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Abstract. We present an energy-preserving mechanic formulation for dynamic quasi-brittle fracture in an
Eulerian-Lagrangian formulation, where a second-order phase-field equation controls the damage evolution.

The numerical formulation adapts in space and time to bound the errors, solving the mesh-bias issues these
models typically suffer. The time-step adaptivity estimates the temporal truncation error of the partial dif-

ferential equation that governs the solid equilibrium. The second-order generalized-α time-marching scheme

evolves the dynamic system. We estimate the temporal error by extrapolating a first-order approximation of
the present time-step solution using previous ones with backward difference formulas; the estimate compares

the extrapolation with the time-marching solution. We use an adaptive scheme built on a residual mini-

mization formulation in space. We estimate the spatial error by enriching the discretization with elemental
bubbles; then, we localize an error indicator norm to guide the mesh refinement as the fracture propagates.

The combined space and time adaptivity allows us to use low-order linear elements in problems involv-

ing complex stress paths. We efficiently and robustly use low-order spatial discretizations while avoiding
mesh bias in structured and unstructured meshes. We demonstrate the method’s efficiency with numerical

experiments that feature dynamic crack branching, where the capacity of the adaptive space-time scheme

is apparent. The adaptive method delivers accurate and reproducible crack paths on meshes with fewer
elements.
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1. Introduction

Dynamic fracture mechanisms in brittle and quasi-brittle materials involve branching phenomena, crack
arrest, crack initiation, and other non-smooth effects controlled by complex processes occurring in parallel.
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Pioneering experimental work [1, 2, 3, 4, 5] studied dynamic fracture, stating the basic concepts of initi-
ation, steady-state propagation, and interactions with stress waves. Building on this work, a landslide of
papers proposing numerical models and formulations were published by the engineering community using
cohesive elements [6, 7], enriched discontinuous elements [8], extended finite elements [9, 10], and embedded
discontinuities [11, 12], among many other approaches. Despite the advances in the field, these methods
require computationally expensive features, such as interface elements; others are difficult to extend to
three-dimensional simulations such as the embedded and extended approaches. In short, state-of-the-art
simulation methods are incapable of circumventing the mesh-bias problem in coarse meshes.

Since the early 2000s, an alternative fracture model has been popular; it avoids strong discontinuities
by introducing a phase field that models damage with its evolution coupled to the solid equilibrium of
Euler-Lagrange mechanical descriptions. This approach couples two partial differential equations that allow
low-order finite elements to simulate complex crack paths efficiently when the mesh can capture the crack
propagation by minimum potential paths. Francfort et al. [13, 14] proposed phase-field models for fracture
mechanics, which were later applied to dynamic crack propagation in several remarkable contributions [15,
16, 17, 18]. The main drawback of this description of dynamic fracture propagation is that it requires
extremely fine meshes to capture the crack topology accurately. Many mesh adaptive algorithms seek to
deliver the computational efficiency of the method by building an intelligent numerical method that avoids
unnecessary refinements. The first mesh adaptive method for Euler-Lagrange formulations of steady fracture
was a predictor-corrector approach [19, 20]. Recently, [21] proposed an isogeometric adaptive scheme for
higher-order phase-field formulations of dynamic fracture.

Irreversible fracture propagation processes require adaptive time-step strategies that control sudden en-
ergy releases and, consequently, error blow-ups. We need small-time steps to accurately reproduce the crack
branching, while large steps can reproduce elastic or unloading processes. Many time-adaptive strategies for
phase-field equations in the context of the Allen-Cahn and Cahn-Hilliard equations [22, 23, 24, 25, 26] exist.
Most estimate the error by comparing solutions obtained with different time-accuracy integrators. There-
fore, these approaches compute twice the solution of the time marching scheme, which is computationally
expensive. Recently, [27] proposed a time-adaptive method for the Cahn-Hilliard equation that estimates the
truncation error of the time-marching procedure using backward difference formulas. This ingenious proposal
results in a simple, cheap, and robust method for large problems, where the error estimation requires simple
extrapolations from previous time-step solutions.

We believe that a unified spatial and temporal adaptivity must control the time-marching problems
and avoid mesh bias. Nevertheless, only one publication deals with these challenges for Euler-Lagrange
formulations for dynamic fracture problems to the best of our knowledge. In [21], the authors propose a
simple approach to simulate dynamic crack propagation that uses the number of Newton-Raphson iterations
to control the step size; they increase the time-step size when the step converges in less than four iterations
or otherwise reduce it.

