscillate. The couplings were set accord-
ing to a ratio of 80% self-excitation (cee/(cee + cei) = 0.8),
and such that the relative strength of excitation and inhibi-
tion would be equal (cee + Cei = Cie + Cis)-

vertices corresponding to a subpopulation or state
equation, and wunits the groups of vertices located
in the same brain region.

We are interested in emergent oscillatory activity
in these networks, which is assumed to be driven
by cycles of excitation and inhibition in each re-
gion. Therefore, two subpopulations of neurons are
considered: an ezcitatory subpopulation (E) driv-
ing towards increased oscillatory activity, and an
inhibitory subpopulation (I) driving towards quies-
cence. The effects of self- and long-range inhibi-
tion are neglected, meaning that there are no I-to-I
edges, and only E-to-E edges between units. Fi-
nally, we do not consider noisy inputs or synaptic
plasticity in this paper: their effects has been ex-
plored in separate work [1].

2.2.2. Local oscillations

The Wilson-Cowan model [61] (henceforth W-C)
describes the temporal variations of the amount
of neurons firing within an excitatory and an in-
hibitory population of neurons, given static local
couplings between the two (related to the distribu-
tion of synaptic connections), and an external input
controlling the excitability of the system.

It introduces so-called “subpopulation response
functions”, defined as the cumulative distribution

of local firing-thresholds within each subpopula-
tion. These distributions are generally assumed
unimodal and symmetric, leading to sigmoidal cu-
mulative functions. In practical terms, the subpop-
ulation response function represents the expected
response of an initially quiescent population of neu-
rons to an external input, and is modelled as a lo-
gistic sigmoid:

_ 1 LT[
C14e® A

Ve eR, S(x; w,o) (2)
where p represents the response threshold, and o
controls the width of the dynamic input range.

Let E(t) denote the ratio of excitatory neurons fir-
ing at time ¢ within a brain region (resp. I(t) for
inhibitory neurons). Neglecting refractory effects,
the W-C model states that:

rOE = —E+8, (ceeE Feied + PE) (3)

(4)

where O;e denotes the derivative with respect to
time; ¢y = €5y is the directional coupling of = af-
fecting y; Se,; are the subpopulation response func-
tions; and P, ; are external inputs. The remain-
ing parameters are given in Tab. 1. Notice that
although the equations are identical for both sub-
populations, the inhibitory coupling coefficients c¢;¢
and ¢;; must be non-positive (by definition), while
the excitatory coefficients c.. and c.; must be posi-
tive, which breaks the apparent symmetry between
excitation and inhibition.

0l = -1+ S; (CeiE + cid + Pi)

In summary, the oscillatory mechanism of this
model is simple: i) excitatory inputs lead to an in-
crease in excitatory activity; ii) excitatory activity
causes an inhibitory response; iii) decreased exci-
tation leads to decreased inhibition; iv) which, in
turn, leads to a relative increase of excitatory in-
puts. The architecture of this model, as well as
typical dynamics produced, and the effects of key
local parameters on these dynamics, are shown in
Fig. 4.

2.2.8. Network extension

Extending the previous local equations to a net-
work of interacting brain regions consists in adding
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Figure 4: Illustrations of the Wilson-Cowan unit. Top-left: local two-population structure (excitatory and inhibitory),
without self-inhibition (¢;; = 0) and with long-range excitation only (blue dashed lines). Top-right: example oscillatory
timecourse showing inhibition (red dashed line) lagging behind excitation (blue plain line); the lag is controlled by the
decay-times 7 ;, and here P. = 0.84. Bottom-row: evolution of standard-deviation (surface height) and frequency mode
(colormap) as a function of excitatory input, and varying parameters. Black lines correspond to increasing Pe, using
baseline parameters given in Tab. 1. The unit is always silent without excitatory input, and saturates for large inputs —
the interval between oscillatory and saturation thresholds is the dynamic range of the unit. Notice that the frequency of
oscillations depends on the input; this property allows remote brain regions to affect the local phase via their connection,
which is a potential mechanism for long-range synchronisation. Left: the oscillatory frequency can be controlled by shifting
both time-constants 7. ; simultaneously. Middle: controlling 7; with 7. fixed affects both the frequency and amplitude of
the oscillations. Right: an upscale of local couplings dilates proportionally the dynamic range of the unit.



coupling terms from those remote regions inside
the subpopulation response functions. The general
node equation (whether excitatory or inhibitory) in
a network of IV brain units is therefore:

2N
T Xp = —Xi + S [ D einXi(t— Ajx) + P

j=1

()
where 1 < k < 2N with the convention that odd
indices correspond to excitatory nodes (resp. even
for inhibitory nodes); X} is the normalised firing-
rate of node k (corresponding to previous variables
E and I at the unit-level); and we introduced delay
parameters \j i = Ajx € R4 to account for prop-
agation times between distant brain regions. These
delays are of the same order of magnitude as the
decay-times of local subpopulations, and therefore
interfere with their dynamics®

2.8. Model Optimisation

The model presented in the previous section de-
scribes the activity of a network of N brain re-
gions, using 2N state equations (see Eq. 5). In
general, this network will not be sparse, mean-
ing that there are O(NN) non-zero coupling terms
in most state equations, hence the high computa-
tional costs associated with simulations in practice
(there are O(N?) interaction terms to be computed
at each time-step). As it stands, there are also
O(N?) parameters, because of the coupling and
delay matrices, respectively [¢; ;] and [A;;]. It is
therefore impractical to move on directly to the
simulation of such systems, without a more par-
simonious parametrisation of the model.

In this section, we propose a simple parametrisation
controlling key structural and functional aspects of
the system with few parameters. These parameters
can be inferred from empirical MEG data, using
the method presented previously in §2.1, by fram-
ing model inversion as an optimisation problem, for
which we propose an objective function below.

3Such delays are caused mainly by axonal conduction and
synaptic transmission, both highly dependent on tempera-
ture, and range from hundreds of micro-seconds to tens of
milli-seconds at long-range [51].
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2.83.1. Assumptions

For simplicity, we assume that all units in the
network are identical, and that excitatory and
inhibitory subpopulation response functions and
time-constants are identical (see Tab. 1 for base-
line parameters). Each unit is normally defined by
9 parameters (7, i, o for each node, and cee, Cei, Cie),
so these assumptions reduce the number of unit pa-
rameters from 9N to 6.

