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Robust Data-Driven Auditory Profiling
Towards Precision Audiology
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Abstract

The sources and consequences of a sensorineural hearing loss are diverse. While several approaches have aimed at

disentangling the physiological and perceptual consequences of different etiologies, hearing deficit characterization and

rehabilitation have been dominated by the results from pure-tone audiometry. Here, we present a novel approach based

on data-driven profiling of perceptual auditory deficits that attempts to represent auditory phenomena that are usually

hidden by, or entangled with, audibility loss. We hypothesize that the hearing deficits of a given listener, both at hearing

threshold and at suprathreshold sound levels, result from two independent types of “auditory distortions.” In this two-

dimensional space, four distinct “auditory profiles” can be identified. To test this hypothesis, we gathered a data set

consisting of a heterogeneous group of listeners that were evaluated using measures of speech intelligibility, loudness

perception, binaural processing abilities, and spectrotemporal resolution. The subsequent analysis revealed that distortion

type-I was associated with elevated hearing thresholds at high frequencies and reduced temporal masking release and was

significantly correlated with elevated speech reception thresholds in noise. Distortion type-II was associated with low-

frequency hearing loss and abnormally steep loudness functions. The auditory profiles represent four robust subpopulations

of hearing-impaired listeners that exhibit different degrees of perceptual distortions. The four auditory profiles may provide

a valuable basis for improved hearing rehabilitation, for example, through profile-based hearing-aid fitting.
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Currently, “profiling” has gained broad attention as a
tool for typifying groups of observations (e.g., users,

recordings, or patients) that follow similar patterns.
Data-driven profiling can uncover complex structures
that are “hidden” in the data. It has been used as a
diagnostic tool in various fields (Shah et al., 2019) such

as functional imaging (Krohne et al., 2019), genetics (Li
et al., 2004), psychology (Gerlach et al., 2018), or logo-
pedics (Sharma et al., 2019). The idea of using compu-

tational data analysis that applies principles of the
knowledge discovery from databases (KDD; Frawley
et al., 1992) has recently gained attention in the field of

audiology in connection with hearing-aid features
(Lansbergen & Dreschler, in press; Mellor et al., 2018).
As in stratified medicine (Trusheim et al., 2007), which
pursues the identification of subgroups of patients

(phenotypes) for the purpose of implementing more tar-
geted treatments, it is of interest to identify subgroups of
hearing-impaired (HI) listeners who might benefit from
targeted hearing-aid fittings. As such, data-driven
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auditory profiling could help identify groups of listeners
that are characterized by specific hearing disabilities and
support precision audiology.

Hearing devices are the usual treatment for a hearing
loss (Cunningham & Tucci, 2017). Hearing-aid fitting
mainly consists of the adjustment of amplification
parameters to compensate for audibility loss and
impaired loudness perception. Advanced hearing-aid
signal processing features, such as adaptive compression
speed, beamforming, and noise reduction, are typically
not individually adjusted in this process, even though
they could, in principle, be considered in the compensa-
tion of suprathreshold hearing deficits (Kiessling, 2001;
Neher et al., 2016). However, the characterization of
individual suprathreshold hearing deficits can be com-
plex and requires more testing than standard audiome-
try. The definition of suprathreshold auditory deficits is
commonly based on Plomp’s (1978) model, where hear-
ing deficits affecting speech intelligibility are comprised
of an “attenuation” and a “distortion” component.
Although the attenuation component is assumed to
affect speech intelligibility only in quiet, the distortion
component is assumed to do so also in noise, yielding
elevated speech reception thresholds (SRTs) in both
cases. Kollmeier and Kiessling (2018) extended
Plomp’s approach and suggested a model that includes
an attenuation component (affecting pure-tone sensitiv-
ity), a distortion component (affecting speech intelligi-
bility in noise), and a neural component (affecting
binaural processing abilities [BIN]). Their model
assumes that a sensorineural hearing loss is character-
ized by several factors: an “audibility loss,” a
“compression loss,” a “central loss,” and a “binaural
loss.” In general, these modelling approaches
(Kollmeier & Kiessling, 2018; Plomp, 1978) are rather
conceptual and do not pinpoint specific underlying
impairment factors nor specific measures to quantify
these types of losses.

There have been some attempts to stratify HI listeners
based on the shapes of their audiograms. Several classi-
fication schemes have been proposed in earlier studies,
some of which were based on data-driven approaches
(Bisgaard et al., 2010; Chang et al., 2019;
Parthasarathy et al., 2020), where computational meth-
ods for data analysis were used for identifying the most
common audiometric profiles. Based on results from
human temporal bone studies, Schuknecht and Gacek
(1993) proposed four different types of age-related hear-
ing loss: sensory presbycusis, neural presbycusis, metabol-
ic presbycusis, and mechanical presbycusis. Sensory
presbycusis was related to alterations in the organ of
Corti and typically associated with basilar membrane
compression loss, reduced frequency selectivity, and ele-
vated audiometric thresholds. This type of age-related
hearing loss was considered to reflect the loss of outer

hair cells (OHCs; Ahroon et al., 1993) and/or inner hair
cells (IHCs; Lobarinas et al., 2013) and was character-
ized by sloping audiograms. Neural presbycusis was
related to a substantial loss of nerve fibers in the spiral
ganglion. This type of presbyacusis was characterized by
a progressive loss of speech discrimination performance,
even though the audiometric thresholds remained
unchanged over the same time period. Metabolic pres-
bycusis was related to the atrophy of the stria vascularis
that affects the OHC function and the transduction in
the sensory cells because of a decreased endocochlear
potential (EP). This type of impairment was associated
with flat audiograms and did not affect speech discrim-
ination (Pauler et al., 1986). Finally, conductive presby-
cusis corresponded to a gently sloping hearing loss at
high frequencies, not reflecting morphological altera-
tions in the sensory cells or stria vascularis but yielding
elevated thresholds. This type of presbyacusis might
reflect an atypical organization in the organ of Corti
that affects its mechanical properties (Motallebzadeh
et al., 2018; Raufer et al., 2019). However, recent results
obtained with new techniques developed for histopatho-
logical analysis suggested that OHC dysfunction might
have been underestimated in age-related hearing loss
(Wu et al., 2020).

Animal studies, where selective damage to the sensory
cells or a change of the EP was induced, have allowed a
consistent definition of the metabolic and sensory types
of impairments in terms of audibility loss (Ahroon et al.,
1993; Lobarinas et al., 2013; Mills et al., 2006). Dubno
et al. (2013) proposed a classification into sensory and
metabolic audiometric phenotypes based on an
approach that combined findings from animal models,
expert medical advice, and data-driven techniques. The
main goal of their study was to analyze a large database
of audiograms of HI individuals and to identify connec-
tions between the findings from the animal studies with
induced hearing losses and those based on human data.
Although Schuknecht and Gacek (1993) characterized
the metabolic and sensory types of presbyacusis in
terms of physiological impairments observed in
humans, Dubno et al. (2013) proposed a phenotypical
classification of the audiograms of HI listeners. Dubno
et al.’s classification was thus solely based on the shape
of the pure-tone audiogram. While this may help predict
the possible origin of a listener’s audibility loss, supra-
threshold auditory processing deficits cannot be inferred
from their phenotypes. The perceptual consequences of
sensory or metabolic presbyacusis beyond audibility loss
have not yet been studied.

We hypothesize that a listener’s hearing deficit can be
characterized by two independent types of “auditory dis-
tortions,” type-I (ADI) and type-II (ADII), as illustrated
in Figure 1. In this two-dimensional space, a normal-
hearing (NH) listener would be placed at the origin,
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whereas other listeners, with auditory deficits that differ
in the degree of the two types of distortions, would be
placed at different positions along the two dimensions.
Each type of distortion would then be defined by specific
deficits observed in behavioral tasks that covary together
and define a given auditory profile. While Profile C rep-
resents a high degree of both types of distortion, Profiles
B and D reflect hearing deficits dominated by one of the
two distortions. Profile A, the group with a low degree of
distortions, represents only mild hearing deficits.

