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We consider the effect of high rotation rates on two liquid layers that initially form
concentric cylinders, centred on the axis of rotation. The configuration may be thought
of as a fluid-fluid centrifuge. There are two types of perturbation to the interface that
may be considered, an azimuthal perturbation around the circumference of the interface
and a varicose perturbation in the axial direction along the length of the interface. It is
the first of these types of perturbation that we consider here, and so the flow may be
considered essentially two-dimensional, taking place in a circular domain.
A linear stability analysis is carried out on a perturbation to the hydrostatic back-

ground state and a fourth order Orr-Sommerfeld-like equation that governs the system is
derived. We consider the dynamics of systems of stable and unstable configurations, in-
viscid and viscous fluids, immiscible fluid layers with surface tension, and miscible fluid
layers that may have some initial diffusion of density. In the most simple case of two
layers of inviscid fluid separated by a sharp interface with no surface tension acting, we
show that the effects of the curvature of the interface and the confinement of the sys-
tem may be characterized by a modified Atwood number. The classical Atwood number
is recovered in the limit of high azimuthal wavenumber, or the outer fluid layer being
unconfined. Theoretical predictions are compared with numerical experiments and the
agreement is shown to be good. We do not restrict our analysis to equal volume fluid
layers and so our results also have applications in coating and lubrication problems in
rapidly rotating systems and machinery.

1. Introduction

The effects of rotation on the Rayleigh-Taylor instability (Rayleigh 1883; Taylor 1950)
have been considered by a number of different authors, from the theoretical work of Hide
(1956) and Chandrasekhar (1961), for example, to later numerical studies by Carnevale
et al. (2002) and Boffetta et al. (2016) and more recent experimental (see e.g., Baldwin
et al. 2015; Scase et al. 2017a) and analytical advances (see e.g., Tao et al. 2013; Scase
et al. 2017b). A comprehensive reivew of the Rayleigh-Taylor instability and its role
in initiating turbulent mixing is provided in Zhou (2017a,b). In all cases the effect of
rotation on the fundamental gravitational instability caused by a dense fluid lying above
a less dense fluid has been considered. The effect of the rotation on the system is to form
so-called Taylor columns (Taylor 1923) in the density-stratified system that inhibit the
formation of large-scale eddies at the interface. This in turn inhibits the development
and propagation speed of the interface and so the rate and scale of the instability can be
controlled to some extent by the rotation.
Here we consider the limiting case of a rotating system in the absence of a gravitational
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Figure 1: Schematic of the two-dimensional circular flow domain. The system is rotating
with angular frequency Ω and has radius a. The fluid density and dynamic viscosity in
the inner and outer layers are ρ1, µ1 and ρ2, µ2 respectively. The initial radius of the
inner layer is r0 ∈ (0, a). The interface is denoted by S .

field. This may be considered the high-rotation rate limit of the rotating Rayleigh-Taylor
problem. In the high-rotation limit the parabolic interface that occurs at the interface
between two fluids at low rotation rates becomes a cylindrical interface between two
concentric cylinders of fluid aligned on the axis of rotation. If the outer layer of fluid
is denser than the inner layer then the system is stable and supports interfacial waves.
Conversely, if the outer layer is less dense than the inner layer then the system is un-
stable and a perturbation to the interface may grow in time as the system seeks a more
stable configuration. The system supports perturbations in both the azimuthal and ax-
ial directions and we focus our attention upon the azimuthal perturbations here. This
restricts the flow to a two-dimensional plane polar coordinate system that we consider
in a circular domain. As the considered flow is strictly two-dimensional Taylor-Couette
flow is prohibited (see e.g., Peng and Zhu 2010). The set up is shown in figure 1 for a
perturbation with azimuthal wavenumber 5.
We consider a number of possible scenarios depending on whether the fluids are viscous

or inviscid, immiscible with surface tension, or miscible with and without an initially
diffuse interface. We do not restrict the analysis to equal fluid volumes in each layer.
The reason for the choices of different scenarios is to develop results that mirror the
well-established results in the literature on classical Rayleigh-Taylor instability (see e.g.,
Chandrasekhar 1961). We find that surface tension can enhance the frequency of stable
modes of oscillation and, as with classical Rayleigh-Taylor instability, can act to stabilize
otherwise unstable modes of instability. In the case of a diffuse interface there exists a
band of fluid of radially varying density that can support a number of inertial waves.
The wider the diffuse layer, or, equivalently, the higher the azimuthal wavenumber, the
greater the number of inertial waves that can be supported.
In the most simple case of two inviscid fluid layers separated by a sharp interface with

no diffusion or surface tension we are able to show that the growth of perturbations in an
unstable configuration is due to the centrifugal term in the governing equation of motion.
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The Coriolis term can modify the growth, but is unable to alter the stability of the system.
This can be observed from the fact that the dispersion relation is a quadratic expression
for the growth rate and the Coriolis term can only make a positive contribution to the
discriminant, whereas the centrifugal term makes a contribution whose sign depends
accordingly on the stability or instability of the system.
The flow we are investigating is similar to that studied by Tao et al. (2013) who

considered the effects of rotation on concentric cylinders of density-stratified inviscid fluid
with the additional feature that the interface is accelerated toward the lighter fluid. Our
analysis differs in that we begin from a hydrostatic configuration, we do not ignore the
effects of curvature on the interface (i.e., we do not assume that the azimuthal wavelength
is negligible compared to the radius of the inner fluid), nor do we assume that the flow
is taking place in an unbounded domain – we specifically consider the importance of the
ratio of volumes of fluid. The unbounded domain is a limit of our problem and in the
inviscid, non-diffuse, zero surface tension case we demonstrate that, in the appropriate
limits, we recover the dispersion relation of Tao et al. (2013).
In the case of viscous fluid layers, we observe that the key consideration is the viscosity

of the most viscous layer and that this layer dominates the behaviour of the system. We
also look at the high viscosity, zero-inertia limit of our system by making a Stokes flow
approximation. We compare our results to those of Schwartz (1989) and Alvarez-Lacalle
et al. (2004) who considered the effects of rotation on concentric cylinders of fluid of
varying viscosity in Hele-Shaw cells and porous media. We show that the underlying
physics between the two systems is similar but predictions differ by a shape factor due
to the contrasting ways that shearing affects the two models.
The structure of the paper is as follows: in § 2 we introduce the general governing model,

allowing for radial variation of the fluid density and dynamic viscosity in each fluid layer.
We then consider the appropriate boundary conditions for miscible fluids with a sharp
non-diffuse interface or immiscible fluids with surface tension, and we briefly describe
the numerical techniques used for simulating the flows. In § 3 we consider our general
set-up in a number of specific configurations and compare our predictions with numerical
simulation. In particular, we consider two uniform layers of inviscid fluid with a sharp
interface (no diffusion) and no surface tension; this case is the rotational counter-part of
the classical Rayleigh-Taylor instability work of Rayleigh (1883) and Taylor (1950). We
then consider the effects of surface tension, the effects of diffusion of the interface prior
to the onset of the instability, the effects of viscosity with and without surface tension
acting and also, separately, with a diffuse interface. Finally, we compare our results with
those established for similar flows in Hele-Shaw cells and porous media. In § 4 we discuss
our results and draw our conclusions.

2. Governing model

2.1. Equations of motion

The governing equations for the fluid velocity, uj , pressure, pj, density, ρj, and viscosity,
µj , in each fluid layer are the conservation of mass equation, an equation of motion and
an incompressibility condition given respectively by

∂ρj
∂t

+∇ · (ρjuj) = 0, (2.1a)

ρj
Duj

Dt
= −∇pj−ρjΩ×(Ω× x)−2ρjΩ×uj+µj∇2

uj+2e
j
·∇µj+µj∇(∇·uj), (2.1b)
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Dρj
Dt

= 0, (2.1c)

for j = 1, 2 corresponding to the inner and outer layers respectively where e
j
= 1

2 (∇uj +

∇u
T

j ) is the rate of strain tensor in each layer. Equations (2.1a) and (2.1c) combine
to give the usual condition that ∇ · uj = 0 in each layer, removing the final term in
(2.1b). We nondimensionalise time by the angular velocity of the system, Ω, and length
by the radial extent of the domain, a. The density and viscosity of the fluids in each layer
are nondimensionalised by characteristic densities and viscosities of the whole system,
respectively ρ0 = 1

2 (ρ1+ρ2) and µ0 = 1
2 (µ1+µ2). The nondimensional system of governing

equations is then

∂ρ′j
∂t′

+∇′ ·
(

ρ′ju
′

j

)

= 0, (2.2a)

Du
′
j

Dt′
= − 1

ρ′j
∇′p′j + r′r̂ − 2ẑ × u

′

j +
1

Re

µ′
j

ρ′j
∇′2

u
′

j +
1

Re

2

ρ′j
e′
j
· ∇′µ′

j , (2.2b)

∇′ · u′

j = 0, (2.2c)

where the system Reynolds number is Re = ρ0Ωa
2/µ0, the system pressure scale is ρ0Ω

2a2

and r̂ and ẑ are unit vectors in the radial and axial directions respectively. As a result
of the choice of velocity scale, the Reynolds number may be interpreted as a reciprocal
Ekman number, where the Ekman number, describing the ratio of viscous forces to
Coriolis forces, is given by Ek = µ0/(ρ0Ωa

2). The prime symbols for nondimensional
quantities are now dropped for clarity.
Hydrostatic solutions to the governing system (2.2) are denoted by a superscript ‘∗’

and are given by

u
∗

j = 0, ρ∗j = ρ∗j (r), p∗j = p0 +

∫ r

0

ρ∗j (ξ)ξ dξ, (2.3)

for a reference pressure p0 at the origin and a radially varying initial density distribution
ρ∗j = ρ∗j (r). In the hydrostatic configuration the form of µj is arbitrary.
We consider linear perturbations to the hydrostatic initial condition of the form

uj = u
∗

j + ǫU j(r, θ, t), ρj = ρ∗j (r) + ǫσj(r)e
i(mθ+ωt), (2.4a)

pj = p∗j + ǫPj(r)e
i(mθ+ωt), µj = µ∗

j (r) + ǫηj(r)e
i(mθ+ωt), (2.4b)

where ǫ≪ 1, m ∈ N and we allow for a fluid whose density and viscosity vary radially at
leading order. As the flow is incompressible, we may introduce a streamfunction ψ such
that

U j =

(

1

r

∂ψj

∂θ
,−∂ψj

∂r
, 0

)

, (2.5)

and (2.2c) is automatically satisfied in each layer. Writing the streamfunction as ψj =
φj(r)e

i(mθ+ωt) we have

uj = ǫ

(

imφj
r

,−dφj
dr

, 0

)

ei(mθ+ωt). (2.6)

The solution growth rate is controlled by Im(ω), its precession is controlled by Re(ω)
and the azimuthal wavenumber of the perturbation to the interface is m. The linearized
mass conservation (2.2a) equation gives

σj = −mφj
ωr

dρ∗j
dr

. (2.7a)
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The linearized radial equation of motion gives

− mωφj
r

= − 1

ρ∗j

dPj

dr
+
σjr

ρ∗j
− 2

dφj
dr

+
im

Re

µ∗
j

ρ∗j

{

1

r

d

dr

[

r
d

dr

(

φj
r

)]

− (1 +m2)φj
r3

+
2

r2
dφj
dr

+
2

µ∗
j

dµ∗
j

dr

[

1

r

dφj
dr

− φj
r2

]

}

,

(2.7b)

and the linearized azimuthal equation of motion is

− iω
dφj
dr

= − imPj

ρ∗jr
− 2

imφj
r

+
1

Re

µ∗
j

ρ∗j

{

−1

r

d

dr

(

r
d2φj
dr2

)

+
(1 +m2)

r2
dφj
dr

− 2m2φj
r3

− 1

µ∗
j

dµ∗
j

dr

[

d2φj
dr2

− 1

r

dφj
dr

+
m2φj
r2

]

}

.