Since there are two nodes per unit (excitatory and
inhibitory), the connectivity and delay matrices
have a 2-block structure. For instance, with the
coupling matrix, all on-diagonal blocks are identical
(and contain the local couplings), and off-diagonal
blocks only have one non-zero entry (only E-E long-
range connections):

Cee Cei Ci,j 0
ce O 0 0
On-diagonal Oftf-diagonal

With the delay matrix, we reason in pairs of units
instead of nodes (i.e. the delay between two regions
is the same regardless of which subpopulations we
consider in each). Therefore the 2-block between
units ¢ and j is simply:

/\i,j (

and we neglect delays within units (A; ; = 0). De-
lays are estimated from pairwise Euclidean dis-
tances, and we assume a constant propagation ve-
locity throughout the brain to avoid introducing
additional parameters.
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We only consider cortico-cortical connections in
this work, and assume that the two hemispheres
correspond to subnetworks of equal size (N/2
units). The latter induces an additional N-block
structure in the previous matrices, which is useful
for two reasons:

e to our knowledge, there is no evidence for one
hemisphere driving brain activity more than
the other, or for a lateral bias in the AC be-
tween hemispheres, therefore requiring both to
have the same size ensures that the overall AC
within and between hemispheres is structurally
unbiased;



e from a purely practical perspective, the as-
sumption of hemispheric symmetry makes it
easier to manipulate connections within and
between them, as in Eq. 8 for instance.

Finally, note that despite these numerous assump-
tions the network is still heterogeneous due to the
different coupling weights and delays assigned to
the edges of the network; this is consistent with the
overall objective of studying the effects of structural
properties on dynamical activity.

2.8.2. Parametrisation

Let D be the matrix of pairwise Euclidean distances
between brain regions, and A the associated matrix
of anatomical connectivity estimated from diffusion
tractography (both N x N). By convention, the
diagonal of A is set to zero, and we recall that exci-
tatory and inhibitory nodes are indexed between 1
and 2N, respectively with odd and even numbers.

The coupling matrix C' = [¢; ;] and delay matrix
A = [)\; ;] are parametrised respectively as follows:

1 0 Cee Cei
C_7A®(0 O)HN‘@(% 0) (6)
non-local local
A 11
A=ZDo <1 1) (7)

where ® is the Kronecker product; I the identity
matrix; D the average pairwise distance; and we
introduced the following parameters:

e ~ the global coupling strength, controlling the
overall amount of non-local coupling;

e and ) the average propagation delay, control-
ling the speed of interactions.

Note that although matrix A might be symmetric,
C'is not; the element in row ¢ column j corresponds
to the edge from node i to node j (not unit), and
therefore each column can be seen as a coupling
vector for the corresponding node.

Probabilistic tractography methods have an in-
herent bias towards shorter connections; longer
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streamlines are less probable, and therefore con-
nectivity between distant regions is generally lower
[55] (see Fig. 5). This may reflect a biological real-
ity [22], but beyond the issue of assessing the accu-
racy of the estimated decrease, there is the question
of whether the same decrease rates apply equally
within or between hemispheres. In order to correct
for such potential bias, we introduce an additional
parameter h to manually scale inter-hemispheric
connections, which correspond to the off-diagonal
N-blocks in matrix C. This scaling is affected to A
directly, before substitution in Eq. 6:

)

where ® is the Hadamard product (element-wise)
and 1 is a full matrix of ones.

(®)

1 A
A(—‘A@|:1N/2®(h 1

Finally, we consider two functional parameters af-
fecting the oscillatory dynamics of all units:

e the time-constant 7, assumed equal for all
nodes, which controls the frequency response
of W-C units (see Fig. 4);

and the excitatory input P,, assigned equally
to all excitatory nodes in the network, which
controls the excitability of individual units
when they are below oscillatory threshold.

Equations 6, 7 and 8 determine entirely the network
structure, and we consider five parameters to be
optimised, in Tab. 2, which control key structural
and functional aspects of our model.

2.3.3. Relative variants

The previous parameters control key structural and
functional aspects of our LSBM, but their range
of values can vary depending on the AC matrix
considered (and more generally, the oscillatory unit
considered). This means that a suitable domain for
optimisation needs to be determined ad hoc every
time, which makes it difficult to compare solutions
found across models.

We know (see Fig. 4) that W-C units oscillate for
excitatory inputs beyond a certain threshold value
Pr. Similarly at the network level, we know that



Symbol Description Short-name | Range
P. Relative input Input (0.6,1)
¥ Relative coupling Coupling (1,3)
A Average delay (ms) Delay (1,50)
h Inter-hem. scaling IH Scaling (0,4)
T Time-constants (ms) Tau (4,16)

Table 2: Network parameters controlled during optimisation. The ranges correspond to the boundaries of the search space
(required by GPSO). The parameter variants P. and 7 are defined in §2.3.3. Short names are used in figures 7, 10 and 12.
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Figure 5: Structural information used in the biophysical models. Row 1: AC matrices estimated from diffusion tractog-
raphy, using two different seeding methods (connl, conn3), and two normalisation methods (mean, fractional scaling), see
§3.1.1 for details. Row 2: thresholded network (90" percentile) showing the strongest edges in corresponding AC matrices.
conn3 seeding favours homotopic connections, whereas connl favours anterior-posterior connections, and mean normali-
sation shows stronger connectivity in the frontal lobe. Bottom-left: matrix of pairwise distances showing hemispheric
block structure. Lower distances around the diagonal are due to the ordering of the different regions (chosen manually).
Bottom-right: basic statistics on connectivity weights. Connectivity decreases exponentially with the distance (left, GP
regression showing predicted means and 95% confidence intervals). Average degrees are higher in the frontal and occipital
lobes (right, bars shown for each method, and grouped by lobe); fractional scaling reduces frontal connectivity, while
increasing temporal and and parietal ones; and connl seeding yields higher connectivity in the temporal lobe, and lower

in the occipital lobe.
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oscillations occur for coupling values beyond a cer-
tain threshold value v* (which is null if the units
intrinsically oscillate on their own).

Normalising these parameters with respect to their
threshold value would help, not only to compare
them across different models, but also to easily con-
trol the state of the network (oscillating or silent)
and focus on the oscillating regimes during opti-
misation. Hence, we define the following relative
variants instead:
P.=P,/P;

¥=v/7" 9)

and use them throughout our experiments.

With these definitions, we know for example that
P, < 1 corresponds to brain units below oscilla-
tory threshold, and that networks are in oscillatory
regime only when 7 > 1. And we can enforce these
conditions during optimisation by choosing the pa-
rameter ranges accordingly (see Tab. 2).

However, determining the threshold value v* is not
trivial, because it depends on P} (the unit oscil-
latory threshold), as well as on other controlled
parameters such as the average delay and inter-
hemispheric scaling. While P} can be determined
numerically (e.g. with bifurcation analysis), to our
knowledge there is no simple method for estimating
the oscillatory coupling threshold v* for any given
delay-network.

In our experiments, for any candidate set of param-
eters (including normalised input and coupling),
both threshold values were estimated prior to simu-
lation in order to determine the corresponding val-
ues P. and -y, which are required in order to build
the network (see previous section). This was done
by dichotomic search with a precision of 3 signifi-
cant digits. The overhead introduced, in terms of
runtime, was on the order of a minute per candi-
date set of parameters (largely dominated by the
search for v*; the search for P always took less
than a second).