Recently, Sanchez-Lopez et al. (2018) proposed a
data-driven method for auditory profiling that was
tested and verified by analyzing two data sets from pre-
vious experimental studies (Johannesen et al., 2016;
Thorup et al., 2016). Thorup et al. (2016)’s data set
was collected in a clinical setup using listeners with
either near-normal audiometric thresholds (26 listeners),
obscure dysfunction (4 listeners), or mild-to-moderate
high-frequency hearing loss (29 listeners). The age of
the listeners ranged from 41 to 70 years in the near-
normal hearing group and from 52 to 80 years in the
HI group. The data set contained 27 variables consisting
of audiometric thresholds, loudness perception, speech
perception in quiet and in noise, BIN, and the reading
span test. Johannesen et al. (2016)’s data set was
obtained in a research setting using 67 HI listeners
with moderate-to-severe hearing losses. The age of the
listeners ranged from 25 to 82 years. The data set con-
tained 11 variables consisting of audiometric thresholds,
aided speech recognition thresholds, frequency modula-
tion detection, and basilar membrane compression
estimates.

The method was tailored to the hypothesis of the four
auditory profiles. In their study, it was hypothesized that
distortion type-I covaries with a loss of audibility,
whereas distortion type-II was assumed to be unrelated

to audibility. However, the results of the analysis of two
different data sets did not support this hypothesis. In
fact, the analysis of the two data sets showed that dis-
tortion type-I was connected to high-frequency hearing
loss and reduced speech intelligibility. Regarding distor-
tion type-II, the analysis of one of the data sets (Thorup
et al., 2016) provided a link to reduced BIN, whereas the
analysis of the other data set (Johannesen et al., 2016)
was linked to low-frequency hearing loss. These mixed
results were attributed to differences between the two
data sets in terms of the selection of the listeners and
chosen behavioral tests. The authors concluded that a
new data set that included a larger variability of impair-
ment factors across listeners was needed to better char-
acterize the listeners’ ADs and, thus, the auditory
profiles. Furthermore, they suggested that the chosen
tests should investigate several aspects of auditory proc-
essing while at the same time being clinically feasible
(i.e., time-efficient, reliable, and reasonably accomplish-
able for patients with diverse abilities).

The current study focused on the scientific basis of the
auditory profiling and not on its application in audio-
logical practice. A new data set was therefore generated
with the aim of overcoming the limitations discussed in
Sanchez-Lopez et al. (2018). Seventy-five older listeners
with different hearing abilities were tested with a test
battery for characterizing hearing deficits. The behavior-
al tasks included measures of audibility, loudness per-
ception, BIN, speech perception, spectrotemporal
modulation (STM) sensitivity, and spectrotemporal res-
olution (Sanchez-Lopez et al., 2020). These outcomes
include several measures that can be connected to previ-
ous approaches, such as the attenuation-distortion
model (regarding speech perception measures) and the
neural component (regarding BIN). Therefore, it was of
interest to further investigate the connections between
outcome measures and the two distortion types in a
data-driven approach. The analysis of the new data set
was performed with a refined version of the data-driven
method provided in Sanchez-Lopez et al. (2018).
Importantly, the current study did not aim to disentan-
gle the effects of audibility and suprathreshold deficits
but to identify four robust listener subpopulations based
on the data-driven analysis of the new data set. The
outcomes of the analysis were discussed in relation to
previous classification approaches as well as in terms
of implications toward profile-based rehabilitation strat-
egies. Moreover, a decision tree consisting of the audi-
tory measures that best classified the listeners into the
four profiles was generated.

Method

The data-driven method was proposed as an alternative
to the “expert-driven” method used by Dubno et al.

Figure 1. Sketch of the Hypothesis. The hearing deficits of a
given listener can be described as a combination of two indepen-
dent perceptual distortions. In a two-dimensional space, there
would be four subgroups of listeners (Profiles A–D), which exhibit
different degrees of the two distortion types.
NH¼ normal hearing.
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(2013). Although experts in hearing science and audiol-

ogy can classify listeners based on different criteria, the

present approach adopted a hypothesis-driven approach

to the data-driven analysis method. Therefore, the devel-

opment of the data-driven method for auditory profiling

was based on two premises: (a) the identification of rel-

evant outcome measures that tap into two independent

sources of variation and (b) the identification of extreme

exemplars that can serve as “prototypes” of different

subgroups of listeners.

Description of the Data Set

Seventy-five listeners participated in the study. Seventy

of the listeners presented various degrees and shapes of

symmetrical, sensorineural hearing losses, while five

showed normal audiometric thresholds (25 dB HL in

the frequency range between 0.25 and 4 kHz). The par-

ticipants were aged between 59 and 82 years (median:

71 years). Thirty-eight of them were female. In addition,

one young NH listener with experience with the tests

(Participant 0) was included for the analysis as suggested

in Sanchez-Lopez et al. (2018). This participant reflected

an “optimal performer” and was used as a reference in

the profiling method. Besides the profiling method, the

optimal performer was also included in the correlation

and regression analyses. The listeners were recruited

from the clinical databases at Odense University

Hospital (OUH), Odense, Denmark and Bispebjerg

Hospital (BBH), Copenhagen, Denmark and the

Hearing System Section of the Technical University of

Denmark (DTU), Kgs Lyngby, Denmark. All listeners

completed the “BEAR test battery” (Sanchez-Lopez

et al., 2020). This test battery consists of a total of 10

psychoacoustic tests. The tests are divided into six

aspects of auditory processing: audibility, speech percep-

tion, loudness perception, BIN, STM sensitivity, and

spectrotemporal resolution.
The tests were carried out in a double-walled booth

(at BBH and DTU) or in a small anechoic chamber (at

OUH). The stimuli were presented via headphones

(Sennheiser HDA200). The stimuli were presented mon-

aurally, except for those used for testing BIN. The stim-

ulus level was adjusted to be audible (i.e., above the

audiometric threshold). For example, the test of inter-

aural phase differences (IPDs) was presented at 35 dB

sensation level, whereas the tone-in-noise (TiN) detec-

tion task was performed using a noise level of 70 dB

HL. Only one listener presented a pure-tone audiometric

threshold above 70 dB HL at 2 kHz (listener 20).
The data set (Sanchez-Lopez et al., 2019) consisted of

26 outcome variables corresponding to 75 listeners with

different hearing abilities. Table 1 summarizes the out-

come variables used in the analysis.

There were six outcomes related to audibility (AUD)

and loudness perception (LOUD) represented in a total
of 11 variables: (a) pure-tone average at low frequencies

(AUDLF; f 1 kHz) and at higher frequencies (AUDHF;

f> 1kHz); (b) fixed-level frequency threshold measured
at 80 dB sound pressure level; (c) hearing threshold levels

(HTL) estimated from the loudness function, averaged

for low (HTLLF) and high (HTLHF) frequencies; (d)
most comfortable level (MCL) estimated from the loud-

ness function, averaged for low (MCLLF) and high

(MCLHF) frequencies; (e) dynamic range (DynR) esti-
mated as the difference between the uncomfortable

level and HTL, estimated from the loudness function

for low (DynRLF) and high (DynRHF) frequencies; and
(f) slope of the loudness function at low (SlopeLF) and

high (SlopeHF) frequencies. For the outcome measures

estimated from the loudness function, the low-frequency
average corresponded to the center frequencies 0.25, 0.5,

and 1 kHz and the high-frequency average corresponded

to the center frequencies 2, 4, and 6 kHz. There were four
variables related to speech perception. Two of them

related to speech-in-quiet: (a) SRT in quiet (SRTQ)

and (b) maximum word recognition score (maxDS);
and two of them related to speech-in-noise (SiN): (c)