Herein, we develop a thermodynamically consistent Euler-Lagrange space-and-time adaptive formulation.
We evolve the dynamical system using the generalized-α solving the differential systems using a staggered
scheme. We estimate the formulation’s temporal error from the truncation error of the second-order time-
integrator using backward difference formulas. We estimate the error at the current time step by comparing
it with a solution’s extrapolation from the previous time steps. We build an adaptive spatial discretization
using a residual minimization formulation for the phase-field equation that estimates the error by measuring
the distance between low-order finite elements and a bubble enriched solution space [28, 29, 30, 31, 32, 33].
We calculate the solution error in an appropriate norm that avoids mesh bias and allows efficient refinements
to reduce the total computational cost while delivering solutions insensitive to the mesh and time-step sizes.

We organize the paper as follows: Section 2 formulates the dynamics fracture problem using an ener-
getically preserving Euler-Lagrangian approach along with a classical formulation, stating the strong and
weak formulations of both cases. Section 3 details the time-integration scheme considered while section 4
formulates the proposed mesh-and-time-step adaptive scheme, including a detailed algorithm. These sections
are the main contribution of this paper. Section 5 presents a set of numerical experiments involving crack
propagation and branching, which demonstrate the advantages of our proposal, obtaining better results in
meshes with much fewer elements. We draw conclusions in Section 6.
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2. Dynamic fracture modeling

In what follows, B denotes a fixed region of three-dimensional space with boundary ∂B oriented by an
outward unit normal n. We denote Hn(B) as the Sobolev space of L2(B)-integrable functions endowed with
nth L2(B)-integrable derivatives, (·, ·)B as the L2 inner product over the physical region B with boundary
∂B, and 〈·, ·〉∂B as the L2 inner product on the boundary ∂B.

The phase-field theory by Fried & Gurtin [34] augments the field equations with a momentum balance

(1) ∇ · ξ + π + γ = 0, and ∇ · σ + b = 0,

where ξ is the microstress and π and γ are, respectively, the internal and external microforces, σ is the
Cauchy stress, b = −ρ0ü + ρ0g is the inertial and body forces, ρ0 is the referential mass density, u is the
displacement (where a superposed dot denotes time differentiation).

Restricting attention to isothermal processes, where variations in temperature ϑ are negligible, that is,

(2) ϑ = ϑ0 ≡ constant,

the free-energy density, in terms of the internal energy ε and entropy ζ densities, reads

(3) ψ = ε− ϑ0ζ
and the pointwise free-energy imbalance has the form

(4) ψ̇ + πϕ̇− ξ · ∇ϕ̇− σ : ε̇ ≤ 0.

Guided by the presence of the power conjugate pairings πϕ̇, ξ · ∇ϕ̇, and σ : ε̇, with small strain tensor
ε := sym(∇u), we consider constitutive equations that deliver the free-energy density ψ, internal microforce
π, microstress ξ, and the Cauchy stress σ at each point x in B and time t in terms of the values of the phase
field ϕ with its gradient ∇ϕ, and its time derivative ϕ̇ at that point and time.

2.1. Thermodynamically consistent formulation. We deal with internal constraints, using the ideas
of Capriz [35] who modeled continua with microstructure. Recently, da Silva et al. [36] applied them to
brittle fracture, where they additively decompose flux/stress-like quantities into a quantity constitutively
determined and a powerless (orthogonal) contribution. That is,

(5) π := πa + πr, ξ := ξa + ξr, and σ := σa + σr.

Here, the reactive term are powerless, that is

(6) πrϕ̇ = 0, ξr · ∇ϕ̇ = 0, and σr : ε̇ = 0.

Thus, the free-energy imbalance (4) specializes to

(7) ψ̇ + πaϕ̇− ξa · ∇ϕ̇− σa : ε̇ ≤ 0.

Following Coleman & Noll [37], we enforce the satisfaction of the dissipation inequality (4) in all processes.
Therefore, we require that:

(i) The free-energy density ψ, given by a constitutive response function ψ̂, is independent of ϕ̇:

(8) ψ = ψ̂(ϕ,∇ϕ, ε).
(ii) The active microstress ξa and active Cauchy stress σa are, respectively, given by constitutive response

functions ξ̂a and σ̂a that derive from the response function ψ̂:

(9) ξa = ξ̂a(ϕ,∇ϕ, ε) =
∂ψ̂(ϕ,∇ϕ, ε)

∂(∇ϕ)
, σa = σ̂a(ϕ,∇ϕ, ε) =

∂ψ̂(ϕ,∇ϕ, ε)
∂ε

,

Following da Silva et al. [36], the microstructural changes that the phase field describes are irre-
versible. We achieve irreversibility with the constraint ϕ̇ ≤ 0, given that ϕ = 0 represents the
damaged material whereas ϕ = 1 is undamaged. Conversely, ∇ϕ̇ and ε̇ are unconstrained, thus

(10) ξr := 0, and σr := 0.