2.8.4. Objective function

The optimal parameters should maximise the sim-
ilarity between biophysical simulations and real
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MEG data, and this similarity should be assessed
using characteristic features of resting-state dy-
namics. In this paper, we take a simple objective
function comparing FC matrices across six overlap-
ping frequency bands:

[4,8] [6,10] [8,13] [10,20] [13,30] [20,40] Hz

As excitatory pyramidal cells contribute most
strongly to EEG/MEG signals, we associate activ-
ity in the excitatory populations of the model with
signals in experimental data [9]. Envelope corre-
lations were computed in each band, as is com-
monly done with resting-state MEG (more details
in §3.1.2).

Importantly, the simulated timeseries were orthog-
onalised prior to computing Hilbert envelopes (us-
ing the Procrustes method from [12]), in order to
replicate the effects of leakage correction on source-
reconstructed MEG data.

Denoting M g the corresponding FC matrices,
where subscripts identify the frequency-band, we
define the relative connectivity magnitude as:

- [l

where iy, is the average off-diagonal correlation co-
efficient in matrix M;,. By definition, the largest
element in this vector has magnitude 1 (e.g. in al-
pha band), and the other values give the relative
amount of connectivity in one band compared to
the principal one (e.g. in theta compared to alpha).

Kk

_ 10
maxp, || (10)

This vector is computed for the simulated and ref-
erence data independently, in order to compare the
relative amounts of connectivity across frequency
bands. Note that because we divide by the largest
correlation coefficient across bands, this compari-
son is insensitive to any scaling of either set of ma-
trices (reference or simulated), which can vary as a
function of the signal-to-noise ratio for instance, or
the amplitude of the oscillations.

Finally, the objective function used in our experi-
ments combines the similarity between relative con-
nectivity magnitudes, and the average within-band



correlation between simulated and reference FC
matrices:

uref _ usim 1 6 <im o
[1 -~ RMS (2)} S b; Corr (Mg™, M;e")

where superscripts refer to the simulated or refer-
ence data, and the first factor is a normalised mea-
sure of similarity (in [0,1]) based on a root-mean-
square metric, which is 1 when w'f = ¥, and
decreases towards 0 as the distance between them
increases.

3. Results & Discussion

3.1. Imaging data
3.1.1. Anatomical structure

The Desikan-Killiany cortical parcellation [20] was
used in all experiments to define brain regions (or
“units” in our network models). The AC between
regions was estimated using probabilistic diffusion
tractography [3, 39], and averaged across 10 diffu-
sion MRI datasets from the Human Connectome
Project (HCP) [59, 54]. Distortion corrected data
[30] was used to estimate fibre orientations [40, 36],
and used subsequently for probabilistic tractog-
raphy in FSL. Delays between regions were esti-
mated using Euclidean distances between the re-
gion’s barycentres.

Two different seeding methods were used to com-
pute dense tractography connectomes: with the
connl method, streamlines were seeded from the
WM/GM interface; whereas the conn3 method con-
sidered every brain voxel as a seed. The number
of streamlines reaching locations on the WM/GM
boundary (~60k vertices in standard MNT space, as
given by the CIFTI format [30]) were recorded.

Both connectomes were then parcellated and nor-
malised in order to estimate anatomical connectiv-
ity between each region. Two different normalisa-
tion methods were used [22]:

e the mean method counts the number of stream-
lines between pairs of vertices belonging to two
regions, and divides by the number of vertices
in both;

c
e
©
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Figure 6: Distribution of similarity score (see §2.3.4) es-

timated on real MEG data across all 28 subjects, for time-
windows of varying length (15 to 150 sec, 50% overlap). The
black centreline is the median similarity score as a function
of the window-length, and the orange patch shows the asso-
ciated 95% confidence interval. This distribution is used as a
gold-standard to assess the performance of our simulations;
for a time-length of 60 sec, the upper similarity bound with
95% confidence is 0.41, and the best score obtained with our
simulations was 0.42 (see Fig. 11).

e whereas fractional scaling (£s) divides instead
by the sum of all streamlines involving either
of two regions.

Conceptually, the first normalisation accounts for
differences in size between different regions, while
the second method accounts for differences in con-
nectivity between pairs of regions instead (which
indirectly accounts for differences in size as well).

Finally, each connectivity matrix was made sym-
metric by arithmetic average with its transpose,
and rescaled such that the average degree (sum of
rows or columns) be unitary. The corresponding
AC matrices are shown in Fig. 5.

3.1.2. MEG resting-state

The resting-state datasets of 28 healthy subjects
from previous studies [7, 50] was used in our ex-
periments. Details about the acquisition and pre-
processing can be found in these references. In par-
ticular, the anatomy of the subjects was aligned
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with the MEG sensor-array by a combination of
head-tracking (using fiducial coils), and surface-
matching between a digitised head-shape and one
derived from structural MRI, as is common for
MEG acquisitions. The data were beamformed into
MNI 8mm standard space between 4 and 40Hz,
parcellated using PCA, rescaled to set the largest
standard-deviation to 1, and orthogonalised to cor-
rect for spatial leakage using the Procrustes method
from [12].

Each dataset was then filtered in the following six
overlapping frequency bands:

[4,8] [6,10] [8,13] [10,20] [13,30] [20,40] Hz
and correlations between Hilbert envelopes were
computed in each band. The resulting band-
specific FC matrices were then averaged across 28
subjects, and taken as reference data for our simu-
lations to be compared against. These reference FC
matrices in theta, alpha and beta bands are shown
along with the best simulated results in Fig. 9.

In addition, we performed a time-windowed anal-
ysis on real MEG data in order to assess the best
similarity scores to be expected as a function of the
simulation time-span in our experiments (see objec-
tive function in §2.3.4). Specifically, for a window
of a given time-length, we extracted segments of
source-reconstructed time-series from all 28 MEG
datasets, estimated the functional connectivity ma-
trices for each of these segments, and computed the
associated similarity scores as if those were simu-
lated data.

The distribution of scores obtained (see Fig. 6) was
taken as a gold-standard for our simulations; we
should expect our best simulations to hit the upper-
end of this distribution, but significantly higher
scores would indicate overfitting, and lower scores
would indicate poor model performance.

We also used this analysis in order to strike a
reasonable balance between higher expected scores
and longer simulation times. The computational
costs associated with longer simulations were con-
siderable, and this analysis allowed us to assess the
expected penalty for choosing shorter simulation
times. We opted for simulations with an equiva-
lent of 60 seconds worth of data in our experiments
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(downsampled to 300 Hz before analysis); for this
time-length, the corresponding upper-bound for the
expected similarity scores with 95% confidence is
0.41, and the best score obtained in our experi-
ments was 0.42 (see Fig. 11).