SRT in noise (SRTN) and (d) sentence recognition

score at þ4 dB signal-to-noise ratio (SScore4dB). There
were three variables related to BIN: maximum frequency

for detecting an IPD of 180 (IPDfmax); binaural pitch

detection performance, estimated as the percent correct
after 20 dichotic presentations (BP20); and binaural

masking release (BMR). BMR was estimated as the dif-
ference between the threshold in the diotic TiN detection

condition (N0S0) and the threshold in the dichotic TiN

detection condition where the tone was out of phase
between the ears (N0S). The frequency of the tone pre-

sented in the two conditions was 0.5 kHz. The STM and

spectrotemporal processing variables included (a) short-
STM test, which assesses STM sensitivity at þ3 dB mod-

ulation depth (sSTM8) and (b) the fast STM detection

threshold (fSTM8). In both tests, the stimulus was a
three-octave wide noise centered at 0.8 kHz which was

spectrotemporally modulated (Bernstein et al., 2016); the

TiN detection threshold at 500Hz (TiNLF) and at 2 kHz
(TiNHF). The spectrotemporal processing abilities (STR)

were assessed by two derived measures: (a) spectral

masking release (SMR) estimated as the difference
between the TiN detection threshold and the corre-

sponding threshold with the noise shifted toward

higher frequencies (center frequency of the noise, fc;noise-
¼ 1:1f

tone
); and (b) temporal masking release (TMR) esti-

mated as the difference between the TiN masked

threshold and the corresponding threshold with the
tone presented in temporally modulated noise (modula-

tion frequency, fm¼ 4Hz).
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Preprocessing of the Data

For each of the tests, the outcome measures of interest
were extracted from the raw results. For example, the
SRT in quiet was estimated from the word discrimina-
tion scores obtained at different speech levels. When the
tests contained frequency-specific measures, the results
were grouped into low-frequency (1 kHz) and high-
frequency (>1 kHz) averages. This decision was motivat-
ed by previous studies (Bernstein et al., 2016; Sanchez-
Lopez et al., 2018; Wu et al., 2019) where a similar divi-
sion of the averaged audiometric thresholds was under-
taken. In the case of monaural measures, the mean
values across ears were used. The data were cleaned fol-
lowing the principles of KDD, to remove outliers or
unreliable data before the analysis. For example, some
of the listeners performed the SiN test at lower levels
than the level recommended for the hearing-in-noise
measurements (Nielsen & Dau, 2011). Because SiN per-
ception is of great interest in the present analysis, unre-
liable measurements of SRTs in noise (SRTN) and
sentence recognition scores (SScore4dB) were considered
as missing data. In the next step, the data were normal-
ized between the 25th and 75th percentiles, such that the
25th percentile corresponded to a value of –0.5 and the

75th to a value of 0.5. In total, 26 variables were selected
from the outcome measures, as shown in Table 1. The
resulting data set (BEAR3) is publicly available
(Zenodo; doi: 10.5281/zenodo.3459579; Sanchez-Lopez
et al., 2019).

Stages of the Data-Driven Method

As in Sanchez-Lopez et al. (2018), the data-driven anal-
ysis used here was based on unsupervised learning and
was divided into three main steps illustrated in the top
panel of Figure 2:

I Dimensionality reduction: Based on principal compo-
nent analysis, a subset of variables that were highly
correlated with the first two principal components,
PC1 and PC2, was kept for the following Steps (2
and 3). The subset could consist of 3, 4, or 5 variables
per PC. Hence, up to 10 variables could be kept for
the next step. The to-be-kept variables were chosen in
an iterative process using a leave-one-out cross-vali-
dation. In each iteration, one variable was removed
according to the variance explained by the remaining
variables, that is, the subset of variables that
explained the largest amount of variance was kept,

Table 1. Description of the Tests, Dimensions, and Outcome Measures Contained in the BEAR3 Data Set
(Sanchez-Lopez et al., 2019).

Test name Reference Category Outcome variable

Pure-tone audiometry International Organization

for Standardization (2010)

Audibility (AUD) AUDLF, AUDHF

Fixed-level frequency

threshold

Rieke et al. (2017) FLFT

Adaptive categorical

loudness scaling

Brand & Hohmann (2002) HTLLF, HTLHF
Loudness perception (LOUD) MCLLF, MCLHF

DynRLF, DynRHF

SlopeLF, SlopeHF
Word recognition

scores—Speech

International Organization

for Standardization (2012)

Speech in quiet (SiQ) SRTQ, maxDS

Hearing in noise test Nielsen & Dau (2011) Speech in noise (SiN) SRTN, SScore
4dB

Maximum frequency for

IPD detection—Binaural

Füllgrabe et al. (2017) Binaural processing abilities (BIN) IPDfmax

Binaural pitch processing Santurette & Dau (2012) BP20

Extended binaural audiometry

in noise abilities

Durlach (1963) BMR

Fast spectrotemporal

modulation—Spectrosensitivity

temporal

Bernstein et al. (2016) Spectrotemporal modulation

sensitivity (STM)

sSTM8, fSTM8

Extended audiometry in noise Moore et al. (2000);

Schorn & Zwicker (1990);

van Esch et al. (2011)

Spectrotemporal resolution (STR) TiNLF, TiNHF

SMRLF, SMRHF

TMRLF, TMRHF

Note. For each test, a reference is included. The tests are divided by categories, and the outcome variables are presented in the right column. LF¼ lower

frequencies; HF¼ high frequencies; FLFT¼ fixed-level frequency threshold; HTL¼ hearing threshold levels; MCL¼most comfortable level;

DynRLF¼ dynamic range for low frequency; DynRHF¼ dynamic range for high frequency; SRTQ¼ speech reception threshold in quiet; SRTN¼ speech

reception threshold in noise; SScore4dB¼ sentence recognition score at þ4 dB SNR; IPD¼ interaural phase difference; BMR¼ binaural masking release;

TiN¼ tone-in-noise; SMR¼ spectral masking release; TMR¼ temporal masking release.

Sanchez-Lopez et al. 5



and the left-out variable was discarded. In addition,

because the use of several intercorrelated variables in

principal component analysis can bias the results,

highly correlated variables were removed. If two var-

iables resulting from Step 1 were highly correlated

(Pearson’s correlation coefficient, r> .85), one of

them was dropped, and this step was repeated.
II Archetypal analysis: This unsupervised learning tech-

nique is similar to cluster analysis. However, the

results are archetypal patterns across the multivariate

data rather than clusters or groups of observations.

The data were decomposed into two matrices—the

test matrix, which contained the extreme patterns

of the data (archetypes), and the subject matrix,

which contained the weights for each archetype. A

given subject was then represented as a convex com-

bination of the archetypes (Cutler & Breiman, 1994).

The specific method used here was similar to the one

proposed in Mørup and Hansen (2012). The analysis

was limited to four archetypes to improve the inter-

pretability of the results on the scope of the hypoth-

esis (see Figure 1).
III Profile identification: The subject matrix was used to

estimate the distance between observations and the

four archetypes. Each listener (subject) was then

assigned to an auditory profile group based on

their weights in the subject matrix. The sum of

weights for each listener was always 1. Listeners

with a weight above 0.51 for one of the four arche-

types were identified as belonging to that auditory

profile (Ragozini et al., 2017). Otherwise, they were

left “unidentified” (“U”). The specific labels (A–D)

were assigned as follows. The Archetype A reflected

the average best performance (i.e., a better perfor-

mance for the majority of the outcome variables

compared with the other archetypes), and the

Archetype C reflected the poorest performance.

For the distinction between the two remaining

groups, B was assumed to have a higher degree of

high-frequency hearing loss than D, based on

Sanchez-Lopez et al. (2018). Therefore, the criterion

applied for B and C was based on the variables

AUDHF and HTLHF rather than the resulting

archetypes.