Moreover,

(11) πr :=

{
arbitrary if ϕ̇ = 0,

0 if ϕ̇ ≤ 0.
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(iii) The internal microforce π, given by a constitutive response function π̂, splits additively into a

contribution derived from the response function ψ̂ and a dissipative contribution that, in contrast

to ψ̂, ξ̂a, and σ̂a, depends on ϕ̇ and must be consistent with a residual dissipation inequality:

(12)

π = π̂(ϕ,∇ϕ, ϕ̇, ε) = −∂ψ̂(ϕ,∇ϕ, ε)
∂ϕ

+ πdis(ϕ,∇ϕ, ϕ̇, ε),

πdis(ϕ,∇ϕ, ϕ̇, ε)ϕ̇ ≤ 0.

In view of the constitutive restrictions (8)–(12), the response function for the free-energy density serves as a
thermodynamic potential for the microstress, the hypermicrostress, and the equilibrium contribution to the
internal microforce. Therefore, a complete description of the response of a material belonging to the class in

question requires scalar-valued response functions ψ̂ and πdis. Whereas ψ̂ depends only on ϕ, ∇ϕ, and ∇2ϕ,
πdis depends also on ϕ̇. Moreover, πdis must satisfy the residual dissipation inequality (12)2 for all possible
choices of ϕ, ∇ϕ, and ϕ̇.

We now assign a suitable constitutive response for πa. If ϕ̇ = 0, internal constraints are inactive, thus

(13) πa = −∂ψ̂(ϕ,∇ϕ, ε)
∂ϕ

, if ϕ̇ = 0,

and from (12), we have that

(14) π = −∂ψ̂(ϕ,∇ϕ, ε)
∂ϕ

+ πr,

Using (9), (10), (11), and (12) in the field equation (1)1, we obtain an evolution equation

(15)
if ϕ̇ < 0, −πdis(ϕ,∇ϕ, ϕ̇, ε)

if ϕ̇ = 0, −πr

}
= ∇ ·

(
∂ψ̂(ϕ,∇ϕ, ε)

∂(∇ϕ)

)
− ∂ψ̂(ϕ,∇ϕ, ε)

∂ϕ
+ γ,

for the phase field. Equation (15) is a nonconserved phase-field equation, a generalization of the Allen–
Cahn–Ginzburg–Landau equation. Microstructural changes occur when ϕ̇ < 0. Moreover, with the bracket
operator 〈x〉 = 1

2 (x+ |x|), the phase-field equation (15) results in

(16) − πdis(ϕ,∇ϕ, ϕ̇, ε) =

〈
−∇ ·

(
∂ψ̂(ϕ,∇ϕ, ε)

∂(∇ϕ)

)
+
∂ψ̂(ϕ,∇ϕ, ε)

∂ϕ
− γ
〉
,

and

(17) − πr =

〈
∇ ·
(
∂ψ̂(ϕ,∇ϕ, ε)

∂(∇ϕ)

)
− ∂ψ̂(ϕ,∇ϕ, ε)

∂ϕ
+ γ

〉
.

Here, we let the small strain tensor, with the spectral decomposion ε :=
∑n
ι=1 ε

ιmι ⊗mι, assume the
following decomposition

(18) ε = ε+ + ε−,

where

(19) ε+ :=

n∑
ι=1

〈ει〉+mι ⊗mι,

with ε− = ε− ε+. The elastic free-energy decomposes into

(20) ψ0(ε) := ψ+
0 (ε) + ψ−0 (ε),

where

(21)


ψ+
0 (ε) =

1

2
λ〈trε〉2 + µtr((ε+)2),

ψ−0 (ε) =
1

2
λ(ε− 〈trε〉)2 + µtr((ε− ε+)2),

where λ and µ are the Lamé coefficients. The terms of (20) are, respectively, the energies related to traction,
compression, and shear.
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In particular, we choose ψ̂ and πdis according to

(22)

{
ψ̂(ϕ,∇ϕ, ε) = ψ+

0 (ε)g(ϕ) + ψ−0 (ε) + f(ϕ) + 1
2gc`

2|∇ϕ|2,

πdis(ϕ,∇ϕ, ϕ̇, ε) = −βϕ̇,

where f is a function of ϕ, and gc > 0, ` > 0, β > 0 are problem-specific-constants. Here, ψ0 is the elastic
free-energy of the undamaged material, f and gc = Gc