(2.7c)

Eliminating Pj and σj from (2.7b) using (2.7a) and (2.7c) yields a fourth order, one-
dimesional linear ordinary differential equation, of an Orr-Sommerfeld type, for pertur-
bations to the system given by

iω

{

(

φ′′j +
φ′j
r

− m2φj
r2

)

+
ρ∗j

′

ρ∗j

(

φ′j +
m(m− 2ω)φj

ω2r

)

}

=
1

Re

µ∗
j

ρ∗j

{

φ′′′′j +
2φ′′′j
r

− (1 + 2m2)

[

φ′′j
r2

−
φ′j
r3

]

+
m2(m2 − 4)φj

r4

+
µ∗
j
′

µ∗
j

(

2φ′′′j +
φ′′j
r

−
(1 + 2m2)φ′j

r2
+

3m2φj
r3

)

+
µ∗
j
′′

µ∗
j

(

φ′′j −
φ′j
r

+
m2φj
r2

)

}

, (2.8)

where a prime symbol now indicates differentiation with respect to r.

2.2. Boundary conditions

In both the inviscid and viscous cases we require finite velocities on the axis r = 0 and
a no-penetration condition (no-normal-velocity condition) on r = 1 such that

|u(r = 0)| <∞, u(r = 1) · r̂ = 0. (2.9)

In the case of a viscous outer fluid we will also require a no-slip condition on r = 1, viz.

u(r = 1) · θ̂ = 0. (2.10)

These three conditions become, in terms of (2.6)

lim
r→0

∣

∣

∣

∣

φ1
r

∣

∣

∣

∣

<∞, |φ′1(0)| <∞, φ2(1) = 0, φ′2(1) = 0, (2.11)

where the first two conditions are the velocity regularity condition, the third is the no-
penetration condition and the final condition is the no-slip condition that applies when
the outer fluid is viscous.
The condition of stress continuity at the interface of two fluids with surface tension is

given dimensionally by

∆
{

σ · n̂
}

= γ (∇ · n̂) n̂ (2.12)

where ∆ {·} indicates the jump in a quantity from the outer fluid 2 to the inner fluid 1
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across the interface S , n̂ is a unit normal vector at the interface directed from fluid 1
into fluid 2, and γ is the coefficient of surface tension. Nondimensionalising (and dropping
the prime notation immediately) we have

∆
{

σ · n̂
}

=
1

We
(∇ · n̂) n̂, (2.13)

where We = ρ0Ω
2a3/γ is a nondimensional Weber number representing the ratio of

inertial to curvature effects.
Taking the interface, S , to be defined by

S := r −
(

r0 + ǫei(mθ+ωt)
)

= 0, (2.14)

then the unit vector pointing from fluid 1 into fluid 2 is given by

n̂ =
∇S

|∇S | =
(

1 +O(ǫ2)
)

r̂ +

(

− im

r
ǫei(mθ+ωt) +O(ǫ2)

)

θ̂. (2.15)

Hence, on S

n̂ =
(

1 +O(ǫ2)
)

r̂ +

(

− im

r0
ǫei(mθ+ωt) +O(ǫ2)

)

θ̂, (2.16)

∇ · n̂ =
1

r0
+ ǫ

m2 − 1

r20
ei(mθ+ωt) +O(ǫ2). (2.17)

The stress tensor in each fluid layer is given in nondimensional terms by

σ
j
= −pjI +

2µj

Re
e
j

⇒ ∆
{

σ · n̂
}

= ∆ {−pn̂}+ 2

Re
∆
{

µe · n̂
}

. (2.18)

We consider the two terms on the right hand side separately. Taylor expanding about
r = r0 we have that

∆ {−pn̂} = −
[

p∗ + ǫ

(

dp∗

dr

∣

∣

∣

r=r0
+ P

)

ei(mθ+ωt) +O(ǫ2)

]+

−

n̂, (2.19)

where the jump on the right hand side is across r = r0 (as distinct from the jump across
the interface). Substituting in both the hydrostatic condition dp∗j/dr = ρ∗jr and the
expression for n̂ on S , (2.16), we may rewrite this last expression as

∆ {−pn} = −
{

[

p∗ + ǫ (ρ∗r0 + P ) ei(mθ+ωt)
]+

−

+O(ǫ2)

}

r̂

+

{

ǫim

r0

[

p∗
]+

−
ei(mθ+ωt) +O(ǫ2)

}

θ̂. (2.20)

For the flow under consideration, described in terms of (2.6), the rate of strain tensor
e is given by

e =
ǫ

2r2

(

2 im(rφ′ − φ) −r2φ′′ + rφ′ −m2φ
−r2φ′′ + rφ′ −m2φ −2 im (rφ′ − φ)

)

ei(mθ+ωt). (2.21)

Hence,

∆
{

µe · n̂
}

=

{

ǫim

r20

[

µ∗ (r0φ
′ − φ)

]+

−
ei(mθ+ωt) +O(ǫ2)

}

r̂

+

{

ǫ

2r20

[

µ∗
(

−r20φ′′ + r0φ
′ −m2φ

) ]+

−
ei(mθ+ωt) +O(ǫ2)

}

θ̂. (2.22)
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Combining (2.16), (2.17), (2.18), (2.20) and (2.22) with the stress continuity condition
(2.13) we have at O(1) and O(ǫ) in the normal direction and O(ǫ) in the tangential
direction, respectively, the following conditions for stress continuity across S

[

p∗
]+

−
= − 1

We

1

r0
, (2.23a)

[

ρ∗r0 + P − 2µ∗

Re

im

r20
(r0φ

′ − φ)

]+

−

= − 1

We

m2 − 1

r20
, (2.23b)

[

µ∗
(

r20φ
′′ − r0φ

′ +m2φ
) ]+

−
= 0, (2.23c)

where (2.23a) has been used to simplify (2.23c).
The kinematic condition at the interface, S , is that the fluid at the interface should

move with the velocity of the interface, hence

D

Dt

(

r −
[

r0 + ǫei(mθ+ωt)
]) ∣

∣

∣

S

= 0 ⇒ u|S ∼ ǫiωei(mθ+ωt). (2.24)

The linearized kinematic condition in terms of (2.6) gives

φj(r0) =
ωr0
m

, j = 1, 2. (2.25)

This condition may be also seen to match the normal fluid velocities at the interface.
In the case of two viscous fluids, the tangential fluid velocities at the interface are also
forced to match, and this condition is satisfied at O(ǫ) when

φ′1(r0) = φ′2(r0). (2.26)

Equations (2.11), (2.23), (2.25) and (2.26) are the complete set of boundary conditions
for the problem.

2.3. Numerical simulation

A number of numerical simulations were performed using a volume-of-fluid method. The
method was implemented using modifications of the ‘interFoam’ and ‘twoLiquidMix-
ingLayer’ solvers, available as part of the OpenFOAM distribution (Weller et al. 1998).
The standard implementation of the velocity equation was modified to account for the
rotation by including both the centrifugal term and the Coriolis term, otherwise the
solvers were unchanged. An extensive review and discussion of the implementation of the
interFoam solver is provided in Deshpande et al. (2012). The solver uses a volume-of-fluid
approach to solve the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (2.27)

and momentum equation

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+ [∇ · (µ∇u) +∇u · ∇µ]

−
∫

Γ

[γ∇ · n̂] δ (x− xs) n̂ dΓ (xs), (2.28)

where γ is the surface tension coefficient, δ is the Dirac delta function in this instance, and
Γ denotes the interface between the two phases. The momentum equation was modified
by including the rotational terms, −ρΩ× (Ω× x)− 2ρΩ× u on the right hand side of
(2.28). A PISO (Issa 1986) based predictor-corrector method is then used to first predict
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an updated velocity field and then correct and update the pressure and velocity fields,
enforcing incompressibility. The circular domain was meshed with a 5-block mesh and
typically contained 4.8 × 105 cells. Time was stepped forward using the second order
Crank-Nicolson scheme, limited by the CFL number. The schemes for calculating spatial
gradients and the Laplacian were second order; the divergence was calculated using a
limited second order upwinded scheme (see van Leer 1974).

3. Theoretical predictions and comparison with numerics

3.1. Two-layer stable and unstable inviscid solutions: Rayleigh approximation

The simplest configuration we consider consists of two layers of inviscid fluid that have
a density difference. In this case µ∗

j (r) = 0 and ρ∗j (r) = ρj is constant in each layer such
that dρ∗j/dr = 0. The initial hydrostatic conditions for the velocity and density are

u
∗

j = 0, ρ∗j =

{

ρ1 r < r0,
ρ2 r > r0,

p∗j = p0 +

{

ρ1r
2/2 r < r0,

(ρ1 − ρ2)r
2
0/2 + ρ2r

2/2 r > r0
(3.1)

where r = r0 ∈ (0, 1) is the location of the initial unperturbed interface and p0 is a
reference pressure at the origin. The O(1) pressure continuity condition (2.23a) has been
applied. In the special case of equal volumes of fluid in each layer r0 = 2−1/2.
The form of ρ∗j and µ∗

j leads to the simplification of (2.8), removing all the viscous
effects leaving a one-dimensional Laplace equation that may be considered a Rayleigh
equation. Specifically, we define the linear differential operator L and have

L[φ] := φ′′j +
φ′j
r

− m2φj
r2

= 0, (3.2)

for ω 6= 0, j = 1, 2, together with the pressure perturbation

Pj = −ρj
(

2φj −
ωr

m
φ′j

)

. (3.3)

Equation (3.2) yields power-law solutions for m > 1 given by

φj = cj1r
−m + cj2r

m, j = 1, 2, (3.4)

with four unknown constants. The dispersion relation may now be found by fitting ap-
propriate matching and boundary conditions.
We enforce the velocity regularity condition on r = 0 and the no-penetration condition

on r = 1. We then apply the kinematic condition and the stress continuity condition on
the perturbed interface r = r0 + ǫ exp{i(mθ + ωt)} as described in § 2.2. These five
conditions with only four free constants then lead to the dispersion relation. The velocity
regularity condition on r = 0 implies that |φ1/r| < ∞ as r → 0 and so we take c11 = 0.
The no-penetration condition on r = 1 implies that φ2(1) = 0 and so we take c22 = −c21.
Applying the kinematic condition (2.25) then gives

φ1 =
ωr0
m

(

r

r0

)m

, φ2 =
ωr0
m

(

r

r0

)m(
1− r−2m

1− r−2m
0

)