Iterative Data-Driven Profiling

The robust data-driven auditory profiling method aimed

to improve the previous method proposed in Sanchez-

Lopez et al. (2018) by reducing the influence of the data

Figure 2. Sketch of the Refined Data-Driven Method for Auditory Profiling. Top panel: The unsupervised learning stages of Sanchez-
Lopez et al. (2018): (I) dimensionality reduction; (II) archetypal analysis; (III) profile identification. Bottom panel: In each iteration, a subset
of the data set was processed using dimensionality reduction, archetypal analysis, and profile identification. The profile identification stage
was twofold: (1) In each of the iterations, the profiles were identified based on the archetypal analysis. (2) After 1,000 iterations, the
probability was calculated based on the prevalence of each observation and the number of identifications as each of the profiles. Listeners
with higher probabilities of belonging to an auditory profile were placed close to the corners in the square representations, and the ones
with lower probability (p< .5) were located inside the gray square.
PC¼ principal component.
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on the definition of the auditory profiles. In any data-
driven analysis, and especially in unsupervised learning,
individual data points can clearly influence the results
and lead to misinterpretations. Resampling techniques,
such as bagging or Monte Carlo estimation, have been
demonstrated to reduce the influences of individual data
points on the statistical analysis. Moreover, bagging can
improve cluster analysis,making the results less sensitive to
the type and number of variables (Dudoit & Fridlyand,
2003). The three unsupervised learning steps were repeated
1,000 times, as illustrated in the bottom panel of Figure 2.
Before each repetition, the full data set was decimated ran-
domly in terms of subjects and tests in each iteration. The
analysis was performed with only 83% of the data (69 out
of 75 listeners and 24 out of 26 variables) in each repetition.
In the case of missing data, an algorithm based on spring
metaphor was used to predict those data points.
Furthermore, in Step 1 (dimensionality reduction), the
number of selected variables (6, 8, or 10) was also random-
ly selected in each iteration to further randomize the pro-
cedure. Steps 2 (archetypal analysis) and 3 (profile
identification) yielded a preclassification of the subjects
contained in the subset of the data corresponding to each
iteration. The probability of each listener of being identi-
fied as a given auditory profile depended on the number of
times a given listener was “out-of-bag” in individual repe-
titions and the profile identification result from Step 3. In
each iteration, the profile probabilities [P(A), P(B), P(C),
or P(D)] and the probability of being unidentified [P(U)]
were updated. This iterative process was chosen to avoid
that few individual listeners bias the derived profiles.

After 1,000 repetitions, the listeners were divided into
four subgroups based on the computed probabilities. If a
given listener showed a probability above .5 of belonging
to any of the auditory profiles, the listener was assigned to
that profile. However, if the highest probability was below
.5, but P(U) was also below .5, the listener was considered
“in-between” two profiles. The criterion for the “in-
between” listeners to be included in one of the four clusters
was that the difference between the two highest probabil-
ities had to be above .1 to be considered significant. The
remaining of the “in-between” listeners was considered
inconclusive and not assigned to any profile. The projec-
tion of the probabilities on a two-dimensional space was
done by considering four vectors, one for each profile
probability, pointing toward each of the corners in a
squared representation, as depicted in the right-bottom
panel of Figure 2. Graphically, the listeners belonging to
an auditory profile were then placed close to the corners.

Distortion Estimation From the Square Representation

The final output of the refined data-driven method was
the probability, P, of being identified as belonging to an
auditory profile (A–D). Regarding the square

representation or convex hull, which resembled the
hypothesis shown in Figure 1, the probabilities of
belonging to an auditory profile were depicted as vectors
with the origin at the center of the square and oriented
toward each of the four corners (Figure 2). Assuming
that P(B) and P(C) are proportional to ADI and that
assuming that P(C) and P(D) are proportional to
ADII, this yields:

ADI ¼ 1

2
1þ P B [ Cð Þ � PðA [DÞ� �

(1)

ADII ¼ 1

2
1þ P C [Dð Þ � P A [ Bð Þð Þ (2)

Each listener was placed in the two-dimensional space
along with the two estimated distortions. In addition, the
prototypes, which are equivalent to the archetypes
yielded by the archetypal analysis, reflected the
common characteristics shared by the listeners in each
of the four groups. These were estimated by averaging
the results of the five listeners with the highest probabil-
ities of belonging to a given auditory profile (A-D). The
relations between the ADI and ADII with the variables
considered in the study were investigated using stepwise
linear regression models. The variables included in the
model fitting were the outcome variables resulting from
the suprathreshold tests, except for AUDLF and
AUDHF, and listeners with a high probability of not
being identified as any of the four profiles (P(U)> 0.5)
were discarded. The criterion for adding a variable as a
predictor of one of the distortions was an improvement
of the adjusted R2 by more than .01.

Decision Trees

A decision tree was fitted to the entire data set following
the splitting criterion of weighted impurity (Breiman
et al., 2017). Because it was of interest to obtain a deci-
sion tree with outcome measures beyond audiometry,
the variables from the pure-tone audiometry were
excluded from this analysis (i.e., AUDLF and AUDHF).
The resulting decision tree was pruned to only have three
levels and a maximum of seven binary splits. Because of
the missing data, the decision tree was surrogated, that
is, it ignored the missing data to facilitate its
interpretability.

Results

Summary Statistics of the Data Set

The percentiles of the outcome variables corresponding
to the 75 participants and excluding the optimal per-
former are shown in Table 2.
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Data-Driven Auditory Profiling

The BEAR3 data set was analyzed with an iterative
data-driven auditory profiling method. The main results
can be summarized by the probabilities of the listeners of
belonging to a given auditory profile (A–D) and the
expected performance of the listeners identified in each
of the four groups (prototypes).

Figure 3 shows the results of the analysis where each
listener is located in the two-dimensional space accord-
ing to their degree of type-I and type-II distortion. The
degree of distortion was calculated based on the proba-
bility of belonging to any of the four auditory profiles
(expressions 1 and 2). Listeners located close to a corner
exhibited a high probability of belonging to a corre-
sponding profile. Uncategorizable listeners can be
found inside the gray area representing a low probability
of being classified as belonging to one of the four audi-
tory profiles. After 1,000 iterations, the probability of
being uncategorizable P(U) was also calculated. If this

probability was greater than the probability of belonging
to any of the four profiles, the listener was considered
“uncategorizable.” Profile A (n¼ 24) and Profile C
(n¼ 22) represented the most populated groups. The
five NH listeners were placed at the bottom-left corner
in Profile A. Profile B (n¼ 13) and Profile D (n¼ 9) rep-
resented smaller subgroups. Four listeners showed a
high probability of being uncategorizable (labeled
between asterisks in Figure 3), and four other listeners
were “inconclusive” as reflected in similar probabilities
of belonging to two profiles. The average results of the
five listeners showing the highest probabilities of belong-
ing to each one of the auditory profiles (excluding the
NH listeners) were considered to represent the proto-
types shown in Figure 4.

The prototypes show archetypal patterns in the data
associated with the performance obtained by the four
different groups. A higher percentile rank corresponds
to a higher percentile of the overall data distribution and
thus to a “good” performance. Each point in Figure 4

Table 2. Results of the test battery (BEAR3 dataset) presented as the 5th, 25th, 50th and 75th and 95th percentiles.

Variables 5th 25th 50th 75th 95th Unit

AUDLF 6.08 18.33 25 35 45.33 dB HL

AUDHF 22.41 45.83 54.16 62.08 70.58 dB HL

FLFT 4.12 6.27 7.94 10.24 12.2 kHz

HTLLF 2.45 16.25 24.16 36.67 48.96 dB HL

HTLHF 16.87 35.62 48.75 57.91 71.29 dB HL

MCLLF 65.54 75.62 79.79 84.37 91.71 dB HL

MCLHF 66.37 74.37 80.21 88.95 98.21 dB HL

DynRLF 55.12 64.37 77.5 86.87 98.29 dB

DynRHF 34.12 41.25 50.2 61.66 82.79 dB

SlopeLF 0.3 0.35 0.41 0.55 0.67 CU/dB HL

SlopeHF 0.38 0.56 0.75 0.91 1.52 CU/dB HL

SRTQ 15.57 31.74 42.06 50.67 60.14 dB HL

maxDS 86.58 94.28 97 98.77 100 % Corr.

SRTN –0.87 0.71 1.76 3.86 8.73 dB SNR

SScore4dB 25 52.5 72.5 84.38 92.5 % Corr.

IPDfmax 0.25 0.53 0.69 0.93 1.1 kHz

BP20 15 71.25 95 100 100 % Corr.