` is a parameter that depends on the Griffith energy
Gc, ` carries dimensions of length, and β carries dimensions of (dynamic) viscosity. Moreover, f and g satisfy

(23) ∀ 0 ≤ ϕ ≤ 1,

{
f(1) = f ′(1) = 0, f ′(ϕ) < 0,

g(0) = 0, g(1) = 1, g′(ϕ) > 0,

where g (ϕ) is the degradation function. Granted that ψ̂ and πdis are as defined in (22), the thermodynamic
restrictions (9) and (12) yield

(24) ξ = gc`
2∇ϕ, π = −ψ+

0 (ε)g′(ϕ)− f ′(ϕ) +

{−βϕ̇, if ϕ̇ < 0,

πr, if ϕ̇ < 0.

with the superposed prime denoting differentiation with respect to ϕ. Using the particular constitutive
relations (24) in the field equation (1), we obtain the Allen–Cahn–Ginzburg–Landau equation

(25)
if ϕ̇ < 0, βϕ̇

if ϕ̇ = 0, −πr

}
= gc`

24ϕ− ψ+
0 (ε)g′(ϕ)− f ′(ϕ) + γ,

where 4 = ∇ · ∇ denotes the Laplacian and πr specified by the right-hand-side of (25) in case ϕ̇ = 0. In
what follows, we set γ = 0 and define the function f(ϕ) as

(26) f(ϕ) := gc
1

2
(ϕ− 1)2.

The strong form of the consistent problem of a deformable body undergoing dynamic fractures is: Find
u ∈ Rd and ϕ ∈ R such that:

(27)



ρ0ü− g (ϕ)∇ · σ = ρ0g in B × I,

`24ϕ− `ψ+
0 (ε)

Gc
g′(ϕ)− f ′(ϕ) =

{
ηϕ̇ if ϕ̇ < 0

−πr if ϕ̇ = 0
in B × I,

u (x, t) = uD in ∂BD × I,
σ · n = t in ∂BN × I,
∇ϕ · n = 0 in ∂BN × I,
u (x, 0) = u0 in B,
u̇ (x, 0) = u̇0 in B.

Here, I is the total time window, the traction on a Euler–Cauchy cut t, where n is the outward unit normal,
the parameter η = β/gc, and g is a body force. In this strong form, we assume the Cauchy stress is equal to
the active stress σ = σa.

2.2. Model reduction by a history-field variable. The last set of equations produces a branched solution
that leads to larger and more complex numerical solutions. In this sense, we introduce a history-field variable
that considers a model reduction to force the irreversible nature of the process, following [38, 39, 16]. Let us
introduce H, strain energy history, given by

(28) H :=

{
ψ+
0 , if ψ+

0 (ε(x)) < Hf(x),

Hf otherwise,

where Hf(x) = maxt∈[t=0,t] ψ
+ (ε(x)). Thus, the phase-field equation reduces to

(29) βϕ̇ = gc`
24ϕ−Hg′(ϕ)− f ′(ϕ).
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Finally, the strong form of the reduced problem of a deformable body undergoing dynamic fractures is:
Find u ∈ Rd and ϕ ∈ R such that:

(30)



ρ0ü− g (ϕ)∇ · σ = ρ0g in B × I,

ηϕ̇+
`H

Gc
g′(ϕ) + f ′(ϕ)− `24ϕ = 0 in B × I,

u (x, t) = uD in ∂BD × I,
σ · n = t in ∂BN × I,
∇ϕ · n = 0 in ∂BN × I,
u (x, 0) = u0 in B,
u̇ (x, 0) = u̇0 in B.

We define two degradation functions g, the first one is a quadratic function

(31) g (ϕ) = ϕ2,

and the second one is a cubic function

(32) g (ϕ) = S(ϕ3 − ϕ2) + 3ϕ2 − 2ϕ3,

where S is a shape parameter that represents the sharpness of the phase-field interface.

3. Staggered generalized-α time integrator

We evolve the partial differential equation system (30) using a second-order generalized-α implicit time-
marching method [40]. The weak problem statement is

(33)


Find (u, ϕ) ∈ U × P s.t.

(v; ρ0ü)B + a (v;u, ϕ) = f (v) ; ∀v ∈ V,
(q; ηϕ̇)B + b (q;u, ϕ) = g (q) , ∀q ∈ Q,

where the Lagrangian equations read

(34) a (v;u, ϕ) = (∇v, g (ϕ)σ (u))B and f (v) = (v, ρ0g)B + (v, t)∂BN ,

while the Eulerian equations read

(35) b (q;u, ϕ) = `2 (∇q,∇ϕ)B +

(
q,

[
`H

Gc

dg (ϕ)

dϕ
+ 1

]
ϕ

)
B

and g (q) = (q, 1)B .