3.2. Software implementation

3.2.1. GP Surrogate Optimisation (GPSO)

We improved upon the implementation of IMGPO
[41], by addressing a number of issues and extend-
ing the algorithm in several ways. Our implemen-
tation is a complete refactoring of the original al-
gorithm, and is made freely available?.

Our main contributions are listed below:

e to update upper-confidence bounds following
the optimisation of GP hyperparameters at
each iteration, in order to allow belief prop-
agation across the partition tree;

to enable the exploration of candidate leaves
using uniformly random samples of points in
the corresponding subregion of the search-
space (the original implementation only ex-
plored a subset of the dimensions in a deter-
ministic manner);

to implement serialisation, allowing for the op-
timisation to be resumed at any stage.

The various settings used during our experiments
are listed in Tab. 3.

3.2.2. Biophysical Simulations

The LSBM presented in §2.2 was implemented in
C++, and simulations were analysed with Matlab.
The system of non-linear coupled delay-differential
equations (see Eq. 5) was solved using an adaptive-
step Runge-Kutta method of order 8 adapted from
the reference Fortran implementation Dopr853 in

4See: https://github.com/jhadida/gpso. The license
(AGPLv3) permits any use of the code, without warranty,
provided that license and contributors are preserved, and
that any modification is made freely available under the
same terms.


https://github.com/jhadida/gpso

Function Hyperparameter ‘ Value ‘
UCB S 1.98
Constant mean I 0
Gaussian likelihood o 0.001
Isotropic Matérn Length 0.25
covariance (order 5) Magnitude 1

Table 3: GPSO hyperparameters and initial values used for
all experiments. The optimism ¢ corresponds to confidence
bounds of 99.5% (i.e. erfc™1(0.005)), which was found to
strike a good balance between exploration and exploitation.

[33]. The main computational bottleneck in the
simulations is due to the number of feedback terms
to be computed at each time-step; since network
matrices (delay and coupling) are not sparse, the
complexity is quadratic in the number of nodes in
the network. At each timestep of size h, the sum
of delayed terms in each equation were computed
across multiple threads at time ¢t and t + h, and in-
terpolated for each substep using an exact formula
(that is, the interpolation does not make any ap-
proximation). These optimisations allowed for sim-
ulation times roughly two times slower than real-
time using four threads on modern CPUs.

The initialisation of delay-systems is a sensitive op-
eration. In contrast with initial-value problems,
which typically require a single initial state, delay-
systems require a smooth function for initialisation.
This function must be defined over a time-interval
[to — A, to], where t is the initial time and A is
at least as large as the largest delay. Additionally,
it should itself be a solution of the system, which
makes the problem circular.

To our knowledge, there is no solution to this prob-
lem. In our experiments, for each simulation, we
calculated the fixed point (F,T) to which individ-
ual units converged given the current excitatory in-
put®, and set the initial function to be constant and
equal to these values in each unit. It is equivalent
to assume that units are initially disconnected from
the network for a certain period of time.

5We know it is a fixed-point because we only choose in-
puts below oscillatory threshold (see Tab. 2).

16

3.3. Experiments

We present the results of two experiments which
demonstrate the benefits of GPSO in the context of
LSBMs. The first experiment is a proof of concept
in a restricted two-dimensional case, which allows
results to be visualised and compared with exhaus-
tive search. The second experiment considers the
full model with five parameters, for which we pro-
vide a detailed analysis of the results and highlight
the current limitations.

3.3.1. Two-dimensional example

In this experiment, the similarity between simu-
lated and reference MEG data was maximised ac-
cording to the objective function defined in §2.3.4,
by optimising just two parameters for now; the av-
erage delay A, and the relative network coupling
5. The remaining parameters (see Tab. 2) were
set to: 13; = 0.85,h = 1,7 = 10ms, and we used
the connl_mean AC matrix to connect the network
units. The timespan of each simulation was 63 sec-
onds, and we discarded the first 3 seconds to get
rid of transient effects before analysis. The results
are shown in Fig. 7.

The performance of GPSO was assessed by com-
parison with an exhaustive grid search, which is
computationally tractable with two dimensions and
can be easily visualised. The grid search required
525 simulations, considering respectively 25 and 21
equally spaced points across the value ranges of
the delay and coupling parameters. In comparison,
GPSO was run with 100 simulations, with which it
successfully converged to the optimum, while learn-
ing a surrogate objective function defined smoothly
across the search space, along with a map of uncer-
tainty. These results demonstrate the efficiency of
the method in a restricted two-dimensional context
of LSBM optimisation. The performance of GPSO
in higher dimensions is further assessed in the ap-
pendix, where we also provide a comparison with
particle-filter optimisation [42].

3.3.2. Fie-dimensional analysis

In this second experiment, we consider all five pa-
rameters listed in Tab. 2, and all four connectivity
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Figure 7: Exhaustive grid-search with 525 simulations, compared against GPSO with 100 simulations, controlling 2
parameters (average delay and relative coupling). The remaining parameters (see Tab. 2) were set to: P.=085h=1,1=
10ms, and we used the connl_mean AC matrix to connect the network units. Top-left: exhaustive search (background
image) and partition tree from the GPSO (black lines). Black asterisks indicate the samples evaluated during optimisation
(see §2.1.3 for details about GP-based samples). Each pixel corresponds to a 63 sec simulation, analysed and compared
with reference MEG data. The partition is refined in places where the objective function is higher, and the optimisation
converged rapidly to the global optimum. Bottom-row: surrogate function (predicted mean) learned by GPSO, to be
compared against the smoothed exhaustive search (ground-truth) on the left. Top-right: surrogate uncertainty (predicted
st-dev.), driving the compromise between exploration and exploitation during optimisation.
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Ml Theta
M Alpha
Beta

Correlation

conn3_fs

conni_mean conni_fs conn3_mean

’ ‘ cl_mean ‘ cl_fs ‘ c3_mean ‘ c3_fs ‘

Obj 0.42 0.39 0.39 0.40
Cor 0.49 0.47 0.46 0.51

Figure 8: Best results obtained with the four AC matrices
given in Fig. 5. The bar plot shows the correlation between
simulated and reference FC matrices in theta, alpha and
beta bands. The table reports the average correlation across
bands, as well as the similarity score calculated with the ob-
jective function defined in §2.3.4. Without controlling for
varying connectivity strength across frequency-bands, the
results obtained with conn3_£fs are better than those with
connl_mean, even though the corresponding FC matrices
(see bottom-row in Fig. 9) are almost identical across bands.
This illustrates the importance of choosing a suitable objec-
tive function.

matrices shown in Fig. 5. For each connectivity, an
optimisation was run with 800 samples (i.e. evalu-
ations of the objective functions), which took ap-
proximately 1.5 day to run on a computing cluster
with four threads. In comparison, an exhaustive
search run sequentially with just 20 values per di-
mension would take over 18 years to complete.