BMR 7.5 12.79 15.75 17.62 22.25 dB

sSTM8 –0.4 0.49 2.36 3.07 3.07 d’

fSTM8 –10.71 –7.9 –5.68 –1.5 0 dB 20log(m)

TiNLF 67.57 69.93 71.56 73.56 76.42 dB HL

TiNHF 70.03 72.12 73.93 75.87 79.26 dB HL

TMRLF 3.32 6.81 7.92 10.12 12 dB

TMRHF 0.67 5.85 8.83 10.78 15.01 dB

SMRLF 11.87 17.31 21.06 23.19 25.37 dB

SMRHF 4.21 12.68 21.62 27.21 33.56 dB

Note. AUDLF¼ pure-tone average at low frequencies; AUDHF¼ pure-tone average at high frequencies; FLFT¼ fixed-level frequency threshold;

HTLLF¼ hearing threshold levels averaged for low frequency; HTLHF¼ hearing threshold levels averaged for high frequency; MCLLF ¼most comfortable

level averaged for low frequency; MCLHF¼most comfortable level averaged for high frequency; DynRLF¼ dynamic range for low frequency;

DynRHF¼ dynamic range for high frequency; maxDS¼maximum word recognition score; SRTN¼ speech reception threshold in noise; IPD¼ interaural

phase difference; BMR¼ binaural masking release; STM¼ spectrotemporal modulation; TiN¼ tone-in-noise; TMR¼ temporal masking release;

SMR¼ spectral masking release.
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corresponds to the mean of the listeners forming the
corresponding prototype. Likewise, a low percentile
rank corresponds to a “poorer” performance.
Prototype A (blue circles in Figure 4) showed a good

performance in most of the outcome measures.

However, the outcomes sSTM8 and TiNLF were below

the 50th percentile. Prototype C (yellow squares) showed

the poorest performance for most outcome measures,

with only MCLLF and IPDfmax above the 30th percen-

tile. Prototype B (dark-green upward-pointing triangles),

with a high degree of distortion type-I and a low degree

of distortion type-II, showed a good performance for the

outcome measures obtained at lower frequencies and for

BP20, whereas performance was poor for the outcomes

obtained at higher frequencies, IPDfmax and for the SiN

perception tests. In contrast, Prototype D (magenta left-

pointing triangles), with a high degree of distortion type-

II and a low degree of distortion type-I, showed a poor

performance for outcome measures obtained at low fre-

quencies, especially in terms of loudness, TMRLF and

SMRLF, whereas the performance was good (above the

60th percentile) for most outcomes measures obtained at

higher frequencies, SiN perception, and IPDfmax.

Overall, the prototypes showed opposite results for the

profiles located in opposite corners of Figure 3 (A vs. C

and B vs. D) for the majority of the variables.

Relations Between AD Types and Outcome Measures

The relations between the two types of distortions and

outcome measures were studied using stepwise regres-

sion analysis (Table 3). Distortion type-I was found to

Figure 3. Square Representation of the Auditory Profiles. The
listeners are placed in the square representation based on their
probability of belonging to one of the subgroups. The inner
rhombus delimits the area of inconclusive profile membership, that
is, listeners showing a probability<.5 of belonging to any subgroup.
The listeners marked with two asterisks were considered unca-
tegorizable and showed P(U)>0.5.

Figure 4. Prototypes (Ptype): Percentile Rank Across Variables Corresponding to the Extreme Exemplars of the Different Patterns Found in
the Data. The 26 outcomes corresponding to the different aspects of auditory processing are divided into the following subdimensions: AUD:
Audibility; LOUD: Loudness; SiN: speech-in-noise perception; SiQ: speech-in-quiet; BIN: binaural processing abilities. STM: spectrotemporal
modulation sensitivity; STR: spectrotemporal processing abilities, divided into temporal and spectral masking release as well as tone-in-noise
detection. Subgroups of measures with frequency-specific outcomes were divided into low (LF) and high (HF) frequencies.
STR¼ spectrotemporal resolution; HTL¼ hearing threshold levels; MCL¼most comfortable level; DynR¼ dynamic range; FLFT¼ fixed-
level frequency threshold; SRTQ¼ speech reception threshold in quiet; IPD¼ interaural phase difference; BMR¼ binaural masking release;
TMR¼ temporal masking release; SMR¼ spectral masking release; TiN¼ tone-in-noise.
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be associated with elevated hearing thresholds at higher
frequencies, a reduced TMR, and increased TiN detec-
tion thresholds at low frequencies. Furthermore, distor-
tion type-I was significantly correlated with SRTN

(r¼ .76, p< .0001), even when the effects of audibility
were partialled out (r¼ .33, p< .01). In contrast, the
correlations found between distortion type-I and
speech recognition in quiet (r¼ .71, p< .0001) were not
significant when partialling out audibility (r¼ .15,
p> .1). Distortion type-II was only associated with hear-
ing thresholds at low frequencies. The restrictive criteri-
on (increase of R2> .01) did not include other variables
in the model. However, distortion type-II was signifi-
cantly correlated with the slope of the loudness function
(r¼ .82, p< .0001) and with the amount of SMR at low
frequencies (r¼ .64, p> .0001). In addition, distortion
type-II was correlated with SRTQ (r¼ .86, p< .0001)
but not with SRTN (r¼ .23, p> .05). However, the cor-
relation between SRTQ and distortion type-II was
weaker when controlling for the effects of audibility
(r¼ .28, p< .05). Moreover, the majority of the auditory
outcomes were not significantly correlated with distor-
tion type-II when hearing thresholds were partialled out,
except for TMRHF (r¼ .35, p< .01).

The outcome measures related to BIN (Figure 4) gave
unexpected results. Indeed, the Prototypes B and C
showed opposite trends for IPDfmax and BP20, which
suggests that they reflect different ADs. Distortion
type-I was significantly correlated with both IPDfmax

and BP20, but only BP20 remained significant after con-
trolling for audibility (r¼ .34, p< .01). In contrast, dis-
tortion type-II was only correlated with BP20 before
partialling out the effects of audibility (r¼ .58,
p< .0001) but not after (r¼ .14, p¼ .3). Besides,
IPDfmax was neither correlated with any of the two dis-
tortion types when controlling for audibility nor with
any of the other BIN outcome measures (r� .1,
p> .15). Instead, IPDfmax was highly correlated with

the TiN detection threshold at low frequencies (r¼ .53,

p< .0001)—one of the main predictors of distortion

type-I—even when audibility was partialled out (r

¼.56, p< .0001).

Decision Tree for the Identified Auditory Profiles

Figure 5 shows the decision tree fitted to the BEAR3

data set using the identified auditory profiles as well as

the uncategorizable listeners. The decision tree has three

levels. The first level corresponds to high-frequency

hearing loss as estimated using ACALOS, which splits

the listeners into two branches: Profiles A and D

(HTLHF< 49 dB HL) are separated from Profiles B

and C (HTLHF> 49 dB HL), together with one listener

from Profile D. Thus, this first level makes a classifica-

tion based on the degree of distortion type-I. The second

level corresponds to outcomes measured at low frequen-

cies and estimated using the loudness functions, which

divide the listeners according to their degree of distor-

tion type-II. Profile D (HTLLF> 28 dB HL) and Profile

C (SlopeLF> 0.4 CU/dB and maxDS< 100%). i.e. The

third level makes use of outcomes related to loudness,

STM, and SMR for classifying the uncategorizable

listeners.

Discussion

The data-driven method for auditory profiling presented

here provides new knowledge about hearing loss charac-

terization. Regarding previous data-driven auditory profil-

ing (Sanchez-Lopez et al., 2018), the present results are in

good agreement with the analysis performed on the data of

Johannesen et al. (2016) data set. This suggests that the use

of data from a representative sample of different degrees of

hearing loss (e.g., in Johannesen et al., 2016) and a NH

reference (e.g., in Thorup et al., 2016) is crucial for robust

profile-based hearing-loss characterization.

Table 3. Stepwise Regression Analysis of Auditory Distortion (AD) Type-I and Type-II.