. (3.5)

The continuity of stress at the interface now gives the dispersion relation. In the present
inviscid case, in the absence of surface tension, we have continuity of pressure across
S . The tangential stress condition (2.23c) is automatically satisfied as µ∗

j = 0, and the
leading order pressure continuity condition (2.23a) is satisfied by the hydrostatic solution
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(3.1). The remaining O(ǫ) pressure continuity condition, (2.23b), simplifies to

ρ1

[

r0 − 2φ1(r0) +
ωr0
m

φ′1(r0)
]

= ρ2

[

r0 − 2φ2(r0) +
ωr0
m

φ′2(r0)
]

. (3.6)

Subsituting in (3.5) leads to the dispersion relation

A
(

ω2 − 2ω +m
)

=
(1 + A )ω2

1− r2m0
, (3.7)

where we have used an Atwood number, A , as in Scase et al. (2017b), defined by

A =
ρ2 − ρ1
ρ2 + ρ1

∈ [−1, 1]. (3.8)

We can further simplify (3.7) by introducing a modified Atwood number, A ∗, given by

A
∗ = A

(

1− r2m0
1 + A r2m0

)

∈ [−1, 1], (3.9)

that has the same sign as A but has a shape factor based on the initial position of the
interface, the azimuthal wavenumber and the Atwood number. In terms of the modified
Atwood number we may rewrite (3.7) as

ω2 + A
∗ (2ω −m) = 0. (3.10)

In the special case A = A ∗ = 0, that occurs when there is no density contrast, we can
immediately show that ω = 0 and there is no growth or precession of the perturbation.
Since in (2.14) we choose the form of the interface to be r = r0 + ǫ exp{i(mθ+ ωt)}, a

negative imaginary part in ω corresponds to growth of the interface. The dispersion rela-
tions (3.7) and (3.10) have solutions with negative imaginary parts when their discrim-
inants are negative. This condition is met (except for the special case m = 1, A = −1)
when A ∗ < 0, i.e., A ∈ [−1, 0). We have unstable growth when the Atwood number is
negative, i.e., when the density of the fluid in the inner layer is greater than that in the
outer layer, as may be anticipated.
For the special case A = A ∗ = −1, that occurs when there is no fluid in the outer

layer, we find ω = 1± i
√
m− 1, i.e., except for m = 1 all modes grow in amplitude. When

m = 1 the inner fluid layer, the only fluid layer present, remains circular, but is displaced,
precessing about the origin. Note that m = 1 is the only perturbation mode that gives
rise to a non-zero fluid velocity at the origin of the system and may be considered a
centre of mass oscillation.
The solution to (3.10) is

ω = −A
∗ ± {A ∗ (A ∗ +m)}1/2 (3.11)

When the Atwood number is negative then perturbations initially grow exponentially

in time with precessional rate −A ∗ and growth rate {−A ∗ (A ∗ +m)}1/2. The stable
dispersion relation, (3.7) with A > 0, necessarily has one positive root and one negative
root, denoted ω±

∞, as a result of m
(

1 + A r2m0
)

> 0. One wave precesses clockwise, while
the other precesses in an anticlockwise direction.
In the limit of large azimuthal wavenumber, m→ ∞, then r2m0 → 0 and

ω ∼ −A ± {A (A +m)}1/2 , (3.12)

independently of r0, as the curvature of the interface is not ‘felt’ by the system for
the high azimuthal wavenumbers since the azimuthal wavelength is too short compared
to r0. The classical two-dimensional non-rotating dispersion relation due to Rayleigh
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(1883) and Taylor (1950) in a domain of width 2πr0 for perturbations with wavenumber
k = m/r0 is ω2 = gAm/r0 (using dimensional quantities) and so we observe that the
rotating solution at large m behaves as the classical solution, with no curvature of the
interface and an effective gravitational acceleration given by g ∼ r0Ω

2.

We can gain further insight into the physical mechanisms at work by proceeding di-
mensionally. Distinguishing between the centrifugal term in the governing equation of
motion (2.1b), Ω× (Ω× x), and the Coriolis term, 2Ω̂×u, by introducing a ‘hat’ on the
rotation vector in the Coriolis term, the dimensional dispersion relation (3.10) is given
by

ω2 + A
∗

(

2Ω̂ω − Ω2m
)

= 0, (3.13)

where A ∗ = A
(

a2m − r2m0
)

/
(

a2m + A r2m0
)

and Ω̂ ≡ Ω: the hat notation is used only
to highlight terms originating from the Coriolis force. The constant term in (3.13) is now
identifiable with the centrifugal term from the equation of motion (2.1b), while the linear
term is associated with the Coriolis term. The discriminant of (3.13) is proportional to
A ∗2Ω̂2 + A ∗Ω2m where the first term can now be associated with Coriolis effects and
the second term with centrifugal effects. In order for a perturbation to grow in time
the discriminant must be negative. However, the first term of the discriminant is always
positive and so Coriolis effects can never lead to unstable growth. Any growth that occurs
is due to the second term of the discriminant which is associated with the centrifugal term
in (2.1b) and hence any growth is therefore ‘centrifugally driven’. For any configuration
where we have centrifugally driven growth, the Coriolis term must slow the growth rate
but can never prevent growth as a result of |A ∗2Ω̂2| < |A ∗Ω2m|.
It may also be observed from the dimensional form of the modified Atwood number

that the limit A
∗ → A as m → ∞ may also be realised by considering the outer fluid

to be unbounded, i.e., taking a → ∞ keeping m and r0 fixed. The conclusion of the
equivalence of the present system and the classical two-dimensional system in the limit
of high azimuthal wavenumber, m, therefore also follows for the limit of an unbounded
outer fluid layer, a→ ∞.

The dispersion relation of Tao et al. (2013) is recovered in the limit of: a hydrostatic
initial interface, g = RΩ2 (in their notation); and −kR = m where m is our azimuthal
wavenumber and k is their Cartesian wavenumber. The minus sign accounts for the
difference in the sense of our θ̂ and their x̂. Finally A ∗ is replaced by −A , due to
neglecting the curvature of the interface and taking an unbounded outer domain (r0/a→
0), the sign change is due to the difference in definition of the Atwood number between
the two treatments.

3.2. Surface tension between immiscible fluids

Returning to nondimensional quantities, we now consider the effect of surface tension
acting between two inviscid immiscible fluid layers. The pressure field in the hydrostatic
solution is modified from the previous case considered in § 3.1, due to the finite Weber
number in (2.23a), and is now given by

p∗j = p0 +

{

ρ1r
2/2 + 1/(We r0) r < r0,

(ρ1 − ρ2)r
2
0/2 + ρ2r

2/2 r > r0
(3.14)

while the hydrostatic, velocity and density fields remain as before. The kinematic condi-
tions are as in (2.25), hence (3.5) remains unchanged. The O(ǫ) normal stress continuity
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condition at the interface (2.23b) is

ρ1

(

r0 − 2φ1(r0) +
ωr0
m

φ′1(r0)
)

= ρ2

(

r0 − 2φ2(r0) +
ωr0
m

φ′2(r0)
)

+
1

We

m2 − 1

r20
. (3.15)

This modifies (3.10) to give

ω2 + A
∗ (2ω −m) =

A ∗

We

m
(

m2 − 1
)

2A r30
=: A

∗S(We;A ,m, r0), (3.16)

defining the surface tension adjustment factor S. It follows immediately from the form
of (3.16) that surface tension has the greatest effect when the wavenumber, m, is high
and when the mean radius of the interface, r0, is small, as expected on physical grounds.
The result (3.16) agrees with the results for a rotating column of liquid (Hocking and
Michael 1959) and a rotating inviscid drop (Patzek et al. 1995), up to a change of frame
of reference and nondimensionalisation, in the special case A = −1.
The solution to (3.16), modified compared to (3.11), is

ω = −A
∗ ± {A ∗ (A ∗ +m+ S)}1/2 . (3.17)

Inspection of (3.17) and comparison with (3.11) shows that the effect of the surface
tension can be interpreted as modifying the azimuthal wave number. In a stable configu-
ration the effect is to increase the apparent azimuthal wavenumber, as S > 0, enhancing
the frequency of oscillation, as might be anticipated since the surface tension applies
an additional restorative force on the interface. In an unstable configuration the effect
is to decrease the apparent azimuthal wavenumber, as S < 0, inhibiting the growth of
the instability. The surface tension affects the constant term in the quadratic dispersion
relation (3.17) and so influences the contribution of the centrifugal forcing to the system.
It is therefore possible for the surface tension not only to influence the growth rate of
unstable modes but indeed completely stabilize an otherwise unstable mode if the surface
tension is large enough. It follows from (3.17) that for a naturally unstable mode, m, the
surface tension is able to completely stabilize the mode when S 6 − (A ∗ +m). Alter-
natively, we observe that the surface tension is able to completely suppress the growth
of high frequency modes above a critical value m∗ given by the implicit relationship
−m∗ = A ∗ + S(We;A ,m∗, r0) or

A (1− r2m
∗

0 ) + (1 + A r2m
∗

0 )m∗

[

1 +
1

We

(m∗2 − 1)

2A r30

]

= 0. (3.18)

When r0 is close to the outer boundary, say r0 = 1 − ε, ε ≪ 1, [n.b. ε is different to
the small parameter ǫ in (2.4), it is assumed that 0 ≪ ǫ≪ ε≪ 1] then we find

ω ∼ m

{

±
(

1 +
1

We

m2 − 1

2A

)1/2(
2A

1 + A
ε

)1/2

− 2A

1 + A
ε+O(ε3/2)

}

, (3.19)

and we see that a given mode with wavenumber m is stable for We > −(m2 − 1)/2A
(cf. (3.18) as r0 → 1).