The test space for the solid equilibrium equation is

(36) V := H1
0 (B) :=

{
u ∈ L2 (B) |∇u ∈ L2 (B) ,u = uD ∈ ∂BD

}
.

being L2 square integrables functions in the domain B, while the test space for the phase-field equation is

(37) Q := H1 (B) :=
{
ϕ ∈ L2 (B) |∇ϕ ∈ L2 (B)

}
.

The integrability of equation (33) requires that ü and f to belong to the dual space of the test space
defined by the Riesz representation theorem V∗ = H−1 (B), while ϕ̇ ∈ Q∗. With these definitions, we
introduce the following trial spaces

(38) U := {u ∈ V | ü ∈ V∗} and P := {ϕ ∈ Q | ϕ̇ ∈ Q∗} ,
Solving the fully coupled system (33) requires a considerable amount of computer resources, mainly

during the space refinement. Thus, we solve a staggered scheme that solves the solid equilibrium equations
independently from the phase-field equations with a Picard iteration [41]. In every step, we first solve the
equilibrium equation to obtain a displacement field; then, we solve the phase-field equation using these
displacements. This staggered technique allows us to use different time-integrators to solve each equation.

We use a semi-discrete formulation in the time interval t0 < t1 < ... < tn < ... < tf and define the time
step size as ∆tn = tn − tn−1. A generalized-α time-marching scheme for u (tn), ü (tn), ϕ (tn) and ϕ̇ (tn),
respectively, using un, ün, ϕn and ϕ̇n, allows us to state (for more details, see, [42]):

(39)
un+αc

f
= un + αcf [[u]],

ün+αc
m

= ün + αcm[[ü]],
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for the second-order equation, while for the first-order equation we get [43]

(40)
ϕn+αj

f
= ϕn + αjf [[ϕ]],

ϕ̇n+αj
m

= ϕ̇n + αjm[[ϕ̇]].

where [[•]] = •n+1 − •n is the variable’s time increment. We expand un+1 and ϕn+1 with Taylor series as,

[[u]] =

2∑
j=1

∆tj

j!

∂ju

∂tj

∣∣∣∣
n

+ βc∆t2[[ü]],(41)

[[ϕ]] = ∆t
(
ϕ̇n + γj [[ϕ̇]]

)
,(42)

while the velocity is

[[u̇]] = ∆t (ün + γc[[ü]]) .(43)

We define the parameters of (39), (41), (42) and (43) in terms of the spectral radii for the second-order
equation ρc∞ and for the first-order equation ρj∞ of the amplification matrix, the only user-defined parameter,
as [44]

(44)

αcf =
1

1 + ρc∞
αjf =

1

1 + ρj∞

αcm =
2− ρc∞
ρc∞ + 1

αjm =
1

2

(
3− ρj∞
ρj∞ + 1

)
γc =

1

2
+ αcm − αcf γj =

1

2
+ αjm − α

j
f

βc =
1

4

(
1 + αcm − αcf

)2
As we solve the equations in a staggered manner, we can compute the equations’ spectral radii indepen-

dently. In this sense, we set ρ∞ = ρc∞ = ρj∞. The staggered generalized-α method to solve (33) results in
the following discrete system

(45)


(
v; ρ0ü

k+1
n+αc

m

)
B

+ a
(
v;uk+1

n+αc
f
, ϕkn+1

)
= fn+αc

f
(v) , ∀v ∈ V(

q; ηϕ̇k+1

n+αj
m

)
B

+ b

(
q;uk+1

n+1, ϕ
k+1

n+αj
f

)
= gn+αj

f
(q) , ∀q ∈ Q,

where the superscript k represents the staggered iteration. Assuming the following functional linearization

a
(
v;uk+1

n+αc
f
, ϕkn+1

)
= a

(
v;un, ϕ

k
n+1

)
+ αcf

−→a
(
v, [[uk+1]];un, ϕ

k
n+1

)
,(46)

b

(
q;uk+1

n+1, ϕ
k+1

n+αj
f

)
= b

(
q;uk+1

n+1, ϕn
)

+ αjf
−→
b
(
q, [[ϕk+1]];uk+1

n+1, ϕn
)
,(47)

where −→• represents the Gâteaux derivative of the functional, that is,

(48) −→a (v, [[u]];u, ϕ) =
d

dε
a (v;u+ ε[[u]], ϕ )|ε=0 ,

and

(49)
−→
b (q, [[ϕ]];u, ϕ) =

d

dε
b (q;u, ϕ+ ε[[ϕ]])|ε=0 ,

being [[u]] and [[ϕ]] proper trial functions. Substituting (39)–(43) into equation (45), the semi-discrete problem
reads: Given un, u̇n, ün, ϕn, ϕ̇n and a time-step size ∆t,

