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This	 paper	 presents	 a	 hierarchical-information-based	 characterization	method	 for	multiscale	 structured	 surfaces.	 The	method	makes	 use	 of	 a	 priori	
information	 of	 the	 multiscale	 surface	 and	 a	 hierarchical	 segmentation-registration	 (HSR)	 algorithm	 to	 firstly	 divide	 the	 measurement	 dataset	 into	
segments,	which	are	then	registered	with	the	designed	geometry	of	the	microstructure.	The	registered	information	is	used	to	reconstruct	the	large	scale	
topography.	 Multiple	 scales	 of	 surface	 information	 are	 decomposed	 hierarchically	 by	 the	 HSR	 algorithm.	 Hence,	 the	 errors	 in	 different	 scales	 are	
determined.	Simulation	and	experimental	results	show	that	the	hierarchical-information-based	characterization	method	is	accurate	and	effective	in	the	
characterization	of	multiscale	structured	surfaces.	
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1.	Introduction		

Multiscale	structured	surfaces	(MSSs),	such	as	microlens	arrays	
[1],	micro-pyramids	 [2]	 and	 sinusoidal	micro-structures	 [3],	 are	
playing	an	important	role	in	advanced	optics	[4]	and	bio-inspired	
applications	[5].	Small-scale	structured	patterns	are	embedded	in	
large-scale	 flat	 or	 curved	 substrates	 using	 multiscale	 surface	
design	 processes,	 where	 the	 different	 scales	 of	 geometry	 have	
different	 functions.	Whilst	methods	 for	machining	of	MSSs	have	
been	 explored	 [1,	 2],	 only	 qualitative	 methods	 for	 their	
characterization	 have	 been	 applied	 [2],	 or	 the	 surface	 is	
characterized	 without	 separating	 out	 the	 different	 scale	
geometries	[1].		
Traditional	 top-down	methods	for	MSS	characterization	based	

on	wavelength	decomposition,	such	as	Gaussian	filtering	[6]	and	
wavelet	 analysis	 [7],	 can	 separate	 the	multiscale	 topography	 to	
obtain	 the	 large-scale	 substrate	 and	 the	 small-scale	 micro-
structure	 by	 setting	 appropriate	 cut-off	 wavelengths.	 However,	
such	 cut-off	 wavelengths	 are	 difficult	 to	 determine,	 and	 the	
filtering/separation	 can	 result	 in	 significant	 surface	 distortion	
due	 to	 the	 transmission	 characteristics	 of	 the	 filters	 [8].	 This	
distortion	 issue	 is	 especially	 critical	 for	 MSS	 since	 the	 micro-
structures	can	be	as	small	as	several	micrometres,	which	places	
limits	 on	 the	 available	 measurement	 technologies.	 Several	
methods	 [9,	 10]	 have	 been	 developed	 for	 characterization	 of	
MSSs	but	the	accuracy	is	still	a	question.		
This	 paper	 proposes	a	 hierarchical-information-based	method	

for	 characterization	 of	 MSSs.	 The	 method	 is	 based	 on	 a	
hierarchical	 segmentation-registration	 algorithm.	 Simulations	
and	experiments	are	conducted	to	demonstrate	the	capability	and	
effectiveness	of	the	method.		

2.	Hierarchical-information-based	characterization	method	

As	opposed	to	the	traditional	top-down	methods,	the	proposed	
hierarchical-information-based	 characterization	 method	 is	 a	
bottom-up	 method	 which	 is	 based	 on	 a	 hierarchical	
segmentation-registration	 (HSR)	 algorithm.	 Figure	 1	 shows	 a	
schematic	 diagram	 of	 the	 HSR	 algorithm.	 The	 method	 firstly	

divides	 the	 MSS	 into	 segments,	 where	 each	 segment	 is	 one	
fundamental	 geometrical	 element	 (tessellation)	 of	 the	
topography.	 Secondly,	 the	 segments	 are	 registered	 to	 the	
designed	microstructure	 to	 determine	 the	 topographical	 errors	
and	 the	 locations	 of	 the	 elements	 are	 determined.	 Lastly,	 the	
substrate	is	reconstructed	by	using	the	locations	of	the	elements	
and	the	design	 information	of	 the	MSS.	Hence,	 the	form	error	in	
the	substrate	can	be	determined.		