3.3. Diffusion of the interface between miscible fluids

It is well-known in the study of Kelvin-Helmholtz instability that diffusion of the interface
between the two fluid layers can lead to some modes of instability being suppressed. Here
we investigate whether a diffuse fluid layer between the inner and outer fluids causes some
modes of centrifugally driven Rayleigh-Taylor instability to be suppressed similarly. We
begin by considering the form of a diffuse interface between the two layers. We consider
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a two-layer stratification with a sharp interface (as in (3.1), with ρ∗ = ρ1 in the inner
layer and ρ∗ = ρ2 in the outer layer) that is subject to diffusion of density governed by
the dimensional diffusion equation

Dρ∗

Dt
= κ∇2ρ∗, (3.20)

where κ is a constant diffusivity. A natural scaling for this problem in isolation is to
take t = a2κ−1t′, however to enable comparison with the temporal development of the
instability we choose t = Ω−1t′. Therefore, nondimensionalising as in § 2 and dropping
the prime notation we obtain

Dρ∗

Dt
=

1

Pe
∇2ρ∗, (3.21)

where Pe = Ωa2/κ is a nondimensional Péclet number that relates the advection timescale
to the diffusion timescale. We consider the diffusion of density in the hydrostatic fluid
such that ρ∗ = ρ∗(r, t), u∗ = 0 and hence

∂ρ∗

∂t
=

1

Pe

1

r

∂

∂r

(

r
∂ρ∗

∂r

)

, r ∈ (0, 1), t ∈ [0,∞) (3.22)

The initial condition is as in (3.1) and we enforce Neumann boundary conditions ∂ρ∗/∂r =
0 on r = 0, 1. By separation of variables a series solution to the above problem can be
found and is given by

ρ∗

ρ0
= 1+ A − 2A r0

{

r0 + 2

∞
∑

n=1

J1(λnr0)J0(λnr)

λnJ0(λn)2
e−λ2

n
t/Pe

}

, (3.23)

where J is a Bessel function of the first kind and λn for n = 1, 2, . . . are the zeros of
J1, i.e., λ1 ≈ 3.83, λ2 ≈ 7.02 etc. It can be seen that in the long-time limit the density
is constant everywhere equal to the mean density. The ‘thickness’ of the diffuse layer, to
be denoted by δ, is subjective, but one method is to define the thickness by

δ = (ρ2 − ρ1)

(

∂ρ∗

∂r

∣

∣

∣

∣

r=r0

)−1

, (3.24)

that follows from fitting a piecewise linear density profile that has the same gradient as
the full solution at r = r0. An approximate scaling for δ can be found as follows. If we
consider the diffuse layer to be small, such that the rapid changes in ρ∗ take place in a
narrow region r = r0 + εx, where ε ≪ 1 (and again, ε is an arbitrary small parameter,
not related to ǫ in § 2) and the time scale for diffusion is taken such that t = ε2Pe τ then
(3.22) becomes

∂ρ∗

∂τ
=
∂2ρ∗

∂x2
+O(ε), (3.25)

which may therefore be considered Cartesian at leading order as the curvature effects are
negligible. This form of the diffusion equation accepts a similarity solution

ρ∗ =
ρ1 + ρ2

2
+

(ρ2 − ρ1)

2
erf

(

x

2
√
τ

)

, (3.26)

where erf(x) is the error function 2π−1/2
∫ x

0
exp{−ξ2} dξ and ρ∗ satisfies the boundary

conditions ρ∗ → ρ1 as x → −∞, ρ∗ → ρ2 as x → ∞, and the initial conditions (3.1).
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Figure 2: A comparison of the approximations to the diffuse layer for A = 1
2 , t/Pe =

10−3, r0 = 2−1/2. The exact solution (3.23) is shown as solid bold. The similarity solution
(3.27) is plotted but cannot be distinguished by eye at this scale from the exact solution.
The piecewise power-law approximation (3.29) is shown as a solid line. The piecewise
linear approximation is shown dashed for comparison. Dotted lines indicate the width of
the diffuse layer δ, given in (3.28).

Therefore, at early times we may approximate the diffuse layer given by (3.23) as

ρ∗

ρ0
= 1 + A erf

(

r − r0

2
√

t/Pe

)

. (3.27)

Figure 2 shows the solution of (3.20) as given in (3.23) (thick solid line) compared to the
early time approximation (3.27) (thin solid line, indistinguishable from the full solution
at the scale shown). The form of solution in (3.27) leads to a simple approximation for
δ, as defined in (3.24), giving

δ ∼ 2
√

πt/Pe +O(ε), (3.28)

which is also shown in figure 2.
We consider the effect of diffusion on a system with large Péclet number, where diffusion

is slow compared to the growth of an instability, or the oscillation of an interfacial wave.
This would correspond to an experimental situation where the interface had been allowed
to diffuse before the experiment was conducted, but during the experiment the effects
of further diffusion could be neglected. As such we seek to approximate the effect of
diffusion by constructing a piecewise density profile. Examining (2.8) we see that if we
can approximate the diffuse interface by a piecewise density ρ∗ such that ρ∗ is of the form
ρ∗ = βrα for some constants β and α, then the form of (2.8) is unchanged, and power-law
solutions are still admitted. We define r0− = r0 − δ/2, the inner edge of the diffuse layer,
and r0+ = r0 + δ/2, the outer edge of the diffuse layer and identify a three-layer system
(j ∈ {1, 2, 3}) where

ρ∗ =







ρ1 0 6 r < r0−; j = 1
βrα r0− 6 r < r0+; j = 2
ρ2 r0+ 6 r 6 1; j = 3

(3.29)
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and where α and β are chosen to make the density continuous and are given by

α = log

(

1− A

1 + A

)[

log

(

r0−
r0+

)]−1

, β =
1− A

rα0−
. (3.30)

It follows that

ρ∗′

ρ∗
=







0 0 6 r < r0−
α/r r0− 6 r < r0+
0 r0+ 6 r 6 1

(3.31)

The corresponding initial hydrostatic pressure field is

p∗ = p0 +



























ρ1
2
r2 0 6 r < r0−

ρ1
2
r20− +

β

2 + α

[

r2+α − r2+α
0−

]

r0− 6 r < r0+

ρ1
2
r20− +

β

2 + α

[

r2+α
0+ − r2+α

0−

]

− ρ2
2
r20+ +

ρ2
2
r2 r0+ 6 r 6 1

(3.32)

The governing equation (2.8) is as in the two-layer no-diffusion case in the inner (j = 1)
and outer (j = 3) layers and so we have

φ1(r) = c11r
−m + c12r

m, φ3(r) = c31r
−m + c32r

m, (3.33)

The governing equation (2.8) in the transitional (j = 2) layer is
(

φ′′2 +
φ′2
r

− m2φ2
r2

)

+
α

r

(

φ′2 +
m(m− 2ω)φ2

ω2r

)

= 0. (3.34)

This yields

φ′′2 + (1 + α)
φ′2
r

−
(

m2 − m(m− 2ω)α

ω2

)

φ2
r2

= 0, (3.35)

with the power-law solution

φ2(r) = c21r
−α/2−χ + c22r

−α/2+χ, where χ =
1

2

{

α2 + 4

(

m2 − m(m− 2ω)α

ω2

)}1/2

.

(3.36)
We apply the velocity regularity condition at r = 0 and no-penetration condition at

r = 1 to find c11 = 0 and c32 = −c31. The boundary conditions are as derived in § 2.2,
but are applied at r0− and r0+. These may be shown to be that φ1 = φ2 and φ′1 = φ′2 at
r = r0−, and φ2 = φ3 and φ′2 = φ′3 at r = r0+. Enforcing these matching conditions, to
write c12, c22 at r0− and c22 and c31 at r0+ in terms of c12 leaves two expressions for the
ratio c21/c22 which, combined, yield the dispersion relation

2(χ+m) + α

2(χ−m)− α

[

(2(χ−m)− α)r2m0+ − 2(χ+m) + α

(2(χ+m) + α)r2m0+ − 2(χ−m)− α

]

=

(

r0−
r0+

)2χ

. (3.37)

For small diffuse layers where δ ≪ 1, and δ may be approximated using (3.28) we have
from (3.37), that

χ2 ∼
(α0r0

2δ

)2
{

1 +
4m

A ∗α0r0
δ

−
[

1

6r20
−
(

2m

α0r0

)2(

1 +
1 + A

A 3

(2A + α0)[1 − A (1− r2m0 )]

(1 − r2m0 )2

)

]

δ2 +O(δ3)

}

, (3.38)
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Figure 3: Comparison of the effect of the various models of the diffuse interface on φ.
The no-diffusion case is the solid piecewise line comprising two solid thin line segments
that are joined at the black circle. The piecewise diffuse case is the thick black line, the
solution is in three segments that coincide at the white circles. φ1 continues dot-dashed
after the first white circle, φ2 outside the diffuse region is shown dashed, and φ3 is shown
dotted to the left of the second white circle. The numerical solutions corresponding to
the exact solution of the diffusion equation and the similarity solution of the diffusion
equation are shown as a thin solid line and a dashed line, but the difference cannot be
seen by eye at this scale. The parameters chosen were: A = − 1

2 , t = 10−3Pe, m = 5,

r0 = 2−1/2. The corresponding values of ω were: for the non-diffuse case ω = 0.49−1.49i;
for the piecewise diffusion solution ω = 0.40− 1.35i; for the exact and similarity solution
diffusion solutions ω = 0.37− 1.31i.

where α0 = log[(1− A )/(1 + A )]. It follows that

ω ∼ ω∞

{

1−
(

m

α0r0

)(

A ∗ω∞

A ∗ + ω∞

)

1 + A

2A 3

(2A + α0)[1 − A (1− r2m0 )]

(1− r2m0 )2
δ +O(δ2)

}

,

(3.39)
where ω∞ is the zero-diffusion solution from (3.11). It follows immediately that as the
thickness of the diffuse layer, δ, tends to zero, the zero-diffusion solution ω∞ is recovered.
Figure 3 compares the solutions φ for the various approximations to the diffuse layer

with the sharp zero-diffusion solutions. The zero-diffusion solution (3.5) is shown as a
thin solid line where the transition between φ1 and φ2 takes place at the solid black
circle at a cusp. For the chosen parameters, A = − 1

2 , m = 5, r0 = 2−1/2, the dispersion
relation (3.7) gives ω = 0.49 − 1.49i for the most unstable mode. We then considered
the change in ω if the interface was allowed to diffuse over a time t = 10−3Pe prior to
any perturbation to the system. We can use the exact solution for ρ∗ (3.23) and then
numerically solve the appropriate form of (2.8) given by

(

φ′′ +
φ′

r
− m2φ

r2

)

+
ρ∗′

ρ∗

(

φ′ +
m(m− 2ω)φ

ω2r

)

= 0, (3.40)

across the whole domain to find φ and ω. This solution is shown as a thin solid line,
where the kinematic condition has been enforced at r = r0 indicated by the lower black
circle. The solution to (3.40) subject to φ(0) = 0, φ(1) = 0 was calculated separately in
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[0, r0] and [r0, 1] with the kinematic condition enforced for each solution at r = r0. The
eigenvalue ω is chosen to ensure that φ is at least class C2[0, 1]. The method of solution
was to formulate the problem in terms of Chebyshev polynomials (see Driscoll et al. (2014)
for details) and the method generalizes well to the fully viscous case, as is discussed in
§ 3.5. The same method can be implemented using the similarity solution (3.27), and this
is shown as a dashed line, though it is hard to distinguish from the exact solution at this
scale. These numerical solutions yield an eigenvalue ω = 0.37−1.31i for the most unstable
mode, showing that the diffusion inhibits the most unstable mode. Finally, the piecewise
solution is shown as the thick bold line and comprises three segments that transition at
the white circles located on r = r0±. The φ1 solution is plotted, dot-dashed, to the right
of the left-hand white circle though it is no-longer part of the solution. Similarly, φ2 is
shown to the left of r0− and the right of r0+ dashed. The final part of the solution, φ3,
is shown to the left of the right-hand white circle, dotted, before it becomes part of the
solution. The predicted most unstable mode in this case has eigenvalue ω = 0.40− 1.35i.