Find ([[u]], [[ϕ]]) ∈ U × P s.t.(
v; ρ0[[uk+1]]

)
B +

βc∆t2αcf
αcm

−→a
(
v, [[uk+1]];un, ϕ

k
n+1

)
= fGα (v) , ∀v ∈ V,(50)

(
q; η[[ϕk+1]]

)
B +

γj∆tαjf

αjm

−→
b
(
q, [[ϕk+1]];uk+1

n+1, ϕn
)

= gGα (q) , ∀q ∈ Q,(51)
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with the following right-hand sides

fGα (v) =
βc∆t2

αcm

[
fn+αc

f
(v) + ρ0

(
v;

(
αcm
2βc
− 1

)
ün +

αcm
βc∆t

u̇n

)
B
− a

(
v;un, ϕ

k
n+1

)]
,(52)

gGα (q) =
γj∆t

αjm

[
gn+αj

f
(q)− b

(
q;uk+1

n+1, ϕn
)

+ η

(
αjm
γj
− 1

)
(q; ϕ̇n)B

]
.(53)

The algorithm (1) summarizes the staggered solution of the resulting formulation, along with the space-
time adaptive scheme.

4. Fully automatic space-and-time adaptivity

Algorithm 1: Space-&-time adaptivity: Staggered equilibrium & phase-field equations’ solution

Data: un, un−1 , un−2, u̇n, ün, ∆tn+1, ∆tn, ∆tn−1 and initial mesh M0
n+1

Result: updated variables un+1, u̇n+1, ün+1, ∆tn+1 and final mesh Mn+1

1 while tn+1 ≤ tf do
2 Initialize mesh M0

n+1 ;

3 while ‖εn+1‖ ≥ tolmesh do
4 iteration j ← j + 1 ;

5 Project variables of previous time-step in current mesh (•)n
(
Mj

n+1

)
← (•)n (Mn) ;

6 while max (‖δu‖, ‖δϕ‖) ≥ tolstg do
7 Iteration k ← k + 1 ;

8 Calculate [[uk+1]] with (50) and uk+1
n+1 = un + [[uk+1]] ;

9 Calculate [[ϕk+1]] with (51) and ϕk+1
n+1 = ϕn + [[ϕk+1]] ;

10 Calculate ‖δu‖ = ‖ϕk+1
n+1 − ϕkn+1‖ and ‖δϕ‖ = ‖ϕk+1

n+1 − ϕkn+1‖ ;

11 if max (‖δu‖, ‖δϕ‖) ≤ tolstg then
12 Calculate temporal error τGα (tn + ∆tn+1) with (56) ;

13 Calculate E (tn + ∆tn+1) with (57) ;

14 if E (tn + ∆tn+1) ≤ tolmax then
15 Compute space error εn+1 solving (61) ;

16 if ‖εn+1‖ ≥ tolmesh then
17 Mark elements using εn+1 ;

18 Refine mesh and update mesh Mj+1
n+1 ←M

j
n+1 (εn+1) ;

19 end

20 Update current time step tn+1 ← tn + ∆tn+1;

21 Update un+1, u̇n+1 and ün+1;

22 Update un ← un+1, u̇n ← u̇n+1 and ün ← ün+1;

23 if E (tn + ∆tn+1) < tolmin then
24 Increase delta step for next time increment ∆tn+1 ← F (E (tn+1) ,∆tn+1, tol)

25 end

26 else
27 Reduce time-step size∆tn+1 ← F (E (tn+1) ,∆tn+1, tol);

28 Go to line 3 and restart the staggered solution with the new time-step;

29 end

30 end

31 end

32 end

33 end
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4.1. Temporal adaptivity. Since the phase-field equation is not always time-dependent, we propose an
adaptive scheme in terms of the model’s solid equilibrium equation, expanding the concept proposed in [27]
for second-order time derivatives. We express the local truncation error of the generalized-α time integrator
using Taylor expansion as follows

(54) τGα (tn+1) =
∆t2n+1 (∆tn + ∆tn−1)

6

...
u (tn+1) +O

(
∆t4

)
.