The five-dimensional results cannot be displayed as
in the previous two-dimensional case; instead we
summarise below key aspects of the analysis, illus-
trating the type of information made available by
this new method.

A case for multi-criteria objective functions
Defining the “goodness-of-fit” with resting-state
electrophysiological data is a difficult task, espe-
cially given the time-constraints typically associ-
ated with LSBM optimisation. Here, we discuss

the benefits of including a penalty factor in the ob-
jective function, to ensure that the relative amounts
of FC across frequency bands are similar in real and
simulated data. It is best to have the main points
of §2.3.4 in mind when reading this paragraph.

We illustrate our point in Fig. 8, where the best
results obtained after optimisation with each of the
four AC matrices are summarised and compared.
Without the penalty term included in the objec-
tive function to control for the relative strength
of connectivity across bands, the results obtained
with conn3_fs connectivity would be better than
those obtained with connl_mean connectivity, de-
spite the fact that the corresponding FC matri-
ces (see bottom-row in Fig. 9) are almost identi-
cal across frequency bands, and only vary slightly
in terms of connectivity scale. The FC matrices
obtained with connl_mean connectivity also had a
better structural correspondence with the reference
matrices (see top rows in Fig. 9), but this was only
by chance; the penalty term did not favour this
correspondence in any way. In fact, this is one
of the weaknesses of the correlation coefficient it-
self, which does not take into account structural
dependencies between the elements of the FC ma-
trices (i.e. the connectivity patterns) when compar-
ing them.

In brief, these results show that the inclusion of
a penalty term controlling for relative strengths of
FC across frequency bands was beneficial in our ex-
periments, and suggest that multi-criteria objective
function might in general be desirable in the con-
text of LSBMs. Furthermore, the use of similarity
metrics which explicitly account for structural cor-
respondences between simulated and reference data
may also enhance the quality of the optimisation.

Marginal parameter distributions reveal optimal
value-ranges o. Looking at the distribution of pa-
rameter values for the best samples tells us about
“preferred” values for each parameter; that is, pa-
rameter values for which the corresponding net-
works produce dynamical activity most similar to
MEG resting-state data. Fig. 10 shows a compar-
ison between the marginal parameter distributions
computed independently for each of the four AC
matrices. These distributions correspond to the
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Figure 9: Comparison between simulated and reference FC matrices in theta, alpha and beta bands. Reference matrices
are shown in the first row, followed by the best results obtained with connectivity connl_mean (row 2), and the second
best results obtained with conn3_fs (row 3). The correlation between each simulated FC matrix and the corresponding
reference is indicated on top of the matrix. The FC patterns obtained with connl_mean connectivity are strikingly similar
to the reference, except in the frontal lobe (lower-right block in each quadrant). Note that although results obtained
with conn3_fs achieved better correlations on average, they had a lower similarity score than the results obtained with
connl_mean, because their variation across bands was poor (see Fig. 8).
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Figure 10:

Marginal parameter distributions corresponding to the 90th percentile of all evaluated samples (i.e. using

the objective function defined in §2.3.4), for each of the four AC matrices. Higher distribution values (y-axes) indicate
ranges of parameters (x-axes) which were consistently associated with the best scores for a given AC matrix. Input: all
but connl_mean indicate that the excitatory input should be just below units’ oscillatory threshold. Coupling: all but
connl_f£fs indicate that coupling scale should be just above network oscillatory threshold. Delay: general consensus that
average delay should be around 10ms. Scaling: no clear consensus, but all except conn3_mean indicate an upscale by a
factor of 2 or more. Tau: connl_mean centred around 8ms, and others above 10ms.

90" percentile of all evaluated samples (ranked ac-
cording to their similarity score). The narrower
the distributions, the stronger the preference for a
specific parameter value. And the more overlap be-
tween distributions, the better the consensus across
experiments with different connectivities.

We find a good consensus with regards to the
first three parameters (input, coupling, delay),
and in particular for the average network de-
lay around 10ms, but the comparisons for the
inter-hemispheric scaling h and characteristic time-
constant 7 are more mitigated. This is not surpris-
ing; the connectivity matrices control the interac-
tions between the different brain regions, and struc-
turally different networks should not be expected to
agree on parameter values in general.

That being said, three out of the four AC matri-
ces (all except conn3_mean) indicate clearly that the
strength of inter-hemispheric connections should be
increased at least two-fold. This is consistent with
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the known bias for shorter connections in proba-
bilistic tractography, but it is also remarkable to
be able to estimate the amount of “missing” con-
nectivity purely from simulations.

Finally, the results for the temporal parameters
(average delay and time-constant) are somewhat
surprising. We would not expect network delays
to be lower on average than the characteristic time
of variation within each brain region, because these
delays are caused by axonal conduction over long
distances, and local oscillations (caused by cycles
of local excitation and inhibition) are not subject
to propagation issues. This particular result might
change with a more accurate estimation of the de-
lays in our model (e.g. using tract-lengths from
tractography instead of Euclidean distances), and
may also be explained with further information
about myelination information. Both of these en-
hancements will be explored in future work.



Region-wise correlation

‘ Theta ‘ Alpha ‘ Beta ‘ Average ‘

Temporal | 0.37 0.73 0.50 0.53
Occipital 0.58 0.82 0.77 0.72
Parietal 0.29 0.44 0.52 0.42
Frontal 0.31 0.13 0.29 0.25
Figure 11: Region-wise correlation in each band, calculated

between matching rows of simulated and reference FC matri-
ces, for the best results obtained with connl_mean connec-
tivity. The average correlations within each lobe, for each
band, are reported in the table below the surface illustra-
tions. The correspondence between simulated and reference
data is: very good in the occipital lobe; good in the temporal
lobe, although driven mostly by the alpha band (>1.5 times
better than other bands); consistently worse in the frontal
lobe; and the average correspondence in the frontal+parietal
lobes is twice as low as in the temporal+occipital lobes.

Conditional distributions reveal the local topography
of the search space e. Here we take a deeper look
at the best results obtained using connl_mean con-
nectivity. The optimal parameters correspond to
a single point in the search space; to get an idea
of the topography of the objective function around
the optimum, we computed the conditional distri-
butions of the GP surrogate on orthogonal slices
going through that point. These slices are shown
in Fig. 12.

A local maximum can be seen in the conditional
surrogate coupling ws. input (row 2 column 1),
which indicates that the objective function is not
unimodal. Note that this is by no means a com-
plete picture; for example, it is impossible to know
about local optima located elsewhere in the search
space based on this information only. Instead, the
partition tree from GPSO (not shown for brevity)
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can be used in combination with these conditional
distribution, to identify local extrema and explore
the topography of the search space around them.