3.4. Viscous fluid layers

We now consider the case of two fluid layers separated by a sharp interface with differing,
but constant, densities and viscosities. We begin by considering the fluids to be miscible
with no surface tension acting at the interface. In each fluid layer j = 1, 2, the governing
equation (2.8) simplifies as

iω

{(

φ′′j +
φ′j
r

− m2φj
r2

)}

=
1

Re

µ∗
j

ρ∗j

{

φ′′′′j +
2φ′′′j
r

− (1 + 2m2)

[

φ′′j
r2

−
φ′j
r3

]

+
m2(m2 − 4)φj

r4

}

. (3.41)

This can be rewritten in terms of the differential operator, L, defined in (3.2) as

iωL[φj ] =
1

Re

µ∗
j

ρ∗j
L2[φj ]. (3.42)

This fourth order linear ordinary differential equation can be seen to factorize and so
we find solutions are given by solutions of the two second order ordinary differential
equations

L[φj ] = 0, and
1

Re

µ∗
j

ρ∗j
L[φj ] = iωφj . (3.43)

Hence, the general solution to (3.41) is given by

φj = cj1r
−m + cj2r

m + cj3Jm

(

qjω
1/2r

)

+ cj4Ym

(

qjω
1/2r

)

, (3.44)

where j = 1, 2 corresponds to the inner and outer fluid layers respectively, Y is a Bessel
function of the second kind and qj = (1 − i)

√

Re ρj/2µj. The pressure perturbation is
given by

Pj(r) = −ρj
(

2φj −
ωr

m
φ′j

)

+
µj

Re

ir

m

{

φ′′′j +
φ′′j
r

−
(1 +m2)φ′j

r2
+

2m2φj
r3

}

. (3.45)

Velocity regularity at r = 0 forces c11 = 0 and c14 = 0. The no-slip and no-penetration



Centrifugally forced Rayleigh-Taylor instability 17

conditions at r = 1 can be enforced by taking

c21 = −q2
√
ω

2m

(

Jm+1(q2
√
ω)c23 + Ym+1(q2

√
ω)c24

)

(3.46a)

c22 = −
(

Jm(q2
√
ω)c23 + Ym(q2

√
ω)c24

)

+
q2
√
ω

2m

(

Jm+1(q2
√
ω)c23 + Ym+1(q2

√
ω)c24

)

.

(3.46b)

The kinematic condition at the interface is as for the inviscid case and so we require
(2.25) to hold. We also require continuity of tangential fluid velocity across the interface
for viscous fluids, and so we require (2.26) as well.
Substituting into the stress continuity conditions (2.23) using (3.45), the interfacial

jump conditions are, in the absence of surface tension, in the tangential and normal
directions respectively

[

µ∗
(

r20φ
′′ − r0φ

′ +m2φ
)]+

−
= 0, (3.47a)

[

ρ∗
(

r0 − 2φ+
ωr0
m

φ′
)

+
µ∗

Re

ir0
m

{

φ′′′ − 3m2

r30
(r0φ

′ − φ)

}]+

−

= 0, (3.47b)

where (3.47a) has been used to simplify (3.47b).
In the special case that the dynamic viscosity of each layer is equal, then µj = 1 for

j = 1, 2 and we can make use of the continuity of fluid velocity condition, that φj and
φ′j are continuous across the interface, to simplify (3.47) as

[φ′′]
+
−
= 0, (3.48a)

[

ρ∗ {m+ ω (φ′ − 2)}+ i

Re
φ′′′
]+

−

= 0. (3.48b)

To ensure continuity of velocity and stress and satisfy kinematic conditions at the inter-
face in this special uniform viscosity case we therefore have the following three conditions:

φ1(r0) =
ωr0
m

(3.49a)

φ2(r0) =
ωr0
m

(3.49b)

φ′1(r0) = φ′2(r0), (3.49c)

and then two further conditions from either (3.47) if there is a viscosity contrast, or the
simpler (3.48) if the viscosities are uniform and equal. The first four conditions can be
used to find expressions for c12, c13, c21, and c22 in terms of ω, φ1(r0), φ

′
1(r0), φ2(r0) and

φ′2(r0). The final condition must be satisfied too and this yields the dispersion relation.
Figure 4 shows the behaviour of stable configurations of viscous fluid layers of uniform

but differing density and a sharp interface. The viscosity of the fluid layers is uniform and
equal. For the plots shown the Atwood number is A = 5

6 , the azimuthal wavenumber

is m = 20, the initial interface position is r0 = 2−1/2, giving equal fluid volume in each
layer. Figure 4a is a plot of the amplitude of the interfacial disturbance that propagates
around the interface with time. The white circles are taken from a low-viscosity numer-
ical simulation with Re = 2π × 106. The data points are well-modelled by the inviscid
solution (3.11) which comprises a superposition of two counter-propagating interfacial
waves (thin solid line). Closer agreement is found by using the full viscous solution that
better captures the slow decay in amplitude of the perturbations with time (thick solid
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Figure 4: The parameters for the simulations shown are A = 5
6 , m = 20, r0 = 2−1/2 and

where viscous Re = 2π× 106. (a) The predicted normalised amplitude of a perturbation
to the interface against time shown for the viscous analytical prediction (bold solid),
the inviscid theoretical prediction (thin solid) and the numerical simulation (white data
points). The amplitude comprises the superposition of two waves, one travelling in the
positive θ direction and the other in the negative θ direction. (b) The plot shows how
the eigenvalues of the two modes of solution are modified as the viscosity of the two
fluid layers is increased. The inviscid solution (ω±

∞, white data points) is given by (3.7).
As the Reynolds number decreases the positive solution approaches zero, whereas the
negative solution asymptotes to a finite real value (dashed vertical line) and infinite
imaginary value. The real value of the asymptote is given by (A 4). (c) The behaviour of
the negative solution as the Reynolds number is varied. In the small Reynolds number
limit the solution behaves as ω ∼ λ + iκRe−1. The real part of the solution is shown in
bold and the imaginary part is shown as a thin line. The power law behaviour of the
solutions is indicated by the dashed lines. (d) The behaviour of the positive solution as
the Reynolds number is varied. In the small Reynolds number limit the solution behaves
as ω ∼ iκRe (see (3.50)).

line). Figure 4b shows the behaviour of the eigenvalue ω as the viscosity of the fluid
layers varies. The inviscid solutions, ω±

∞, given by (3.11), are shown as white circles.
The positive solution ω+

∞ ≈ 3.33 corresponds to a wave that precesses in a clockwise
direction about the interface whereas the negative solution ω−

∞ ≈ −5.00 corresponds to
a wave that precesses in an anticlockwise direction about the interface. As the viscosity
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of the fluid layers is increased the precession rates of the solutions decreases, the waves
are less able to propagate around the interface. The positive solution tends to zero as
Re → 0 representing a stationary perturbation. The negative solution degenerates as its
imaginary part tends to positive infinity, meaning the solution decays instantaneously.
We can examine the behaviour of the viscous solutions in the limit of small Reynolds

number. The root associated with ω+
∞ behaves as

ω ∼ iAm

2

{

1− r
2(m−1)
0

2

[(

m2(1− r20)
2 + 2r20

)

(1− η) +m(1− r40)(1 + η)
]

− ηr4m0

}

× r20
m2 − 1

{

1 + ηr
2(m−1)
0 (m2(1− r20)

2 + 2r20) + η2r4m0

}−1

Re +O(Re2), (3.50)

where η = (µ2 − µ1)/(µ2 + µ1) is the viscosity contrast (cf. (18) Alvarez-Lacalle et al.
2004, noting that they have labelled their fluid layers the other way round to the present
authors). We can see that this mode is stable for positive Atwood number, A > 0, and
unstable for negative Atwood number, A < 0. When the Atwood number is negative,
the magnitude of the growth rate is determined largely by the system Reynolds number,
Re, the Atwood number, A , and the azimuthal wavenumber, m. The dependence on
the viscosity contrast η is multiplied by terms involving r0 to powers of 2(m − 1) or
higher. As r0 ∈ (0, 1) this indicates therefore, for moderate values of m, the dependence
of the growth rate on η may be weak and the growth rate for most modes of instability
may depend largely only the viscosity of the most viscous layer, but it does not matter
whether this layer is the inner layer or the outer layer.
For the negative root associated with ω−

∞, we can show ω ∼ λ + iκRe−1 where the
expressions for the coefficients κ and λ are unwieldy, but are given in appendix A. Fig-
ures 4c and 4d show the asymptotic behaviours of the real and imaginary parts of the
eigenvalue ω as the Reynolds number is varied. Both solutions approach the inviscid so-
lution like Re−1/2 as Re → ∞. In the high viscosity limit as Re → 0 the positive solution
tends to zero as shown in (3.50), the negative solution tends to a constant real part and
a singular imaginary part as described in appendix A.
In order for the system at low Reynolds number to support Saffman-Taylor instability

(Saffman and Taylor 1958) we would require there to exist an η = η∗ ∈ (−1, 1) such that
ω = 0 in (3.50), the neutral stability case, i.e., there would exist for m > 2 an η∗ that
satisfies

η∗ =
2− r

2(m−1)
0

[

m2
(

1− r20
)2

+m(1− r40) + 2r20

]

2r4m0 − r
2(m−1)
0

[

m2 (1− r20)
2 −m(1− r40) + 2r20

] ∈ [−1, 1], (3.51)

however no such η∗ exists, and so the system does not support Saffman-Taylor instability
at low Reynolds number.
We now turn our attention to viscous fluid layers separated by an initially sharp

interface with an unstable density stratification. We consider the unstable complement
of figure 4 where, as before, m = 20, r0 = 2−1/2, but we reverse the sign of the Atwood
number such that the system is unstable and A = −5/6. Figure 5 shows the behaviour
of solutions to the system as the system Reynolds number is varied for three different
values of the viscosity contrast, η. The inviscid solutions (3.11) are shown as white circles
and it can be seen that as Re → ∞ all the solutions tend toward their inviscid limit. The
numerical solutions tend toward the inviscid solution as Re−1/2 as in figure 4. The stable,
decaying, solutions are shown on the left and have the same behaviour asymptotically
as Re → 0 as the negative solution in figure 4, specifically that ω ∼ λ + iκRe−1. The
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Figure 5: The plots show the behaviour of the eigenvalue ω with changes in the system
Reynolds number, Re, for A = −5/6, m = 20, r0 = 2−1/2. The variation with the
viscosity contrast is also shown: the bolid solid lines are η = 0, no contrast, matched
viscosities; the thin solid lines are η = 5/6, the outer layer is 11 times more viscous
than the inner layer; the dashed lines are η = −5/6, the inner layer is 11 times more
viscous than the outer layer. The stable root, left, has the same asymptotic behaviour
as the negative root in figure 4b, diverging to a positive infinite imaginary part as Re−1

in the limit Re → 0. In the limit of large Reynolds number the solution tends toward
the inviscid solution shown by the white circle. The unstable solution tends to zero as
Re → 0 and tends to the inviscid solution as Re → ∞, shown by the white circle. The
asymptotic expression (3.50) agrees well with the numerical solution for near the Re → 0
limit. While the stable branch is sensitive to the viscosity contrast, η, the unstable branch
is insensitive for all Re; the differences between the three lines cannot be observed easily
at the scale shown.