We save the solutions un+1,un,un−1 and un−2 from the generalized-α scheme; then we compute the
truncation error of (54) using the third-order backward difference formula (BDF3)

(55)
...
u (tn+1) ≈ 1

∆t2n+1

[
un+1 − un

∆tn+1
−
(

1 +
∆tn+1

∆tn

)
un − un−1

∆tn
+

∆tn+1

∆tn∆tn−1
(un−1 − un−2)

]
.

We express the local truncation error of the generalized-α scheme for second-order in time derivative
equations by substituting (55) into (54) obtaining

(56) τGα (tn+1) ≈ ∆tn + ∆tn−1
6

[
un+1 − un

∆tn+1
−
(

1 +
∆tn+1

∆tn

)
un − un−1

∆tn
+

∆tn+1

∆tn∆tn−1
(un−1 − un−2)

]
,

where ∆tn+1 = tn+1 − tn, ∆tn = tn − tn−1 and ∆tn−1 = tn−1 − tn−2 are the time increments of previous
time-increments. Finally, we compute the weighted local truncation error and use it as an error indicator [45]

(57) E (tn+1) =

√√√√ 1

N

N∑
i=1

(
τGαi (tn+1)

ρabs + ρrel max (|un+1|i, |un+1|i + |τGα (tn+1) |i)

)2

,

where ρabs and ρrel are user-defined parameters called absolute and relative tolerances, respectively. For all
the examples presented in this paper, these parameters are ρabs = ρrel = 10−4. The time step adaptivity
simply follows

(58) ∆tk+1
n+1 (tn+1) = F

(
E (tn+1) ,∆tkn+1, tol

)
= ρtol

(
tol

E (tn+1)

) 1
2

∆tkn+1,

where k is the time-step refinement level and ρtol is a safety factor parameter that we set to 0.9 for all
applications. We summarize the time-adaptive scheme as a global procedure in Algorithm 1, where we
define two tolerances tolmax and tolmin that limit the range of reduction or increments of the time-step size.

4.2. Spatial adaptivity. We propose an adaptive residual minimization method, which measures the error
in a proper dual norm. We use low-order elements to approximate the solution and enrich the solution
space to estimate the solution error with bubbles. These bubbles allow us to localize the error measurement
and guide refinement. The phase-field equation and its characteristic length bound the mesh size; thus, our
procedure seeks to avoid mesh bias as the crack propagates by estimating the phase-field error. The phase-
field is a scalar function; thus, the spatial error control uses the smallest representative equation system to
estimate the error delivering significant computational savings.

First, we introduce a conforming partitionMh = {Ti}Ni=1 of the domain B into N disjoint finite elements
Ti, such that

Bh = ∪Ni=1Ti satisfies B = int (Bh) .(59)

We define Pp (Ti), with p ≥ 0, the set of polynomials of degree p defined on the element Ti, and consider
the following polynomial space

(60) Pp (Bh) = {ϕ ∈ L2 (B) | ϕ|Ti ∈ Pp (Ti) ,∀i = 1, ..., N} ,
Let QBh be a finite-dimensional space built with functions in Bh, the residual minimization problem for

the phase-field equation considering the generalized-α time integrator reads

(61)


Find (εh, ϕh) ∈ PBh × Ph such that

(wh; εh)Q∆t
h

+ bGαh (wh;uhn+1, ϕh) = gGαh (wh) ,∀wh ∈ QBh
bGαh (qh;uhn+1, εh) = 0 ,∀qh ∈ Qh,

where PBh is the discrete bubble enriched space

(62) PBh = {ϕh ∈ QBh | ϕ̇h ∈ QB∗h} ,
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and (·, ·)Q∆t
h

is the inner product induced by the norm

(63) ‖ϕh‖2Q∆t
h

= η‖ϕh‖2L2
+
αjf∆tγj

αjm
‖ϕh‖2Qh

, and ‖ϕh‖2Qh
=

(
1 +

l0
Gc

)
‖ϕh‖2L2

+ l20‖∇ϕh‖2L2
,

being the functional

(64) bGαh (wh;uhn+1, ϕh) = (qh; η[[ϕh]])B +
γj∆tαjf

αjm

−→
bh (qh, [[ϕh]];uhn+1, ϕhn) ,

is the left-hand side (51) and εh = R−1QBh

(
gGαh (wh)− bGαh (wh;uhn+1, ϕh)

)
∈ QBh is an error representation.

The residual representation also has the following property

(65) ‖εhn+1‖Q∆t
h

= ‖BGαh
(
θhn+1 − ϕhn+1

)
‖Q∆t

h
∗ ,

where θhn+1 ∈ PBh is the solution of the phase-field equation (51) in the bubble enriched space, while
BGαh : QBh,# → QB∗h is defined as [33]:

(66)
〈
wh;BGαh z

〉
QBh×QB

∗
h

= bGαh (wh;uh, z) .