Priority Predictor Estimate SE t p Adj R2

Model AD type-I

n/a (Intercept) 250.0 109.0 2.3 <.05 –

1 HTLHF –9.7 2.5 –3.9 <.0001 .79

2 TMRHF –1.6 0.6 –2.6 <.05 .82

3 TiNLF –3.5 1.5 –2.3 <.05 .83

4 HTLHF :TiNLF 0.2 0.1 4.6 <.0001 .87

5 TMRLF –1.8 0.6 –2.8 <.01 .88

Model AD type-II

n/a (Intercept) –18.7 3.9 –4.7 <.0001 –

1 HTLLF 2.4 0.14 17.4 <.0001 .84

Note. The priority was established based on the accumulated adjusted R2> .01. Columns show the predictor name, the estimate, standard deviation (SE), t

value, and probability of a significant contribution (p). HTLHF¼ hearing threshold levels for high frequency; HTLLF¼ hearing threshold levels averaged for

low frequency; TMR¼ temporal masking release; TiNLF¼ tone-in-noise detection threshold at 500Hz.
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Two Types of Distortion to Characterize Individual

Hearing Loss

The term distortion in hearing science has typically been

associated with elevated SRTN, as reflected in Plomp’s

(1978) SRT model. Here, we introduced the term audi-

tory distortions to describe the perceptual consequences

of sensory hearing impairment, including (but not limit-

ed to) loss of sensitivity. The two types of perceptual

distortions considered here should thus be considered

as consequences, and not sources of sensory impair-

ments. An interesting aspect of our data-driven profiling

method is that the ADs reflect two fairly independent

dimensions of perceptual deficits associated with senso-

rineural hearing impairments. To reiterate, distortion

type-I was associated with elevated hearing thresholds

at higher frequencies and was significantly correlated

with elevated SRTN. Furthermore, for this distortion

type, TMRHF and TiNLF were poorer even when the

effect of the audiometric thresholds was controlled for.

Distortion type-II was associated with low-frequency

hearing loss and steep loudness functions. However, lis-

teners with a high degree of distortion type-II and a low

degree of distortion type-I (Profile D) did not exhibit

exclusive audibility loss, as they also exhibited an abnor-

mal loudness growth and a reduced SMR.
Although Plomp’s attenuation and distortion compo-

nents are often assumed to be independent, some impair-

ment mechanisms may, in fact, affect both SiN

perception and audiometric thresholds, especially at

high frequencies (Moore, 2016), which is consistent

with distortion type-I. Sch€adler et al. (2020) attempted

to model suprathreshold auditory deficits that are inde-

pendent of audibility loss. Their results suggested that

reduced speech intelligibility represents an auditory

perceptual deficit that may be associated with reduced
TiN detection which is in agreement with the results
from the current study. However, as demonstrated
here, SiN perception can also be affected by deficits
that covary with audiometric thresholds (distortion
type-I), which should not be underestimated, especially
when the high-frequency hearing loss exceeds 50 dB HL
(Profiles B and C), as depicted in Figure 6.

Regarding the “neural component” or binaural loss
associated with reduced BIN (Kollmeier & Kiessling,
2018), the BIN measures considered in the present
study provided contradictory results in connection to
the proposed auditory profiles. Even though IPDfmax

represents a test that has been proposed to reveal binau-
ral disabilities related to the disruption of temporal fine
structure (TFS) coding (Füllgrabe & Moore, 2017),
recent studies have linked the detection of IPDs to out-
comes from cognitive tests (Füllgrabe et al., 2015;
Strelcyk et al., 2019). This suggests that IPDfmax might
not reflect a purely auditory process but might also
depend on top-down processes such as processing
speed or selective attention. Because IPDfmax and
TiNLF were strongly correlated, the two tasks might be
affected by either cognitive or auditory processes, which
should be investigated further.

The two types of ADs shown here were consistent
with Plomp’s (1978) approach. The profiles with a low
degree of distortion type-I (Profiles A and D) exhibited a
loss of sensitivity, but their speech-reception thresholds
in noise were comparable to the ones of NH listeners. In
contrast, the profiles with a high degree of distortion
type-I (Profiles B and C) exhibited elevated SRTN (see
the right panel of Figure 6). Distortion type-I may then
be considered as a “speech intelligibility-related dis-
tortion” and distortion type-II as a “loudness

Figure 5. Decision Tree Fitted to the Data Set Using the Auditory Profiles as the Output. For each binary split, the right branch
corresponds to a “poor” result and the left branch to a “good” result. In each binary split, the number of listeners assigned to each branch
is shown together with the most likely outputs. The classes (A–D) are together with the number of listeners belonging to that class and the
number of identified listeners for a given profile.
HTLLF¼ hearing threshold levels averaged for low frequency; HTLHF¼ hearing threshold levels averaged for high frequency;
SMRLF¼ spectral masking release at low frequency; STM¼ spectrotemporal modulation; maxDS¼maximum word recognition score.
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perception-related distortion.” However, the two AD
types presented here are, in fact, the result of a data-
driven analysis of a large multidimensional data set
rather than the conceptual interpretation of speech intel-
ligibility deficits. Moreover, the listeners with higher
degrees of the two types of distortions showed percep-
tual deficits with respect to spectrotemporal processing
and BIN, thus reflecting deficits that are beyond a simple
combination of loudness and speech intelligibility
deficits.

Auditory Profiles and Audiometric Phenotypes

Figure 6 shows the average audiometric thresholds cor-
responding to the listeners belonging to the four robust
auditory profiles. Profile A corresponds to a mild, gently
sloping high-frequency hearing loss; Profile B corre-
sponds to a steeply sloping high-frequency hearing
loss; Profile C corresponds to a hearing loss between
30 and 50 dB HL at low-frequencies and above 50 dB
HL at high frequencies; and Profile D corresponds to a
fairly flat hearing loss with audiometric thresholds
between 30 and 50 dB HL. Interestingly, these four
audiometric configurations look similar to the audiomet-
ric phenotypes (Dubno et al., 2013), which are based on
Schuknecht’s metabolic and sensory types of

presbyacusis (Schuknecht & Gacek, 1993). The main dif-

ference between the two approaches is that the audio-

metric threshold functions shown here correspond to

four subgroups of HI listeners, which are the result of

a data-driven analysis involving various auditory meas-

ures (and not only audiometric thresholds). Based on

audiometric thresholds only, the listeners in Profile A

and Profile B would be classified into the same pheno-

typical category (i.e., sensory hearing loss [SHL] accord-

ing to Dubno et al.), even if they present substantial

differences in suprathreshold auditory hearing abilities

such as speech intelligibility.
Figure 6 shows the audiometric thresholds corre-

sponding to the four robust auditory profiles. Profile A

corresponds to a mild, gently sloping high-frequency

hearing loss; Profile B corresponds to a steeply sloping

high-frequency hearing loss; Profile C corresponds to a

low-frequency hearing loss between 30 and 50 dB HL

and above 50 dB HL at high frequencies; and Profile D

corresponds to a fairly flat hearing loss with audiometric

thresholds between 30 and 50 dB HL. Interestingly, these

four audiometric configurations look similar to the

audiometric phenotypes of Dubno et al. (2013), which

are based on Schuknecht’s metabolic and sensory types

of presbyacusis (Schuknecht & Gacek, 1993). The main

Figure 6. Audiometric Thresholds of the Four Auditory Profiles and Speech Intelligibility in Noise. Left panel: The average audiometric
thresholds of each profile are shown together with the audiograms of the individual ears. Right panel: Speech reception thresholds in noise
(SRTN), with boxplots of the HI and NH data (left) and the four auditory profiles (right). The multicomparison analysis revealed significant
differences between the groups (***p< .0001, **p< .001).
SRT¼ speech reception threshold in noise; SNR¼ signal-to-noise ratio; NH¼ normal hearing; HI¼ hearing impaired.
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difference between the two approaches is that the
audiometric thresholds shown here correspond to four
subgroups of HI listeners, which are the result of a data-
driven analysis involving several auditory measures and
not only the audiometric thresholds.