 

  
(a)	Multiscale	structured	surface (b)	Segmentation	 

  
(c)	Registration	of	microstructures (d)	Registration	of	substrate 

	
Figure	1.	Schematic	overview	of	the	HSR	algorithm.	

	
2.1.	Segmentation	of	microstructures		
	
A	 key	 challenge	 of	 the	 proposed	 HSR	 algorithm	 is	 the	

segmentation	of	the	microstructures.	The	intrinsic	features,	such	
as	 the	 Gaussian	 curvature	 (GC)	 and	mean	 curvature	 (MC)	 [11],	
are	 used	 for	 pattern	 analysis	 to	 identify	 the	 microsctructure	
segments.	Taking	a	 lens	array,	a	sinusoidal	array	and	a	pyramid	
array	 as	 examples,	 the	 associated	 Gaussian	 curvature	 or	 mean	
curvature	 are	 determined,	 as	 shown	 in	 Figure	 2.	 By	 setting	 a	
threshold,	data	points	representing	features,	such	as	corners	and	
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edges	 of	 specific	 microstructures,	 can	 be	 identified	 and	 then	
clustered	by	distance.	Hence,	 the	microstructures	can	be	further	
identified	using	a	priori	 information	about	the	design.	Using	the	
curvature	 information	 is	 essential,	 especially	 when	 the	
microstructures	 are	 designed	 on	 a	 curved	 substrate.	 Since	 the	
outliers	 in	 the	 measured	 topography	 significantly	 affect	 the	
calculation	 of	 Gaussian	 curvature	 and	 mean	 curvature,	 a	
statistical	outlier	removal	filter	[12]	is	used	to	remove	them.		

	 	
(a)	Lens	array	 (b)	Gaussian	curvature	

	 	
(c)	Sinusoidal	array	 (d)	Mean	curvature	

	
Figure	2.	Curvatures	of	different	structured	surfaces.		

	
2.2.	 Registration	 of	 microstructures	 and	 determination	 of	 key	
points			
	
After	the	MSS	is	divided	into	segments,	 topographical	error	 in	

each	microstructure	 can	 be	 determined	 by	 registering	with	 the	
designed	 microstructure.	 This	 is	 done	 by	 the	 iterative	 closest	
point	 (ICP)	algorithm	 [13].	After	 registration,	 each	 segment	 has	
an	associated	transformation	matrix.	Using	the	priori	information	
of	the	MSS	design,	a	key	point	on	the	measured	microstructure	is	
associated	 with	 the	 nominal	 geometry	 of	 the	 designed	
microstructure	 in	 order	 to	 designate	 the	 location	 of	 the	
microstructure.	For	example,	the	centre	point	is	the	key	point	of	
the	 spherical	 microlens.	 The	 coordinates	 of	 the	 key	 point 	of	
the	segment	is	then	determined	by:	

	 (1)	
where	 	is	 the	 coordinate	 of	 the	 key	 point	 for	 the	 designed	
microstructure,	 and	 	is	 the	 reversed	 transformation	 matrix	
associated	with	 the	 registration,	which	 rotates	and	 translates	 in	
the	reversed	directions.		
	
2.3.	Reconstruction	and	registration	of	the	substrate		
	
Reconstruction	of	the	substrate	is	performed	by	making	use	of	

both	 the	 registration	 results	 for	 the	microstructures	 and	 the	 a	
priori	 information	 about	 the	 MSS	 (i.e.	 substrate	 design,	
microstructure	geometry	and	machining	method).	Without	loss	of	
generality,	 the	principle	 is	 illustrated	 in	Figure	3	with	 the	 same	
MSS	 as	 shown	 in	 Figure	 1.	 Assume	 the	 MSS	 has	 the	 following	
design	characteritics:	
1. A	large-scale	substrate.		
2. The	substrate	is	offset	by	a	distance	which	is	used	for	locating	

the	centres	of	the	microlenses.	
3. The	microlenses	 are	 superimposed	 on	 to	 the	 substrate	with	

the	designed	shape	(i.e.	a	sphere	with	radius	R).	
In	the	reconstruction	and	registration	process,	the	procedure	is	

essentially	the	reverse	of	the	above	design	steps,	i.e.:			

1. The	centres	of	microlenses	are	determined	by	registration	of	
the	microstructures.		

2. The	 offset	 of	 the	 substrate	 is	 reconstructed	 by	 using	 the	
centre	points	of	the	microlenses.		

3. The	substrate	is	offset	in	the	reversed	direction	according	to	
the	a	priori	information.		

4. The	 reconstructed	 substrate	 is	 registered	 to	 the	 design	
substrate	to	determine	the	form	error.		

			The	offset	substrate	in	step	2	is	reconstructed	by	interpolating	
the	 data	 points	 using	 the	 Gaussian	 process	 [14],	 which	 is	
essential	to	allow	form	correction	in	the	machining	process.		