unstable solutions determine the growth of the perturbation at the interface and can be
seen to tend to zero, the stationary solution, as Re → 0. The solution near Re → 0 is
well-approximated by (3.50). For the solutions shown the viscosity contrasts were: η = 0,
for the bold solid lines; η = 5/6 for the thin solid lines, and η = −5/6 for the dashed
lines. A contrast of η = 5/6 corresponds to the outer layer being 11 times more viscous
than the inner layer, whereas a contrast of η = −5/6 corresponds to the inner layer being
11 times more viscous than the outer layer. It can be seen that while the stable solution
is sensitive to the viscosity contrast, the unstable solution, which controls the Rayleigh-
Taylor growth of the perturbation, is insensitive to the value of η across all values of Re.
This supports our earlier conjecture that the growth rate is determined primarily by the
system Reynolds number and it does not matter whether the outer layer is more viscous
than the inner layer or vice-versa. In all cases we observe that as the system Reynolds
number increases the growth rate of the perturbation is reduced.
Figure 6 shows snapshots of a numerical simulation of two fluids of equal volume and

equal viscosity, where A = − 1
2 , r0 = 2−1/2, Re = 2π × 102, η = 0 and the inital per-

turbation has azimuthal wavenumber m = 45. The initial amplitude of the perturbation
was ǫ = 4 × 10−3. The four snapshots are from t = 0.57 to t = 6.22, approximately one
complete revolution of the system. The boundary of the domain is shown as a thick solid
line and the initial position of the interface is the inner dashed circle in each image. The
images are in the rotating frame of reference. The large dotted cross with a white circle
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(a) (b)

(c) (d)

Figure 6: Simulation of a centrifugally forced Rayleigh-Taylor instability. The parameters
were Re = 2π × 102, A = − 1

2 , r0 = 2−1/2 (shown dashed), η = 0, and the initial
perturbation was m = 45, ǫ = 4× 10−3. The times shown are: (a) t = 0.57, (b) t = 2.45,
(c) t = 4.34, and (d) t = 6.22.

at one end indicates the position of a fixed point in the ‘laboratory’, or fixed, inertial
frame. This fixed point appears to move in a clockwise direction. As may be observed,
the initial perturbation starts to grow. It can be seen in the first two images that the
growth is dominated by motion in the radial direction, the effect of the Coriolis term is
seen to be small at these times, again the growth of the instability is driven by centrifugal
forces.
Figure 7 is a comparison of various growth rates calculated from numerical simulations

of the centrifugally-driven Rayleigh-Taylor instability against the linear stability analysis
predictions. For parameters A = − 1

2 , r0 = 2−1/2, m = 45, η = 0 and Re = 2π × 106,
the growth rate is indicated by the square data points. To a good approximation the
data lies at early times on the straight line given by the inviscid approximation ω =
0.50−4.72i. For a simulation at more moderate Reynolds numbers we expect the inviscid
approximation to be a poor estimate of the growth rate. The white-circle data points are
from a simulation with Re = 2π × 102. We may not neglect the effects of viscosity at
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Figure 7: A comparison of the growth rates observed in numerical simulations compared
to the theoretical predictions. The parameters for all simulations were A = − 1

2 , m = 45,

r0 = 2−1/2. The individual simulation runs had: (�) low viscosity Re = 2π × 106, no
surface tension, no diffusion; (

9

) low viscosity Re = 2π × 106, no surface tension, an
initial diffuse interface with width δ = 0.067; (◦) high viscosity Re = 2π×102, no surface
tension, no diffusion; (△) low viscosity Re = 2π × 106, surface tension We = 5× 103, no
diffusion. The straight thin lines are the theoretically predicted growth rates.

this Reynolds number, as the growth rate is seen to be substantially lower than that of
the high Reynolds number simulation. The theoretical prediction for this configuration
is that ω = 0.09− 1.49i, and can be seen to match well the numerical data points (white-
circle). The remaining two sets of data are for configurations with a diffuse interface and
with surface tension which are discussed in § 3.5.

3.5. Immiscible viscous layers with surface tension and miscible diffuse viscous fluid

layers

Two classes of viscous flow are of practical interest. We may have a configuration where
the two fluids are different, immiscible with different viscosities and surface tension be-
tween them. We may also consider the case of miscible fluids that have approximately
equal viscosities, no surface tension between the layers, but a diffuse interface.
We first consider the case of two immiscible fluids with a constant density and constant

viscosity contrast between them and surface tension acting at the interface. The governing
version of the Orr-Sommerfeld equation (2.8) is as in § 3.4 and is given by (3.41), which
accepts the same solution as before. However, the boundary conditions at the interface
must be modified to account for the stress jump due to the surface tension, similarly to
the inviscid case considered in § 3.2. The kinematic condition (3.49a, b), the tangential
velocity continuity condition (3.49c), and the tangential stress condition (3.47a) remain
as before. However (3.47b) is modified, following (2.23) to give

[

ρ∗
(

r0 − 2φ+
ωr0
m

φ
)

+
µ∗

Re

ir

m

{

φ′′′ − 3m2

r30
(r0φ

′ − φ)

}]+

−

= − 1

We

m2 − 1

r20
, (3.52)

(cf. the inviscid condition (3.15)) where (3.47a) has been used to simplify (3.52). As in
the miscible case, (3.49) and (3.47a) may be used to find expressions for c12, c13, c21, and
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c22 in terms of ω and also then φ1 and φ2 and their gradients at r0. The final condition
(3.52) yields the dispersion relation. The inclusion of the effect of surface tension in the
right hand side of (3.52) on the low Reynolds number asymptotic solution (3.50) is to
introduce a correcting factor 1+ (m2 − 1)/(2WeA r30) = 1+ S/m into the expression for
ω. This has the corollary that the surface tension may stabilize the mode with azimuthal
wavenumber m∗ when S = −m∗, or, equivalently, all modes m > m∗ are stabilized for
We = −(m∗2 − 1)/(2A r30).

Figure 8 shows a comparison between the behaviour of two viscous systems, one with-
out surface tension at the interface (a), and one with surface tension at the interface (b).
Both systems have equal fluid viscosities in each layer, i.e., η = 0, and an unstable density
stratification, A = − 1

2 . The Reynolds number, as defined in § 2.1, in each simulation was
2π×106. The Reynolds number based on the speed of propagation of the perturbed front
was less than 5× 103, two orders of magnitude below that identified by Zhou (2007) for
the transition to the minimum state required for comparison to astrophysical scale flows.

At t = 0 a number of modes of perturbation between m = 5 and m = 90 were intro-
duced at the interface with random amplitudes of order 4×10−3. This initial perturbation
is indicated by the white circles on the graphs (c) and (d). As time evolved and the in-
stability developed, the amplitude of each mode was added to the graphs (c) and (d) as
a progressively darker shaded data point for a given m at time steps of ∆t = 0.063. At
the last time shown (t = 0.44 in graph (c) and t = 0.82 in graph (d)) the last data point
(black circle) is compared with its theoretical prediction, indicated by a white square.
The simulation of the left, (a), had no surface tension acting at the interface, whereas
the simulation on the right, (b), had surface tension acting at the interface and the effect
can be immediately observed qualitatively. The small-scale instabilities apparent in the
left hand simulation appear significantly suppressed in the right hand simulation. The
strength of the surface tension, We = 5800, was chosen such that the critical wavenum-
ber, m∗, given in (3.18) is approximately 45. Image (d) shows that the behaviour of
modes above m = m∗ is completely different to that below m = m∗ and their growth is
suppressed at early times.

As the instability develops, some of the dense fluid moves towards the boundary of
the domain, as is observed from the simulations. As the interface between the two fluids
moves towards the boundary it may develop areas where its radius of curvature is greater
than its initial value at r = r0. This therefore allows modes that were suppressed initially
by the surface tension when the interface was nearer the centre of the system to develop
as the interface approaches the boundary since the effects of surface tension are not felt as
strongly in regions of lower interfacial curvature. We can return to figure 7 and consider
the growth of a system where initially the perturbed mode is m = 45, but the surface
tension We = 5×103 should completely suppress the growth of the mode. The triangular
data points show that initially the m = 45 mode is unable to grow, but later as the
interface has moved toward the boundary, due to instability at lower wavenumbers, the
m = 45 mode is able to grow.

We now turn to the case of two layers of miscible viscous fluid with matching viscosities
whose interface has diffused over a period of time. The approach is identical to that
followed in the inviscid case where we consider a diffuse layer thickness δ ∼ 2

√

πt/Pe
and a piecewise continuous density of the form (3.29). Assuming equal viscosities for the
fluids we define the following quantity

ζ(r) =
Re βωi

(2 + α)2
r2+α, (3.53)
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Figure 8: The growth of modes of disturbance at an interface without surface tension
(a, c) and with surface tension (b, d). Snap shots from the flows are shown in images (a)
and (b) at t = 2.51. The surface tension in (b) and (d) correspond to a cut-off azimuthal
wavenumberm∗ = 45 for growth as given by (3.18), indicated by the bold vertical line. In
(c) and (d) it can be seen that each individual mode evolves in time, indicated by circular
data points, filled white at t = 0 and getting darker with each time step ∆t = 0.063. The
predicted magnitude of each mode based on either (3.7) (c) or (3.17) (d), at the final
time (black circle) is indicated by a white square. The final times are t = 0.44 in (c) and
t = 0.82 in (d). It can be seen in (d) that modes that are above the cut-off wavenumber
m∗ = 45 are suppressed at these early times, to a good approximation. The parameters
for the flow were A = −0.5, and We = 5.8× 103 in (b) and (d).

and functions

F(c; ζ) = 2F3

([

α+ 2(c+ χ)

2 (2 + α)
,
α+ 2(c− χ)

2 (2 + α)

]

;

[

α

2 + α
,
α+ 2c

2 + α
,
α+ 2(c+ 1)

2 + α

]

; ζ

)

(3.54)

G(c; ζ) = 2F3

([

α+ 2(c+ χ)

2 (2 + α)
,
α+ 2(c− χ)

2 (2 + α)

]

;

[

4 + α

2 + α
,
α+ 2(c− 1)

2 + α
,
α+ 2c

2 + α

]

; ζ

)

(3.55)
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where 2F3 is a hypergeometric function and χ is as defined in (3.36). We may write
solutions for each region as

φ1 = c11r
−m + c12r

m + c13Jm(q1ω
1/2r) + c14Ym(q1ω

1/2r), (3.56)

φ2 = c21r
−mF(−m; ζ)+c22r

mF(m; ζ)+c23r
2−mG(2−m, ζ)+c24r2+mG(2+m, ζ), (3.57)

φ3 = c31r
−m + c32r

m + c33Jm(q2ω
1/2r) + c34Ym(q2ω

1/2r). (3.58)

We then proceed as before, enforcing velocity regularity at r = 0 which forces c11 = 0
and c14 = 0, and no-slip, no-penetration conditions at r = 1 which forces equivalent
constraints to (3.46). This reduces the number of free constants to eight; two in the inner
and outer layers, and four in the mid-layer. We now apply the kinematic condition and
velocity continuity conditions at each interface (five conditions) and stress continuity at
each interface (four conditions) to find the dispersion relation.
Figure 9 shows the effect of a diffuse interface on the real part of the solution φ. The

piecewise solution comprises three segments that, as in the inviscid case, transition at
the white circles. The unused parts of the solutions are shown, indicating their behaviour
in the matching regions. The exact solution is shown as a thin solid line, the kinematic
condition is enforced at r = r0, indicated by the black circle. The solution to (2.8) subject
to φ(0) = φ′(0) = 0, φ(1) = φ′(1) = 0 was calculated separately in [0, r0] and [r0, 1] with
the kinematic condition enforced for each solution at r = r0. The free boundary condition
φ′(r0) in each domain and the eigenvalue ω are chosen to ensure that φ is at least class
C4[0, 1]. The method of solution, as in the inviscid case, was to formulate the problem in
terms of Chebyshev polynomials. In plot (b) the comparison with the non-diffuse case is
shown and it can be seen that the qualitative differences between the solutions are less
marked than in the inviscid case since the viscosity has acted to smooth φ to some extent
already.