Additionally, the marginally-weighted means and
standard-deviations of the similarity scores ob-
tained during optimisation are shown on the di-
agonal of Fig. 12, computed within each dimension
across all samples in eleven bins covering the cor-
responding parameter range. These statistics are
consistent with the parameter distributions previ-
ously shown in Fig. 10, although we previously only
considered the 90" percentile of all samples.

Region-wise correlations reveal poor correspondence
in the frontal lobe The correspondence be-
tween simulated and reference FC matrices shown
in Fig. 9 can be explored further, by correlating
each row of these matrices independently, in or-
der to get a region-wise similarity score in each
frequency-band. This comparison is illustrated in
Fig. 11, by associating these correlations with a
colour in each brain region and in each band. We
find a very good correspondence across frequency
bands in the temporal and occipital lobes, and sys-
tematically lower correlations in the frontal lobe,
especially in the OFC.

The signal-to-noise ratio in the OFC is known to
be rather poor in MEG [31], but the fact that the
bad correspondence extends throughout the entire
frontal lobe may relate to the work of [11], which
introduced gradients of excitatory inputs in the
frontal areas, in order to account for higher den-
dritic spine counts compared with primary sensory
areas. This modification affects the frequency re-
sponse of the frontal lobe, and therefore its prop-
erties of synchronisation within the whole-brain
network, which could be the cause of the anti-
correlation observed in the alpha band. Such lobe-
specific treatment can be easily introduced in our
model (similarly to the inter-hemispheric scaling)
and will be explored in future work.

Whether gradients of excitatory inputs improve the
correspondence with real data or not, however, it
is remarkable to be able to point to such specific
modelling aspects, with reasonable confidence that
no other configuration of the current system could
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Figure 12: Conditional surrogate distributions (off-diagonal) and marginally weighted means and st-dev. (on-diagonal)
around the best sample (black cross). These results correspond to the best experiment, using AC matrix connl_mean
(see Fig. 8). Note that y-axes at the top-left and bottom-right indicate similarity scores, whereas all other axes indicate
parameter values. Lower-triangle: surrogate similarity (predicted mean) computed on orthogonal slices of the search
space, going through the best sample for each pair of dimensions. Upper-triangle: associated surrogate uncertainty
(predicted st-dev.) showing lowest uncertainty around the best sample, which is a good indicator of convergence. Diagonal:
weighted mean and st-dev. of evaluated scores, calculated within each dimension across all samples. Higher bars indicate
“preferred” values for the corresponding parameters (similar to the distributions shown in Fig. 10, but considering all

samples).
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yield a better result by tweaking the five parame-
ters considered. These results tell us that a change
to the model is required, and specifically one that
will affect dynamics in the frontal areas. This type
of information is invaluable, and demonstrates how
GPSO can be used to inform modelling choices in-
crementally.

3.4. Discussion

Comparison with existing approaches e. To our
knowledge, no other work in the literature at-
tempted the systematic optimisation of LSBMs
with dozens of brain regions, in order to model fast-
paced electrophysiological dynamics, and control-
ling five (or more) parameters. The computational
and theoretical complexity of these models (due to
their non-linearity, but also their size and the pres-
ence of delays), combined with the richness of elec-
trophysiological data, calling for detailed objective
functions leveraging the high temporal resolution,
and the task of exploring parameter spaces as the
number of dimensions increases (a.k.a. the curse of
dimensionality), make the optimisation of LSBMs
a truly difficult problem.

Our approach is different from the DCM method
for network discovery [28], where the emphasis is
put on inferring the presence or absence of struc-
tural connections, typically from fMRI data. For a
given number of brain regions, this method consid-
ers all possible networks connecting these regions
(that is, all possible combinations of edges), and
proceeds to finding the network that is best sup-
ported by the observed data, as measured by the
Bayesian model evidence, using generalised filter-
ing [27]. Crucially, because it becomes rapidly im-
practical to list all possible networks as we con-
sider more brain regions, let alone evaluate them,
this method is made computationally efficient by
exploiting the idea that it is sufficient to invert
the fully-connected model in order to estimate the
model evidence of any subnetwork. Furthermore,
the method assumes that the posterior distribution
over the connection strengths is multivariate Gaus-
sian (the Laplace assumption); as such, it cannot
represent accurately complex cost functions (e.g.
with multiple modes, see Fig. 12), and in particular,

only considers a single extremum during optimisa-
tion, which makes it prone to converging towards
local extrema depending on initialisation.

In our case, the network is taken as the AC matrix
estimated from diffusion tractography, and the em-
phasis is put on the Bayesian optimisation method
proposed, which can be used to infer model param-
eters (up to a dozen in practice) with arbitrary ob-
jective functions encoding the dynamical features
of interest. This method is capable of handling
the computational burden associated with LSBM
simulations in practice, and the presence of local
extrema in the objective function. It does so by
building a smooth surrogate of the objective func-
tion using a Gaussian Process, which is refined as
the optimisation progresses, and exploited in order
to prioritise the exploration of areas in the param-
eter space that are either unknown, or promising
given the available evidence.

Another approach [10, 23] proposed to eliminate
the need to compute explicit solutions to the differ-
ential equations for several parameter values, in or-
der to accelerate the task of inference. This method
works backwards from the measured time-courses,
linking to the model parameters by sampling the
hyperparameters of a Gaussian Process encoding
the relationship between state-variables and their
derivatives. The authors demonstrated the perfor-
mance of this approach in the case of systems with
few state-variables and few time-points, assumed
to be measured from experimental data; and ex-
tended it to the case of delay-differential equations,
essentially by increasing the number of states con-
sidered at each timepoint. However, it is unlikely
that this approach scales well to the case of sys-
tems with hundreds of coupled differential equa-
tions, with several dozens of unique delays, and for
which the features relating to empirical measure-
ments (e.g. functional connectivity) require tens
of thousands of timepoints; sampling spaces that
large, even if the cost of a single sample is low®, is
simply impractical.

6The fact that our systems of equations are coupled with
non-sparse interactions also means that the complexity of a
single evaluation is still quadratic in the number of nodes.
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Influence of local parameters o. There is no doubt
that the parameters governing the local dynamics
(e.g. given in Tab. 1) will, in general, affect the
characteristics of the network activity; in fact, this
is the premise of our study. The problem of system-
atically predicting network activity from local prop-
erties — the notorious structure-function problem —
is currently unsolved, although this is an active area
of research (see [57] for instance). The purpose of
this paper is to propose a practical method allow-
ing to search for a desired network behaviour in a
reasonable time, by manipulating a relatively small
number of parameters.

We demonstrated the efficiency of this method, and
provided a typical analysis of the results obtained
for the purpose of incremental modelling. Within
this context, we selected only a handful of param-
eters, controlling key aspects of the dynamics; in
particular, simultaneously shifting the decay times
Te and 7; of a unit, within a reasonable range of
values, affects the range of oscillatory frequencies
in response to network inputs (see Fig. 4, bottom-
left).