 
Figure	3.	Design	information	of	the	example	MSS.		

3.	Method	verification			

3.1.	Accuracy	analysis	with	simulation	
	
To	evaluate	 the	 accuracy	 of	 the	 proposed	method,	 a	designed	

surface	is	simulated	with	a	microlens	array	on	an	f-theta	surface,	
as	shown	in	Figure	4.	The	f-theta	surface	is	determined	by:	

	 (2)	
where	 mm	 and	 mm.	 Individual	
microlenses	are	 spherical	with	0.8	mm	radius	of	 curvature,	 and	
the	sphere	centres	are	located	on	the	surface	with	0.76	mm	offset	
to	 the	 substrate.	 The	 distance	 between	 the	 microlenses	 and	
sampling	resolution	in	both	the	x	and	y	directions	is	0.35	mm	and	
0.01	 mm,	 respectively.	 The	 result	 of	 the	 segmentation	 for	 the	
surface	is	shown	in	Figure	5	(different	colours	represent	different	
segments).	The	error	maps	on	the	scale	of	the	microlenses	and	on	
the	scale	of	the	f-theta	substrate	were	determined	and	the	results	
are	shown	in	Figure	6.	
	

	
Figure	4.	Microlens	array	on	an	f-theta	surface.	

	

	
Figure	5.	Segmentation	of	the	multiscale	f-theta	surface.	

	
The	 simulated	 MSS	 is	 an	 ideal	 surface	 without	 any	 errors.	

Hence,	 the	 determined	 errors	 are	 attributed	 by	 the	 proposed	
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method	including	surface	registration,	surface	reconstruction,	etc.	
Both	 results	 show	 the	errors	are	 small.	The	peak-to-valley	 (PV)	
value	for	the	microlens		and	substrate	are	approximately	0.05	µm	
and	0.08	µm,	respectively.	The	root-mean-square	(RMS)	value	of	
the	error	maps	for	the	microlenses	and	the	substrate	are	0.0280	
µm	 and	 0.0089	 µm,	 respectively.	 The	 results	 demonstrate	 the	
proposed	method	is	accurate	as	summarised	in	Table	1.		
	

	 	
(a)	Error	map	for	microstructures	 (b)	Error	map	for	the	substrate	

	
Figure	6.	Error	maps	for	microstructure	and	the	substrate	of	the	

multiscale	f-theta	surface.		
	
Table	1	
Errors	for	microstructure	and	substrate	of	the	multiscale	f-theta	surface	
	
	 Microstructure		 Substrate		
Peak-to-valley	value	(µm)	 0.05	 0.08	
Root-mean-square	value	(µm)	 0.0280	 0.0089	

	
3.2.	Measurement		results	
	
Two	 different	 kinds	 of	 MSSs	 were	 produced	 by	 multi-axis	

diamond	machining	with	a	slow	tool	servo	(STS)	method.	One	is	a	
microlens	array	machined	on	to	a	sinusoidal	surface,	which	was	
produced	 using	 a	 Moore	 Nanotech	 350FG	 ultra-precision	
machine.	The	sinusoidal	surface	is	designed	with	the	following:	