3.6. Non-inertial flow and comparison with Hele-Shaw cell and porous media flow

A related problem to those considered above is of a two-dimensional rotating droplet,
possibly lying within an unbounded fluid of different density and viscosity, rotating in
a Hele-Shaw cell or a porous medium. This problem was considered by Schwartz (1989)
and later by Alvarez-Lacalle et al. (2004). If the outer fluid is considered unbounded and
inertia is to be ignored then the nondimensionalisation used above is not natural since
a → ∞, but ρ0Ωa

2/µ0 → 0. It is more appropriate therefore to take the radius of the
‘droplet’, r0, as the length scale in this case.
We make a Stokes flow approximation, taking Re → 0 whereby inertial terms are

ignored but the centrifugal term and the pressure term are balanced with the viscous
term of the equation of motion (2.1b). This requires a velocity scale

(

ρ0Ωr
2
0/µ0

)

Ωr0 and

hence an implied time scale µ0/
(

ρ0Ω
2r20
)

. We also require the pressure scale ρ0Ω
2r20 , and

define a Reynolds number Re =
(

ρ0Ωr
2
0/µ0

)2
. The nondimensional equations of motion

are, assuming constant viscosity and density in each layer

∂ρ′j
∂t′

+∇′ ·
(

ρ′ju
′

j

)

= 0, (3.59a)

Re
Du

′
j

Dt′
= − 1

ρ′j
∇′p′j + r′r̂ − 2Re1/2ẑ × u

′

j +
µ′
j

ρ′j
∇′2

u
′

j , (3.59b)

∇′ · u′

j = 0. (3.59c)

Dropping the prime notation and taking the Stokes flow limit Re → 0 we have that in
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Figure 9: (a) The solution, φ, (bold solid line) to (2.8) for m = 12, A = − 1
2 , r0 = 2−1/2,

Re = 400, µ1 = 1, µ2 = 1, and δ = 2
√

πt/Pe ≈ 0.11, where t = 10−3Pe. The shown
solution is the real part, and corresponds to the solution of the dispersion relation at
ω = 0.22 − 1.41i. The solution constitutes the matching of three analytic solutions;
φ1 for r ∈ [0, r0−] which continues dot-dashed after the solution is matched to φ2 for
r ∈ [r0−, r0+]. Outside this region φ2 is shown dashed. Finally in r ∈ [r0+, 1], φ3 is
used, but is shown dashed outside this range. The diffusion width δ is indicated, and the
matching between solutions occurs at the white dots. The exact solution is shown as a
thin solid line. The kinematic condition is enforced at the black circle. (b) Comparison
with the zero diffusion case (higher amplitude curve); again the transition between the
two solutions is shown with a white dot, the solution corresponds to the solution of the
dispersion relation at ω = 0.29− 1.62i.

each layer

∂ρj
∂t

+∇ · (ρjuj) = 0, (3.60a)

0 = − 1

ρj
∇pj + rr̂ +

µj

ρj
∇2

uj , (3.60b)

∇ · uj = 0. (3.60c)

Under this approximation the convective derivative of the velocity and the Coriolis term
are negligible. We substitute for the fluid density, velocity and pressure as in (2.3)–(2.6)
and find the corresponding zero-inertia Orr-Sommerfeld equation is

0 = φ′′′′j +
2φ′′′j
r

−
(

1 + 2m2
)

[

φ′′j
r2

−
φ′j
r3

]

+
m2
(

m2 − 4
)

φj

r4
= L2[φj ]. (3.61)

This is a simplification of (2.8) in which the left hand side, the inertial terms are zero
and we have uniform viscosity in each layer. The corresponding pressure perturbation is
given by

Pj =
iµj

m

(

(

rφ′′j
)′ − m2 + 1

r
φ′j +

2m2φj
r2

)

. (3.62)

This zero-inertia form of the Orr-Sommerfeld equation accepts power-law solutions of
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the form

φj = cj1r
−m + cj2r

−m+2 + cj3r
m + cj4r

m+2, j = 1, 2. (3.63)

The coefficients c11 and c12 are taken to be zero for velocity regularity at the origin. The
no-slip and no-penetration conditions are now applied at r = a such that φ2(a) = 0,
φ′2(a) = 0. The kinematic condition, which also enforces normal velocity continuity,
is given now by φ1(1) = φ2(1) = ω/m. Tangential velocity continuity is ensured by
setting φ′1(1) = φ′2(1). This leaves only one free constant, but the two stress continuity
conditions to satisfy and so will yield a dispersion relation. The normal and tangential
stress continuity conditions are, at order ǫ, respectively

[

µ∗
{

φ′′′ − 3m2 (φ′ − φ)
}

− imρ∗
]+

−
=

im
(

m2 − 1
)

We
, (3.64)

[

µ∗
{

φ′′ − φ′ +m2φ
}]+

−
= 0, (3.65)

where the jump occurs across r = 1, and the tangential condition has been used to
simplify the normal condition. For a≫ 1, m > 1, the dispersion relation is given by

ω =
iAm

2

(

1 +
1

We

m2 − 1

2A

)

×
(

1− a−2(m+1)

2

[

(a2 − 1)2(1− η)m2 + (a4 − 1)(1 + η)m+ 2a2(1− η)
]

− a−4mη

)

×
{

(m2 − 1)
[

1 + η
(

a−2(m+1)
[

(a2 − 1)2m2 + 2a2
]

+ a−4mη
)]}−1

, (3.66)

(cf. (3.50) with the surface tension correction factor). The form of the dispersion relation
shows immediately that solutions will either decay or grow, depending on whether the
Atwood number is positive or negative respectively, but there are no precessional or
travelling wave solutions possible as might be anticipated on physical grounds for a
system with no inertia. There can be a balance between the stabilizing effect of the surface
tension and the Rayleigh-Taylor instability such that a perturbed interface neither grows
nor decays and is stationary. This occurs when

We = −m
2 − 1

2A
, (3.67)

which can only occur for A < 0 as would be expected again on physical grounds. If
quantites are rewritten in terms of our original nondimensionalization (§ 2.1) and µ1 = µ2,
i.e., η = 0, then the dispersion relation (3.66) is exactly the first term of (3.50) with the
surface tension correction factor, as it must be.
We compare the results of Schwartz (1989) and Alvarez-Lacalle et al. (2004) with the

related non-inertial limit of the flows considered in §§ 3.1–3.5. In a Hele-Shaw cell the
equations of motion are classically simplified under Stokes flow and lubrication approx-
imations that respectively ignore any inertia in the flow and assume that gradients in
the gap-width direction are much greater than gradients in the planar direction. For
consideration of the flow in a Hele-Shaw cell or a porous media we return to (3.59) but
instead of interpreting the equations in plane polar coordinates we interpret them in
cylindrical polar coordinates and apply a lubrication approximation whereby changes in
the planar direction take place over much greater distances than changes in the gap-width
z-direction. That is, we apply a second scaling to (3.59) under the assumption that the
dimensional gap-width, b, is small compared to the initial radius of the inner fluid layer.
Hence, we take ε = b/r0 ≪ 1. Under this rescaling we write the gradient operator and
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the velocity separately in their planar and vertical components: ∇ = ∇H + ∂ · /∂zẑ,
u = uH +wẑ. The pressure, p, is scaled by ε−2, and the system (3.59) is transformed to

∂ρ′j
∂t′

+∇′ ·
(

ρ′ju
′

j

)

= 0, (3.68a)

Re ε2
Du

′
Hj

Dt′
= − 1

ρ′j
∇′

Hp
′ + r′r̂ − 2Re1/2ε ẑ × u

′

Hj +
µ′
j

ρ′j

(

ε2∇′2
H + ∂2z

)

u
′

Hj , (3.68b)

Re ε2
Dw′

j

Dt′
= − 1

ε2
1

ρ′j

∂p′

∂z′
+
µ′
j

ρ′j

(

ε2∇′2
H + ∂2z

)

w′

j , (3.68c)

∇′ · u′

j = 0. (3.68d)

Hence, at leading order (3.60) is replaced by

∂ρj
∂t

+∇ · (ρjuj) = 0, (3.69a)

0 = − 1

ρj
∇Hp+ rr̂ +

µj

ρj

∂2uHj

∂z2
, (3.69b)

0 =
∂p

∂z
, (3.69c)

∇ · uj = 0. (3.69d)

It follows in the usual manner that p = p(r, θ, t) is independent of z and so if the plates
are located at z = 0 and z = ε, the velocity field at leading order is

uj =
z(z − ε)

2µj
∇H

(

pj −
ρjr

2

2

)

, (3.70)

and we can define a vertically averaged velocity in each fluid layer

vj =
1

ε

∫ ε

0

uj dz = − ε2

12µj
∇H

(

pj −
ρjr

2

2

)

, (3.71)

a rotational version of Darcy’s law. As the pressure in each layer is independent of z it
follows from taking the curl of (3.71) that the vertically-averaged velocity, vj , is irrota-
tional in each layer and so Alvarez-Lacalle et al. (2004) proceed by taking a potential
for the flow such that vj = ∇ϕj . Hence, as a result of incompressibility, they seek to
solve ∇2

Hϕj = 0 in each layer. For consistency with notation in the previous sections
we follow an equivalent method which is to express vj in terms of a streamfunction,
ψj , since the velocity field is incompressible. The irrotationality of vj then implies that
∇2

Hψj = 0. We therefore seek normal mode solutions and solve Laplace’s equation for
ψj = ǫφj(r) exp{i(mθ + ωt)} (taking care to distinguish between ε the nondimensional
gap-width of the Hele-Shaw cell, and ǫ the small perturbation to the background hydro-
static initial conditions). The pressure is then given by

pj = p∗j − ǫ
12µj

ε2
ir

m
φ′j e

i(mθ+ωt), where p∗j = p0j +
ρjr

2

2
, (3.72)

and p0j is a reference pressure. (Note that solving Laplace’s equation for ψ leads to
exactly the same equation for φ as the Rayleigh equation (3.2) in 3.1 demonstrating the
well-known phenomena of three-dimensional viscous flow in a Hele-Shaw cell modelling
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two-dimensional inviscid flow.) The conditions of stress continuity are

[p∗]
+
−
= − 1

We
O(1) normal stress (3.73a)

[

−ρ∗ + 2iµ∗

m

{(

6

ε2
+m2

)

φ′ −m2φ

}]+

−

=
1

We

(

m2 − 1
)

O(ǫ) normal stress (3.73b)

[

µ∗
(

φ′′ − φ′ +m2φ
)]+

−
= 0, O(ǫ) tangential stress (3.73c)

where the jump occurs at r = 1. The kinematic condition is that φj(1) = ω/m, which
also guarantees the continuity of the normal velocity across the interface. To enforce
continuity of tangential velocity we would require φ′1(1) = φ′2(1).