It is also possible to control this range of frequen-
cies by shifting 7; alone (keeping 7. fixed), but with
the side-effect of altering the amplitude of oscilla-
tions as well (see middle plot in the same figure).
Based on the physiological observation that in-
hibitory decay-times are typically longer than exci-
tatory ones [58], it may be relevant to control these
time-constants independently, and indeed prelim-
inary experiments suggest that this can improve
the spectral contents of large-scale network simula-
tions, and leads to predictions of the average delay
between regions around 20ms, instead of the 10ms
predicted in our current results. Further investi-
gation into the effects of unit parameters on the
network dynamics will be the object of future work.

Influence of structural information e. It is clear
that measuring functional properties at the whole-
brain level ultimately depends on how the different
brain regions are defined [53, 25]. In fact, defin-
ing cortical parcellations reliably most likely re-
quires the integration of information across mul-
tiple modalities [29]. Furthermore, in the case of
MEG, the “leakage” of spatial information, due to
the ill-posed nature of source-reconstruction, adds

to the difficulty in delineating different brain re-
gions [24].

Then, there is also the question of whether this
parcellation can be applied indiscriminately to dif-
ferent subjects [35], although it is yet to be proven
whether individual structural connectomes are bet-
ter predictors of their own functional connectomes,
than averaged ones. We have no definite answer
to these questions, and indeed the effects of the
anatomical parcellation, as well as potential pre-
dictions of subject-specific characteristics, will be
the object of future work.

However, we would like to point out that sev-
eral connectivity matrices (produced using differ-
ent seeding and normalisation methods) were com-
pared in the results presented, based on their ability
to produce network dynamics of interest. In partic-
ular, the two best results obtained, using conni_-
mean and conn3_fs AC matrices, indicate that inter-
hemispheric connections should be between two
and three times as strong (see Fig. 10). In other
words, GPSO allowed us to assess structure (the
AC matrix) from function (band-specific FC); this
is an exciting perspective, and one with a different
emphasis to previous work relating structure and
function through biophysical models [56, 18].

Evaluating the performance of GPSO e. The abil-
ity of GPSO to converge to the global optimum,
even in the presence of local extrema, was demon-
strated in figures 2 and 7, both times in a two-
dimensional context. We further demonstrate this
ability in the case of a 5-dimensional space in ap-
pendix (for completeness, a comparison with a se-
quential Monte-Carlo method is also provided).

Despite its efficiency, however, there are a num-
ber of limitations currently associated with this
method. First, it is not currently possible to sys-
tematically evaluate the convergence of the algo-
rithm. This is mainly because at every iteration,
multiple areas of the search space are being ex-
plored at multiple scales, which means that a lack of
improvement in the best score obtained (typically
a criterion for convergence) over several iterations
is no guarantee that there will not be a substan-
tial improvement at the next iteration. However,
one can define several relevant termination criteria,
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such as: the number of evaluations of the objec-
tive function (our case), the number of iterations,
the depth of the partition tree, etc. Second, it is
worth noting that because we only ever select those
nodes with maximal UCB in the partition tree (see
Fig. 1), areas of the search space with lower ex-
pected scores are the last to be evaluated at each
level of the tree, and therefore the resolution of the
surrogate is lower there. This is an intended conse-
quence of prioritising exploration in places of high
expected reward, but it also means that the surro-
gate will in general not be reliable when the objec-
tive function is low; such is the price to pay for effi-
ciency, this is not primarily an exploration method.
Third, it is currently not possible to define pri-
ors over the parameter ranges in order to initially
bias the search towards regions of known interest.
Note that this cannot be done via the mean func-
tion of the GP, because hyperparameters are re-
vised at each iteration, and that making the prior
insensitive to hyperparameters would also make it
insensitive to evidence accumulated by simulations,
effectively corrupting the objective function as a re-
sult. It could however be done by introducing a
third type of point (currently either evaluated, or
GP-based, see §2.1.3), which would not be updated
following hyperparameter updates, but would need
to be evaluated before proceeding to exploration in
an arbitrary small neighbourhood. This would es-
sentially be equivalent to introducing “ghost nodes”
arbitrarily deep into the partition tree, waiting to
be discovered by subdivision. Finally, although
this is purely a technical limitation, it is worth men-
tioning that exact inference on the GP hyperpa-
rameters from the evaluated points becomes pro-
hibitively slow beyond a few thousand samples’,
which means that we cannot reasonably explore pa-
rameter spaces beyond 10 dimensions with exact-
ness. Beyond this, resorting to approximate infer-
ence is possible, by selecting only a limited number
of evaluated samples for training the GP; for in-
stance, up to a certain depth in the partition tree,
and randomly beyond that depth, up to a certain
amount.

Objective function and parametrisation ®. The ob-
jective function proposed in §2.3.4 combines a mea-

7Our implementation uses the GPML package [49]
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sure of the average correlation between empirical
and simulated FC matrices, with a comparison be-
tween the relative amounts of connectivity strength
across frequency bands. We illustrated in Fig. 8 the
potential benefits of considering such multi-criteria
objective functions, in the context of LSBM opti-
misation. In the long run however, it would be
desirable to transition towards probabilistic mod-
els of functional connectivity, capturing not only
the desired structural properties of the functional
networks, but also the variability across subjects.
The method proposed in this paper can readily be
used with such models.

In addition to the choice of a suitable objective
function, the parameters considered at the network
level can significantly alter the characteristics of the
simulated dynamics. For example, the heterogene-
ity of excitatory inputs across the network can give
rise to rich spectral contents [11], and modifica-
tions to the delay structure (e.g. considering tract-
lengths instead of Euclidean distances, and myeli-
nation) may lead to qualitatively different dynam-
ics [43]. These aspects will be explored in future
work.

4. Conclusion

The complexity of large-scale biophysical models
(LSBMs) makes it difficult to affirm with confidence
that a given system cannot produce dynamical ac-
tivity with certain desired properties, and therefore
to compare such systems. In this paper, we argued
that for a given set of parameters, two models could
be compared in terms of their performance with re-
spect to an objective function (which encodes the
desired dynamical behaviour) after optimisation.
We presented a method allowing such optimisation
to be carried out accurately, efficiently, and reli-
ably, even in the presence of local extrema, and
despite the computational burden associated with
the simulations of LSBMs in practice.

Using this method to optimise simultaneously five
parameters affecting both structural and functional
aspects in delay-networks of 68 Wilson-Cowan os-
cillators, we were able to achieve the highest levels
of expected correspondence with real resting-state



MEG data across frequency bands, given the sim-
ulation time-lengths (see figures 9 and 6). Our re-
sults also suggest that inter-hemispheric anatomi-
cal connectivity, as estimated from diffusion trac-
tography, may be underestimated by a factor 2 to 3,
depending on the seeding and normalisation meth-
ods used. Furthermore, looking at region-wise cor-
respondence in our best simulated results, we find
systematically lower correlations in the frontal lobe,
which indicates that further modelling work is re-
quired particularly in this area, perhaps in agree-
ment with the work presented in [11].