In previous studies, metabolic hearing loss (MHL)
yielded flat elevated audiometric thresholds but did not
affect speech intelligibility in noise (Pauler et al., 1986),
which is consistent with the results of the present study
for Profile D listeners. In MHL, the atrophy of the stria
vascularis produces a reduction of the EP in the scala
media (Schmiedt et al., 2002). The EP loss mainly affects
the electromotility properties of the OHC (i.e., the
cochlear amplifier). Therefore, MHL can be considered
as a cochlear gain loss that impairs OHC function across
the entire cochlea. This, in turn, affects the hearing
thresholds and is associated with a reduced frequency
selectivity (Henry et al., 2019). In the present study,
Profile D was characterized by an abnormal loudness
function, particularly at low frequencies, and a signifi-
cantly reduced SMR, although SiN intelligibility and
binaural TFS sensitivity were near-normal. However,
one needs to bear in mind that the results observed for
the listeners in Profile D might also be compatible with
other types of impairments. SHL is typically associated
with OHC dysfunction, which yields elevated thresholds
at more specific frequency regions, a loss of cochlear
compression, and reduced frequency selectivity
(Ahroon et al., 1993). However, audiometric thresholds
above about 50 dB HL at high frequencies cannot be
attributed only to OHC due to the limited amount of
gain induced by the OHC motion, which implies addi-
tional IHC loss or a loss of nerve fibers (Hamernik et al.,
1989; Stebbins et al., 1979; Wolak et al., 2019).
Therefore, listeners classified as Profile B or Profile C
(i.e., with a higher degree of distortion type-I and a
high-frequency hearing loss) may exhibit a certain
amount of IHC dysfunction that might produce substan-
tial suprathreshold deficits. Animal studies have shown
that audiometric thresholds seem to be insensitive to
IHC losses of up to about 80% (Lobarinas et al.,
2013). This suggests that hearing thresholds >50 dB
HL might indicate the presence of a substantial loss
IHC and might be associated with hearing deficits that
distort the internal representation, not only in terms of
frequency tuning but also in terms of a disruption of
temporal coding due to the lack of sensory cells
(Moore, 2001; Stebbins et al., 1979).

Profile B’s audiometric thresholds are characterized
by a sloping hearing loss with normal values below
1 kHz. However, Profile B exhibited the poorest perfor-
mance in the IPDfmax test, which cannot be explained by
an audibility loss. Neural presbyacusis is characterized
by a loss of nerve fibers in the spiral ganglion that is not
reflected in the audiogram. Furthermore, primary neural

neurodegeneration, recently termed cochlear synaptop-
athy (Kujawa & Liberman, 2009; Wu et al., 2019) or
deafferentation (Lopez-Poveda, 2014), might be reflected
in the results of some of the suprathreshold auditory
tasks used here. However, the perceptual consequences
of primary neural degeneration are still unclear due to
the difficulty of assessing auditory nerve fibers loss in
living humans (Bramhall et al., 2019). This makes it dif-
ficult to link the effects of deafferentation to the reduced
BIN observed in listeners in Profile B and Profile C.

As suggested in Dubno et al. (2013), the audiometric
phenotype characterized by a severe hearing loss (similar
to the one corresponding to Profile C) might be ascribed
to a combination of MHL and SHL. In the present
study, Profile C listeners performed similarly to Profile
B listeners in suprathresholds tasks related to distortion
type-I (e.g., SRTN and TMRHF) and also similarly to
Profile D listeners in tasks related to distortion type-II
(e.g., loudness perception). In contrast, Profile C listen-
ers also showed poorer performance in tests such as bin-
aural pitch detection, TiN detection, and STM
sensitivity, which is not consistent with the idea of a
simple superposition of the other profiles. As mentioned
earlier, these deficits observed in Profile C listeners might
be a consequence of auditory impairments that are unre-
lated to the loss of sensitivity, such as deafferentation,
which can be aggravated by the presence of MHL and
SHL. However, it has been found that STM sensitivity
could be a good predictor of aided speech perception
only in the cases of a moderate high-frequency hearing
loss (Bernstein et al., 2016). They suggested that cogni-
tive factors might be involved in the decreased speech
intelligibility performance when the high-frequency
hearing loss is >50 dB HL. Therefore, Profile C listeners
might be affected by both auditory and nonauditory
factors that worsen their performance in some demand-
ing tasks.

Stratification in Hearing Research and Hearing
Rehabilitation

In the present study, the two principal components of
the data set seemed to be dominated by the listeners’
low- and high-frequency hearing thresholds. This sug-
gests that suprathreshold deficits might be associated
with different forms of audibility loss. However, other
suprathreshold hearing deficits, which do not covary
with a loss of sensitivity, might be hidden in the four
auditory profiles and could explain the individual differ-
ences across listeners belonging to the same profile. To
explore these additional deficits not covered by the pre-
sent approach, stratification of the listeners might be
necessary. Papakonstantinou et al. (2011) studied the
correlation of different perceptual and physiological
measures with speech intelligibility in stationary noise.
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In their study, all listeners had a steeply sloping high-
frequency hearing loss consistent with Profile B. Their
results showed a highly significant correlation between
pure-tone frequency discrimination and speech intelligi-
bility in stationary noise. However, L}ocsei et al. (2016)
did not find this association between frequency discrim-
ination and speech intelligibility in a sample with listen-
ers with mild-to-moderate hearing losses. This suggests
that the investigation of certain phenomena in separated
auditory profiles might reveal new knowledge about
hearing impairments that cannot be generalized to the
entire population of HI listeners.

Other approaches have attempted to identify why lis-
teners with similar audiograms present substantial dif-
ferences in suprathreshold performance. Recently, Souza
et al. (2020) showed how older HI listeners vary in terms
of their use of specific cues (either spectral or temporal
cues). The so-called profile cue characterizes the listen-
er’s predominant strategy for speech discrimination. The
“profile cue” resulted from a syllable identification task,
which was independent of the audiometric thresholds.
Some listeners used temporal envelope cues and
showed good temporal discrimination abilities, whereas
other listeners relied on spectral cues and were able to
discriminate spectral modifications in a speech signal.
Even though a spectral discrimination task using a
speech-like signal was promising for predicting the
“profile cue,” this test seemed to be influenced by the
audiometric thresholds. Because their participants pre-
sented audiograms similar to the ones observed for
Profiles B, C, and D (Figure 6), it is possible that the
categorization of the listeners based on auditory profil-
ing, together with the spectral discrimination task (not
included in the present study), could enable an efficient
prediction of the “profile cues” and clarify its connection
to suprathreshold auditory deficits.

Overall, the participants of the present study would
be candidates for hearing aids. Hearing-aid users often
show a large variability in terms of benefit and prefer-
ence to specific forms of hearing-aid processing (Neher
et al., 2016; Picou et al., 2015; Souza et al., 2019). In
some studies, the HI listeners were stratified based on
their audiograms (Gatehouse et al., 2006; Keidser et al.,
1995; Keidser & Grant, 2001; Larson et al., 2002).
However, the existing hearing-aid fitting rules do not
make use of suprathreshold auditory measures that
might help tune the large parameter space of modern
hearing technology. In fact, the HA parameters are
still adjusted based on the audiogram and empirical find-
ings that provide some fine-tuning according to the HA
user experience or the gender of the patient (Keidser
et al., 2012). Furthermore, candidacy for specific
hearing-aid processing (e.g., beamforming) could be
driven by specific suprathreshold auditory deficits (e.g.,
Füllgrabe et al., 2018; Neher et al., 2017) or nonauditory

aspects (e.g., Neher et al., 2016; Souza et al., 2019). The
four auditory profiles presented here showed significant
differences in suprathreshold measures related to two
independent dimensions, a speech intelligibility-related
distortion and a loudness perception-related distortion.
Therefore, the present data-driven profiling method
allows stratifying the listeners beyond what can be
achieved with an audiogram. This may help optimize
hearing-aid fitting parameters for a given patient.
Recently, it has been suggested that different advanced
signal processing strategies should be considered to com-
pensate for different cochlear pathologies (Henry et al.,
2019). Because the four auditory profiles showed inter-
esting similarities to the sensory and metabolic pheno-
types proposed by Dubno et al. (2013), new forms of
signal processing aimed at overcoming the hearing defi-
cits associated with the two identified dimensions may be
developed and evaluated. Furthermore, the current
approach may inspire different forms of model-based
hearing loss compensation (Bondy et al., 2004) to restore
auditory function based on biologically inspired technol-
ogy. This can lay the foundations for precision medicine
(Jameson & Longo, 2015) applied to the perceptual
rehabilitation of the hearing deficits. The implementa-
tion of a clinically feasible classification procedure
depends on different factors, such as time efficiency
and the availability of the necessary auditory tests and
hearing-aid algorithms.