The solutions to Laplace’s equation have only two free constants in each layer, and once
the conditions of regularity at the origin and unboundedness in the outer layer are taken
into account, only two free constants remain to satisfy the tangential velocity continuity
condition, stress continuity conditions and kinematic condition. Alvarez-Lacalle et al.
(2004) enforce the kinematic condition, and thus normal velocity continuity, and normal
stress continuity to find (in our notation)

φ1 =
ωrm

m
, φ2 =

ωr−m

m
, (3.74)

and hence find the dispersion relation

ω =
iAm

2

(

1 +
1

We

m2 − 1

2A

)[

6

ε2
+m (m+ η)

]−1

. (3.75)

We note that as in the plane-polar two-dimensional case, there can be a balance between
the unstable density stratification and surface tension that leads to a stationary per-
turbation when We = −(m2 − 1)/2A . The conditions of tangential stress and velocity
continuity, are not enforced.

Schwartz (1989) considered the same problem in a porous media as well as in a Hele-
Shaw cell. Figure 10 shows droplets with differing initial perturbations in porous media
evolving in time, governed by Schwartz’s model; contours of p− ρr2/2 are shown. Flows
in Hele-Shaw cells of gap-width b are equivalent to flows in porous media, governed by
Darcy’s Law, with permeability k = b2/12. Therefore for a fluid droplet, with no outer
fluid layer, in an unbounded porous media we have A = −1, η = −1 and it follows from
(3.75) that

ω = − im

2

(

1− 1

We

m2 − 1

2

)[

1

2k′
+m(m− 1)

]−1

, (3.76)

where k′ = k/r20 is the nondimensional permeability. The differences between (3.76) (that
agrees with the result of Alvarez-Lacalle et al. (2004)) and the result quoted in Schwartz
(1989) are due to both applying normal stress continuity here, instead of pressure con-
tinuity, across the interface and not having a Coriolis term here for consistency with
the narrow gap-width and Stokes flow approximations. The dispersion relation given in
Schwartz (1989) is equal to that of Alvarez-Lacalle et al. (2004) when Re → 0 in the
Schwartz solution and pressure continuity is enforced in the Alvarez-Lacalle et al. (2004)
solution (see their (13) as opposed to their (18)). The behaviour of the plane-polar two-
dimensional system and the Hele-Shaw cell, porous media solutions can be seen to have
some qualitatively similar behaviour. Comparing (3.75) with (3.66) in the limit a → ∞
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Figure 10: Modified pressure contours in perturbed droplets rotating in porous media or
Hele-Shaw cells. The initial droplet size is a perturbed circle of initially unit radius, and
the cross is for scale (length 0.4 in each direction). The times shown are t = 15, 25, 30,
and 35. There is no external fluid layer.

which gives

ω =
iAm

2

(

1 +
1

We

m2 − 1

2A

)

1

m2 − 1
, (3.77)

we see that the growth rates differ by a shape factor that depends on the azimuthal
wavenumber and the viscosity contrast, but that the dependence on the Atwood number
and the Weber number is identical. The key difference between the models is the inter-
action with the viscous term in the equation of motion and so it is consistent that the
behaviour of the models is distinguished via a shape factor that depends on viscosity and
on the size of a given perturbation.

4. Discussion and Conclusions

We have considered perturbations to a two-dimensional system of concentric fluid layers
in a circular domain that is undergoing constant rotation about its centre. The fluids may
differ in both density and viscosity and they may have a sharp interface possibly with
surface tension acting, or they may have a diffuse interface. A linear stability analysis of
the hydrostatic initial condition of the two fluids at rest in the rotating frame of reference
was carried out and showed that when the inner fluid is less dense than the outer fluid
the system is stable, though this necessarily does not formally exclude the possibility of
sub-critical instabilities existing. When the inner fluid is denser than the outer fluid the
system may be unstable and if it is unstable we see Rayleigh-Taylor-like growth driven
by the rotation of the system.
The most straightforward configuration considered was of two inviscid fluids of differ-

ing, but uniform, density with a sharp interface between the two layers and no surface
tension acting. The dispersion relation for this system was shown to be quadratic in
ω and stable when A > 0, but unstable when A < 0. The dispersion relation, via
consideration of its discriminant, showed that any Rayleigh-Taylor growth was due to
the centrifugal term in the equation of motion and hence the instability is ‘centrifugally
driven’. The effect of the Coriolis term when the system is unstable is always to inhibit
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the growth rate. The effects of the curvature of the interface and the confinement of the
domain were characterized by a modified Atwood number. In the limit of large interfacial
wavenumber the modified Atwood number approaches the classical Atwood number, the
effects of the Coriolis force become negligible and the solutions of the dispersion relation
approach those of the classical gravity-driven Rayleigh-Taylor instability with the driving
gravitational acceleration replaced by r0Ω

2.
If the two fluids are immiscible and have some surface tension between them at the

interface, the effect of the surface tension can be thought of formally in terms of modifying
the apparent azimuthal wavenumber. If the system is stable the apparent wavenumber is
greater than the actual wavenumber and the interfacial waves oscillate more rapidly than
they would in the absence of surface tension. Conversely, when the system is unstable,
the apparent wavenumber is smaller than the actual wavenumber and the growth rate is
lower than in the absence of surface tension. The growth rate is therefore inhibited by
the surface tension. There exists a critical wavenumber, m∗, above which the solutions
to the dispersion relation are real and stable waves propagate about the interface, but
below which the dispersion relation has complex conjugate pair solutions and so the most
unstable mode must force growth of any perturbation.
The effect of density diffusion at the interface between two miscible fluid layers was

considered. This investigation was motivated by whether a diffuse interface changes the
observed length scales and inhibits the growth rates of the instability as it does in the
classical gravity driven Rayleigh-Taylor and Kelvin-Helmholtz instabilities. We consid-
ered two fluids with an initially sharp interface that were subject to a period of diffusion
prior to the interface being perturbed. If the density transition between the fluid layers
can be accurately approximated by ρ = βrα for two constants α and β, then the Rayleigh
equation still accepts power-law solutions and an analytical expression for the dispersion
relation can be found. The effect of the diffusion is to inhibit the growth of any given
mode.
In the case of fluids with differing, but uniform, densities and viscosities, solutions to

the governing Orr-Sommerfeld equation are of the form of power-laws and Bessel func-
tions. The increased number of eigensolutions is matched by an increase in the number
of boundary conditions and interfacial continuity conditions. In the limit of very high
viscosity (low Reynolds number) the solutions behave like the Stokes flow, zero-inertia
solutions. In the limit of very low viscosity (high Reynolds number) the solutions behave
like the inviscid solution. The viscosity in the stable configuration always acts to slow
down the speed of interfacial wave precession. As the Reynolds number tends to zero,
one of the two travelling wave solutions approaches the zero-inertia solution. The other
solution degenerates by its imaginary part tending to positive infinity. In an unstable
configuration the decaying stable solution is sensitive to the viscosity contrast, whereas
the growth of the unstable mode is relatively insensitive to the viscosity contrast. The
growth of the instability is due to the system Reynolds number and there is no strong
dependence on whether it is the inner layer or the outer layer that is the most viscous.
In the limit of high viscosity (low Reynolds number) the solution behaves asymptotically
like the zero-inertia solution and tends towards a stationary state. The effects of diffusion
of the interface or surface tension at the interface were also considered and shown to have
qualitatively similar effects to the inviscid case; all cases may be considered analytically.
In particular there exists a mode above which surface tension is able to stabilize the
growth of the perturbation.
Finally, the zero-inertia Stokes flow solutions were considered in comparison with es-

tablished results for similar flows in Hele-Shaw cells and porous media. The differences
between the present configuration and the Hele-Shaw cell and porous media configura-
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tions lies in the way that viscosity acts on the flow. The results differ by a factor that may
be interpreted as a shape factor since the growth rates otherwise have identical physical
dependencies on the Atwood and Weber numbers.

We have revisited well-established classical results in gravity-driven Rayleigh-Taylor
instability but cast here in a rotating frame and with no gravity acting. We have shown
that it is possible to have Rayleigh-Taylor-like growth that is centrifugally driven. The
effects of surface tension, interface diffusion, and fluid viscosity are all seen to have
qualitatively similar effects on the growth rate of the instability to the classical gravity-
driven case.

MMS gratefully acknowledges access to the University of Nottingham High Perfor-
mance Computing Facility and useful discussions with Prof. J. Billingham, Dr M. Hub-
bard and Prof. J. King.

Appendix A. Low Reynolds number viscous solution behaviour

We introduce the notation

Ji,j,k = Jm+i

(

κ1/2
[

1− (−1)jA
]1/2

rk0

)

, Yi,j,k = Ym+i

(

κ1/2
[

1− (−1)jA
]1/2

rk0

)

,

(A 1)
and the determinant

Di1,j1,k1

i2,j2,k2
:=

∣

∣

∣

∣

Ji1,j1,k1
Ji2,j2,k2

Yi1,j1,k1
Yi2,j2,k2

∣

∣

∣

∣

. (A 2)

For the negative root associated with ω−
∞, we have eigenvalues ω ∼ λ+ iκRe−1 where κ

is a root of

κ1/2
√
1 + A r0

(

1 + A r2m0
)

(√
1 + A J1,0,1D0,1,1

1,1,0 +
√
1− A J0,0,1D1,1,0

1,1,1

)

+ 2mA

{

√
1 + A r2m+1

0 J1,0,1D0,1,0
0,1,1

−
√
1− A J0,0,1

(

D0,1,1
1,1,0 + rm0 D1,1,0

0,1,0 + rm+1
0 D1,1,1

0,1,1 + r2m+1
0 D0,1,0

1,1,1

)}

= 0. (A 3)
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The linear equation for the coefficient λ in the expression for ω ∼ λ+ κiRe−1 is given by

{

2κ2r40
√
1− A J1,0,1

[

2A 2
(√

1 + A κ3/2D1,1,0
1,1,1 + 2mκD1,1,1

0,1,0

)

r2m+1
0

+ A

{

(

2
√
1 + Amκ1/2D0,1,0

0,1,1 + κ(1 + A )D0,1,1
1,1,0

)

(m+ 6)− (1 + A )3/2κ3/2D0,1,0
0,1,1

}

r2m0

+
(

2A r0D1,1,0
1,1,1 − (1 + A )D0,1,0

0,1,1

)

κ3/2
√
1 + A

+ κ

{

2A (1− A )mrm0
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r0D1,1,1
0,1,1 +D1,1,0

0,1,0

)

−
(

(2A 2 − A + 1)m− 6(1 + A )
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D0,1,1
1,1,0

}

]

− 2κ2
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A

(
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κ
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J0,0,1(1− A )
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λ

− 8κ2r30A
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J0,0,1(1−A )
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(√
1 + A κD1,1,0
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+
√
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[
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√
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1,1,0

]

J1,0,1

}

= 0.

(A 4)

An example solution is that for m = 20, A = 5/6, r0 = 2−1/2, then κ = 610.71,
λ = −0.12.
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