	 (3)	

where	 	mm	and 	mm.	 The	microlens	
is	designed	as	a	spherical	surface	with	a	4	mm	radius	of	curvature	
and	the	sphere	centre	is	located	3.95	mm	above	the	substrate.	As	
a	result,	the	height	of	every	microlens	is	50	µm.	The	centres	of	the	
microlenses	are	distributed	on	an	equilateral	triangle	with	2	mm	
side	length,	hence	the	microlenses	form	a	hexagonal	shape	in	the	
lateral	direction.	The	MSS	was	measured	by	a	coherence	scanning	
interferometer	(CSI)	with	a	20×	objective	and	using	the	stitching	
function.	The	machined	workpiece	and	the	measured	topography	
are	shown	in	Figure	7.		
					With	 the	 proposed	 HRS	 method,	 the	 MSS	 was	 successfully	
characterized	at	different	scales,	as	shown	in	Figure	8.	Figure	8(a)	
shows	 the	 segmentation	result	 and	Figure	8(b)	 shows	 the	error	
map	for	the	microlens	array,	where	the	PV	value	is	approximately	
2	µm	over	the	whole	surface	and	the	RMS	value	is	0.25	µm.	The	
error	map	for	 a	particular	microlens	 is	also	presented	in	Figure	
8(c),	where	a	wave	pattern	which	may	be	caused	by	the	motion	
error	of	the	machine	tool	is	evident.	Figure	8(d)	shows	the	error	
map	for	the	substrate,	where	the	PV	value	is	7.9	µm	and	the	RMS	
value	is	1.8	µm	(see	Table	2).	As	the	local	gradient	and	the	surface	
roughness	of	 the	diamond-turned	workpiece	are	both	small,	 the	
measurement	uncertainty	 of	 the	 CSI	 is	 in	 nanometre	 level	 [15],	
which	has	little	influence	on	the	result	and	can	be	neglected	in	the	
calculation.	 The	 relatively	 large	 error	 in	 the	 substrate	 is	 due	 to	
the	 relatively	 large	 cutting	 forces	 in	 STS	 machining	 of	 the	
structured	 surface,	 since	 the	 cutting	 speed	 is	much	 slower	 than	
when	machining	continuous	freeform	surfaces.	The	error	map	for	
the	 substrate	 shows	 a	 funnel-shaped	 pattern,	 where	 the	 outer	
area	 has	 a	 larger	 error	 than	 the	 inner	 area.	 The	 error	 of	 the	

substrate	may	be	caused	by	a	tilting	error	of	the	spindle,	which	is	
affected	by	the	cutting	force.	Basically,	the	error	caused	by	tilting	
is	 larger	 in	the	outside	area	than	in	the	centre	when	assuming	a	
constant	 cutting	 force.	 A	 thorough	 study	 will	 be	 conducted	 to	
investigate	 this	 issue	 in	 the	 future	work.	The	 results	 show	 that	
the	 separation	 of	 the	 errors	 for	 different	 scales	 significantly	
enhances	 the	 understanding	 of	 the	 machining	 process.	 It	 also	
provides	a	powerful	method	 to	 further	 improve	 the	accuracy	of	
MSS	 potentially	 by	 error	 compensation	 and	 this	 will	 be	
investigated	in	the	future	work.	
	

	 	
(a)	Measurement	setup	 (b)	Measured	topography	

	
Figure	7.	Measurement	of	the	diamond	turned	microlens	array	on	a	

sinusoidal	surface.	
	

	 	
(a)	Segmentation		 (b)	Error	map	for	microlens	

	 	
(c)	Error	map	for	a	single	microlens	 (d)	Error	map	for	substrate	

	
Figure	8.		Characterization	results	of	the	microlens	array	on	a	

sinusoidal	surface.	
	

Table	2	
Errors	 for	 microstructure	 and	 substrate	 of	 the	 microlens	 array	 on	 a	
sinusoidal	surface	
	
	 Microstructure		 Substrate		
Peak-to-valley	value	(µm)	 2.0	 7.9	
Root-mean-square	value	(µm)	 0.25	 1.80	
	
A	further	MSS	design	was	a	sinusoidal	array	on	a	roller	surface.	

The	radius	of	the	cylinder	is	3	mm	and	the	height	is	6.28	mm	(2π).	
The	 sinusoidal	 structure	 is	 designed	 in	 a	 cylindrical	 coordinate	
system	and	the	radial	distance	(RD)	is	determined	by:	

	 (4)	

where mm	is	the	height	along	the	cylindrical	axis,	and	
	is	 the	azimuth.	The	MSS	was	machined	by	a	Moore	

Nanotech	 450FG	 ultra-precision	 machine	 with	 a	 STS	 and	
measured	using	a	point	autofocus	 instrument	(PAI)	with	a	100×	
objective.	The	sampling	resolution	in	the	axis	and	circumferential	
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directions	 are	 both	 approximately	 50	 µm.	 The	 measurement	
setup	and	the	results	are	shown	in	Figure	9.		
	