Overall, these results suggest that Gaussian-
Process Surrogate Optimisation (GPSO) is an ef-
fective method for exploring and comparing the ca-
pabilities of LSBMs. It enables the exploration of
high-dimensional parameter spaces (compared with
the current state-of-the-art), which offers unprece-
dented insights into the relationship between struc-
ture and function in biophysical models of brain
activity.
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Appendices

Background on large-scale biophysical models

In the literature, the different large-scale modelling
approaches can be grouped into three main cate-
gories:

e Data-driven approaches: these methods
usually borrow from digital signal processing,
and summarise key aspects of the observed dy-
namics (e.g. spectral profiles) with few param-
eters. For example, auto-regressive methods
[34, 46] formulate explicit lagged dependen-
cies between successive timepoints, typically
in a multivariate fashion in order to capture
structural interactions between distant brain
regions. Although such approaches are de-
signed to accurately reproduce the observed
signals (often under linear assumptions), and
can reveal structural dependencies in the data
[45], they do not provide any insight into the
underlying biophysical processes.

e Neuronal-mass models: these methods de-
scribe the average dynamics of large popula-
tions of densely connected neurons, with para-
metric systems of ordinary differential equa-
tions [60, 47]. In comparison with the previ-
ous data-driven approaches, these models are
typically derived from first principles with a
concern to remain faithful to the (relevant) un-
derlying biophysics. Importantly, these mod-
els are inherently local, because they neglect
the spatial dependency of the dynamics (e.g.
due to axonal conduction delays) in order to
work with functions of time only. However,
large-scale models can be constructed, by con-
sidering networks of neuronal masses, with ver-
tices summarising the local activity in different
brain regions, and with edges representing (de-
layed) interactions between these regions.

e Neural-field models: these methods ex-
tend the previous mass-models, by consider-
ing brain activity as a diffusion process over
the cortical surface [5, 13]. The temporal dy-
namics at any given point on the surface are
derived from local equations, but the diffu-
sion process allows nearby points to affect each



other, and the ensuing propagation across the
surface typically leads to oscillatory activity
through travelling wave mechanisms. Long-
range interactions with delays can also be in-
cluded by modifying the topology of the cor-
tical surface, and multiple layers can be con-
sidered to model interactions between different
types of neurons [14]. However, these models
are theoretically and computationally complex
compared to neuronal masses, and less devel-
oped to date. Furthermore, although quanti-
tative differences have been demonstrated [48],
it is unclear whether this added complexity is
required in order to produce dynamics of inter-
est in large-scale models.

Additionally, it is worth noting that large-scale
spiking models considering very large networks of
individual neurons have been attempted [38], but
their overwhelming complexity precludes any prac-
tical exploration of their capabilities.

In this paper, we focused on the use of neuronal-
mass models, as a reasonable compromise between
complexity and biophysical pertinence. The gen-
eral structure of these models is best described as a
discrete network; in particular, the different brain
regions are associated with network units, which
may themselves be composed of several nodes asso-
ciated with different local populations of neurons.

Evaluation of GPSO in dimension 5

Below, we assess the ability of GPSO to converge to
the global optimum in the case of a five-dimensional
search-space. For reference, we compare the perfor-
mance achieved to that of a sequential Monte-Carlo
method (particle filter). We emphasize, however,
that the two methods differ fundamentally in their
approach, and that this comparison is not intended
as a competition; random sampling methods are
built around the property of ergodicity (i.e. the
probability of sampling any open subspace is posi-
tive, hence any region will eventually be sampled),
whereas space-partitioning methods like GPSO im-
plement a multi-scale “divide-and-conquer” philos-
ophy, relying on the smoothness of the objective
function. Therefore, as noted previously in §2.1,

random sampling methods are undesirable in prac-
tice in the case of expensive objective functions, be-
cause they do not attempt to minimise the number
of function evaluations, and yield variable results
for small sample sizes.

In order to assess the convergence of GPSO fairly
and reliably, we constructed ten objective functions
as mixtures of (isotropic) Gaussians, with 5 modes
(or peaks) each, restricted to the space (0,1)°. We
imposed that the modes be far apart from each-
other, mainly to ensure that the global optimum
would be one of the peaks (allowing multiple peaks
to merge makes it difficult to analytically locate the
global optimum).

For each peak of each mixture, the width o and
amplitude A were sampled randomly, respectively
in (0.1,0.2) and (1,5). Then, the location y was
sampled randomly within (0,1 —)?, and the peak
was rejected if either:

e the value of the mixture considering previous
peaks only was greater than V = 0.3;

e or the closest previous peak was at a distance

closer than:
A
21 —
o[ 210g <V>

Once the peaks were chosen for each mixture,
GPSO was run for each mixture with 800 samples,
using the same parameters given in Tab. 3. The
performance of each run was measured in terms of:

e whether the global optimum was found;
e if so, with the closest distance to the optimum;
e if not, with the distance to the closest peak.

We found that GPSO converged to the global op-
timum nine out of ten times (despite the presence
of local extrema), and the distance to the optimum
in these cases was 0.0096 4+ 0.0062. The one time
it converged to a local maximum instead, the dis-
tance to the closest peak was 0.013, and the dif-
ference in height between this peak (4.34) and the
global maximum (4.90) was 0.56.
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This performance was compared to a sequential
Monte-Carlo sampling scheme, namely particle-
filter optimisation [21, 42]. This scheme proceeded
over eight cycles, each with 100 samples (i.e. 800
samples in total, as previously with GPSO), as fol-
lows:

e the first 100 samples were selected uniformly
randomly;

at each cycle, the last third of the samples were
resampled uniformly, and the best two-thirds
were resampled following an SIR procedure
(sequential importance resampling), using an
isotropic Gaussian distribution with standard-
deviation 0.1.

Due to the stochastic nature of this procedure, we
repeated the optimisation ten times for each mix-
ture function, and estimated the success rate across
these ten trials, based on whether the particle with
the highest score (across all 800) was closest to the
highest peak. Overall, the success-rate was of 69%;
the distance to the global optimum in these cases
was 0.085 £ 0.027; and otherwise, the distance to
the closest optimum was 0.080 + 0.028.

It is worth noting that the average time GPSO re-
quired in order to carry out this optimisation was
11.4 min, whereas the particle sampling scheme
completed on average within 10 ms. This illustrates
the fact that GPSO is only valuable in the case of
costly objective functions, for which the time re-
quired to carry out the optimisation is negligible
compared to the time required to evaluate the var-
ious samples.
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