Limitations of the Data-Driven Auditory Profiling
Approach

A clear limitation of the data-driven method proposed
here is its constraint to two dimensions of independent
auditory deficits and four subgroups. The advantage of
the proposed method is that it can provide results that
can be easily interpreted even when using advanced com-
putational methods for data analysis. Usually, advanced
data-driven methods provide meaningful results, but
they are not necessarily linked to an initial hypothesis
(Figure 1). In our approach, the imposed link between
method and hypothesis leads to a constraint in terms of
dimensions and subgroups. However, it would be inter-
esting to extend the current data-driven method to allow
for a third (or even higher) dimension which might
partly explain additional variance in the data in future
research.

The definition of the auditory profiles reflected the
main sources of hearing deficits in a relatively large
and heterogeneous population of HI listeners.
However, this group only contained older adults
(>60 years) with symmetric sensorineural hearing
losses. An extension of the auditory profiling method
proposed here might be based on an even more hetero-
geneous group of participants, which might require
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different data-analysis techniques for proper analysis
and interpretation (Hinrich et al., 2016). The insights
from the current method could then be applied mainly
to a population of mild-to-severe age-related hearing
losses and to some extent to other types of nonsyn-
dromic hearing losses, for example, noise-induced hear-
ing loss, but cannot be generalized to the whole
variability of existing auditory pathologies.

The presented data-driven approach for hearing loss
characterization was intentionally limited to the use of
psychoacoustical measures and the use of auditory tests
with potential for clinical implementation. Physiological
measures, such as otoacoustic emissions and auditory
evoked potentials, were not considered in the current
approach. This was a decision in the interest of the char-
acterization of the perceptual consequences derived of
the hearing deficits rather than the “sources” of the hear-
ing loss. Cognitive factors are also important for char-
acterizing the overall “listening profile” of individuals
with hearing loss, as suggested in several studies (e.g.,
Humes, 2007; R€onnberg et al., 2016). In the present
study, cognitive factors were considered as a confound
rather than a missing part of the auditory profiling
approach. A better understanding of the sensory dys-
function is needed to provide an efficient compensation
of the hearing deficits rather than a compensation for the
audibility loss. However, it would be of great interest to
explore the cognitive factors from a bidirectional point
of view. Cognition can affect the perception of the audi-
tory stimuli presented in the test battery, and the listen-
er’s cognitive resources can also be affected by the
distortions reflected by the auditory profiles and lead to
an effortful listening experience (Füllgrabe, 2020; Peelle,
2018; Pichora-Fuller et al., 2016).

Besides the potential for clinical implementation, the
tests that were language independent were prioritized.
However, a test battery representing speech intelligibility
deficits would be of great relevance. Such a test battery
could be tested on a population of people with different
hearing abilities and analyzed using a similar data-driven
profiling method as the one presented here. This test
battery might involve speech intelligibility tests in the
presence of different interferers and spatial configura-
tions (e.g., L}ocsei et al., 2016). Besides, it might contain
tests where speech intelligibility is affected by reverber-
ation, audible distortions, or the use of amplification. In
such a study, phenomena such as masking release or
binaural unmasking could be further investigated using
a data-driven approach.

The current study focused on the basis of auditory
profiling and not on their clinical application. For the
latter, other considerations such as the reliability, time
efficiency, and ease of administration of the tests must be
taken into account. In its present form, the BEAR test
battery may be unfeasible to be administered in the

clinic, but some individual tests have the potential to

be implemented in the clinical practice and to guide

the characterization of individual hearing deficits. The

evaluation and optimization of the auditory profiling

approach should be undertaken carefully, bearing in

mind that the purpose of the classification is a better

intervention. First, it needs to be demonstrated that

the stratification applied to hearing rehabilitation is ben-

eficial for the patient, and second, the identification of a

set of measures to better characterize the auditory defi-

cits needs to be optimized to find a balance between the

time spent in the additional tests and the benefit

obtained with this approach.

Conclusion

Using a data-driven approach, four auditory profiles

(A–B–C–D) were identified that showed distinct differ-

ences in terms of suprathreshold auditory processing

capabilities. The listeners’ hearing deficits could be char-

acterized by two independent types of AD, a “speech

intelligibility-related distortion” affecting listeners with

audiometric thresholds >50 dB HL at high frequencies,

and a loudness perception-related distortion affecting lis-

teners with audiometric thresholds >30 dB HL at low

frequencies. The four profiles showed similarities to the

audiometric phenotypes proposed by Dubno et al.

(2013), suggesting that Profile B may be resulting from

a sensory loss and Profile D may be resulting from a

metabolic loss. Profile C may reflect a combination of

a sensory and metabolic loss, or a different type of hear-

ing loss that results in substantially poorer suprathres-

hold auditory processing performance. The success of

this approach provides new methods to identify homo-

geneous subpopulations to better investigate the percep-

tual consequences of different etiologies. The current

results enable precision audiology and provide new ave-

nues for developing auditory-profile-based compensa-

tion strategies for hearing rehabilitation. Furthermore,

auditory profiling showed potential for hearing diagnos-

tic that can help disentangle the effects of different types

of impairments. This might be particularly useful for the

development of therapeutics for hearing loss (Kujawa &

Liberman, 2019) supporting precision medicine.
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(2017). Development of a method for determining binaural

sensitivity to temporal fine structure. International Journal

of Audiology, 56(12), 926–935. https://doi.org/10.1080/

14992027.2017.1366078
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Wolak, T., Cieslá, K., Pluta, A., Włodarczyk, E., Biswal, B., &

Skarzy_nsk�ı, H. (2019). Altered functional connectivity in

patients with sloping sensorineural hearing loss. Frontiers

in Human Neuroscience, 13: 284. https://doi.org/10.3389/

fnhum.2019.00284
Wu, P., Liberman, L., Bennett, K., de Gruttola, V., O’Malley,

J., & Liberman, M. (2019). Primary neural degeneration in

the human cochlea: Evidence for hidden hearing loss in the

aging ear. Neuroscience, 407, 8–20. https://doi.org/10.1016/

j.neuroscience.2018.07.053
Wu, P., O’Malley, J. T., de Gruttola, V., & Liberman, M. C.

(2020). Age-related hearing loss is dominated by damage to

inner ear sensory cells, not the cellular battery that powers

them. Journal of Neuroscience, 40(33), 6357–6366. https://

doi.org/10.1523/JNEUROSCI.0937-20. 2020

Sanchez-Lopez et al. 19

https://doi.org/10.1523/jneurosci.22-21-09643.2002
https://doi.org/10.1523/jneurosci.22-21-09643.2002
https://doi.org/10.3109/00206099009081641
https://doi.org/10.3109/00206099009081641
https://doi.org/10.1177/00034894931020S101
https://doi.org/10.1177/00034894931020S101
https://doi.org/10.1038/s41746-019-0148-3
https://doi.org/10.1038/s41746-019-0148-3
https://doi.org/10.3389/fpsyg.2019.02481
https://doi.org/10.1097/AUD.0000000000000717
https://doi.org/10.1097/AUD.0000000000000717
https://doi.org/10.1044/2019_JSLHR-19-00176
https://doi.org/10.1016/S0196-0709(79)80004-6
https://doi.org/10.1177/2331216519864499
https://doi.org/10.1038/nrd2251
https://doi.org/10.1038/nrd2251
https://doi.org/10.3109/14992027.2011.572083
https://doi.org/10.3109/14992027.2011.572083
https://doi.org/10.3389/fnhum.2019.00284
https://doi.org/10.3389/fnhum.2019.00284
https://doi.org/10.1016/j.neuroscience.2018.07.053
https://doi.org/10.1016/j.neuroscience.2018.07.053
https://doi.org/10.1523/JNEUROSCI.0937-20. 2020
https://doi.org/10.1523/JNEUROSCI.0937-20. 2020

	table-fn1-2331216520973539
	table-fn2-2331216520973539
	table-fn3-2331216520973539