	 	
(a)	Measurement	setup	 (b)	Measurement	result	

	
Figure	9.	Measurement	of	the	diamond	turned	sinusoidal	array	on	a	

roller	surface.		
	

The	 characterization	 result	 of	 the	MSS	 is	 shown	 in	 Figure	10.	
Figure	 10(a)	 shows	 the	mean	 curvature	 of	 the	 MSS,	 where	 the	
peaks	and	valleys	are	clearly	determined.	The	MSS	is	segmented	
by	 using	 the	 curvature	 information	 and	 the	 result	 is	 shown	 in	
Figure	10(b).	The	topographical	error	in	the	sinusoidal	structure	
is	 determined	 as	 shown	 in	 Figure	 10(c),	where	 the	 PV	 value	 is	
10.7	 µm	 and	 the	 RMS	 value	 is	 0.37	 µm.	 The	 large	 PV	 value	 is	
caused	by	tool	marks,	which	are	left	in	the	rough	machining	of	the	
workpiece.	The	topographical	error	in	the	cylindrical	substrate	is	
shown	in	Figure	10(d),	where	the	PV	value	is	1.7	µm	and	the	RMS	
value	 is	 0.39	 µm.	 The	 measurement	 uncertainty	 of	 the	 PAI	 is	
determined	 to	 be	 in	 nanometre	 level	 [16]	 and	 thus	 it	 has	 little	
influence	on	 the	 result	and	 can	be	neglected	 in	 the	experiment.	
The	topographical	error	in	the	substrate	shows	that	the	radius	of	
the	 cylinder	 is	 smaller	 in	 the	 top	 area;	 this	 is	 	 most	 probably	
caused	 by	 a	 tilting	 error	 of	 the	 spindle	 of	 the	 diamond	 turning	
machine.	The	results	are	summarised	in	Table	3.	

	 	
(a)	Mean	curvature	 (b)	Segmentation	

	 	
(c)	Error	map	for	microstructures	 (d)	Error	map	for	the	substrate	

	
Figure	10.	Characterization	results	of	the	sinusoidal	array	on	a	roller	

surface.	
	
Table	3	
Errors	for	microstructure	and	substrate	of	the	sinusoidal	array	on	a	roller	
surface	
	
	 Microstructure		 Substrate		
Peak-to-valley	value	(µm)	 10.7	 1.7	
Root-mean-square	value	(µm)	 0.37	 0.39	
	
Both	 experiments	 demonstrate	 the	 effectiveness	 of	 the	

proposed	 hierarchical-information-based	 characterization	

method.	Moreover,	the	advantages	and	uniqueness	of	the	method	
are	shown,	i.e.		the	topographical	errors	at	different	scales	can	be	
precisely	 determined.	 The	 information	 about	 the	 topographical	
error	 can	 be	 further	 utilised	 for	 functional	 testing	 according	 to	
the	design	of	the	MSS.	Moreover,	error	compensation	is	possible	
with	the	help	of	the	error	information	obtained.	Functional	tests	
to	determine	the	characteristic	of	the	MSSs	will	be	investigated	in	
the	future	work.		
	

4.	Conclusion			
	
This	 paper	 presents	 a	 hierarchical-information-based	

characterization	 method	 for	 multiscale	 structured	 surfaces	
(MSSs).	The	method	 is	based	on	 the	use	of	 a	priori	design	data	
and	manufacturing	information	about	the	MSS	and	a	hierarchical	
segmentation-registration	algorithm.	The	 surface	 is	 first	divided	
into	 segments	 according	 to	 the	 geometry	 of	 the	 designed	
microstructure	 and	 the	 topographical	 errors	 of	 the	
microstructures	are	determined	by	registration.	The	substrate	is	
then	 reconstructed	 using	 the	 registration	 result	 and	 hence	 its	
form	error	can	be	determined.	 Simulation	results	 show	 that	the	
proposed	 method	 is	 accurate	 at	 the	 sub-micrometre	 level.	
Experimental	results	show	that	the	proposed	method	successfully	
characterizes	MSSs	and	determines	errors	at	different	scales.			
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