The bubble enriched space PBh ⊂ QBh allows us to localize the error estimation to mark and refine the
mesh in terms of the phase-field error. Figure 1 (a) shows a linear triangular element while Figures 1 (b)
and (c) show a third-order bubble function that enriches the discrete space.

(a) Space Q. (b) Space QB . (c) Bubble shape function.

Figure 1. Low order space Q and bubble enriched space QB for 2D.

In all examples, we approximate all unknown fields with linear functions and then enrich these spaces
with bubbles to estimate the spatial error.

4.3. Adaptive space-and-time procedure. This section describes the adaptive procedure to provide the
reader with all the necessary tools for a straightforward implementation. We implement the solver we use
in this paper in the open-source package FEniCS project [46] combined with the FIAT package to deal with
different quadratures [47]. The Algorithm 1 describes a general calculation layout for the proposed model.

We obtain a reliable user-independent numerical method for simulating dynamic fracture processes. We
assume the user provides the algorithm with an initial mesh M0

n+1 as an iteration starting point. Also,
the user needs to define an initial time-step size ∆t0 to start the calculation procedure. Thereon, the time-
adaptive approach bounds the error temporal error between tolmin and tolmax. Furthermore, the user needs
to specify two more tolerances, tolstg that controls the staggered solution of Equations (50) and (51), and
tolmesh that control the spatial mesh refinement process.

In all numerical experiments, we select for refinement those elements within a certain percentage of the
element with maximum error. We summarize the approach as follows

(67) refine all Ti ∈Mh such that εn+1 (Ti) ≥ χmax (εn+1) ,

where χ ∈ [0, 1] is a user-defined parameter. When χ approaches 0, we refine fewer elements in each iteration,
while as it tends to 1, we refine most elements. Our experience shows that this element-selection method
delivers the most efficient discretizations when for χ ∈ [0.1, 0.3].
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5. Numerical Experiments

5.1. Significance of an error-based time-adaptive scheme. In this section, we study the dynamic
branching problem, focusing on the impact of the time-adaptive scheme to avoid spurious solutions. We
use.a fixed, fine mesh to isolate the influence of the time adaptive scheme on the process.

Figure 2. Dynamic fracture in a notched plate. Problem setup.

Figure 2 shows a notched plate of dimension 1m x 2m that contains an initial planar notch of 50 cm.
We subject the plate to a vertical traction force σ (t) = 10KN . A constant uniform mesh of 262, 144
elements with 263, 938 degrees of freedom for the displacement field and 131, 969 for the phase-field, totaling
395, 907 for the overall problem. Figure 2 also includes the material parameters, being the elastic modulus
E = 208MPa, Poisson modulus ν = 0.3, fracture energy Gc = 0.5N/m2 and density ρ = 2, 400 kg/m3. We
set the characteristic length equal to the minimum element size ` = 5mm and use a quadratic degradation
function. We denote the minimum element size the mesh size.

0.0 1.0Phase Field

(a) Phase field, t = 25ms

Time-error

Time-step

Stage 3Stage 2

Stage 1

(b) Error E (tn+1) & time-step size ∆t evolution

Figure 3. Dynamic fracture branching: time adaptivity based on iteration count

Figure 3 (a) shows the final crack pattern when we control ∆t by iteration number in the staggered
solution scheme. In particular, we set the staggered iteration number threshold to 10, reducing the time-step
size to satisfy the bound. Figure 3 (b) shows the error E (tn+1) and the time-step-size ∆t evolution. We
divide the last plot into three well-defined stages: stage 1 where the crack nucleation happens, stage 2 where
a single crack propagates and finishes when it branches in two, and stage 3 where two independent cracks
propagate. The final crack configuration at time t = 25ms is asymmetric, despite the example is symmetric;
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(a) Phase field, t = 5ms

0.0 1.0Phase Field

(b) Phase field, t = 10ms (c) Phase field, t = 25ms

Time-error

Time-step

Stage 3

Stage 2

Stage 1

(d) Error E (tn+1) & time-step size ∆t evolution

Figure 4. Dynamic fracture branching: time adaptivity based on error control

the asymmetry is due to the error accumulation during the time-marching process. The most significant
increase in the error evolution occurs during stage 1. This simple test shows that the time-step control
guided by iteration counts can lead to unreliable results.

In contrast, Figure 4 shows the resulting phase-field when we use the error-based approach of Section 4 to
adapt the time-step size. We set tolmax = 10−3. Figures 4 (a)-(c) display three snapshots that correspond
to the phase-field solution on the finest mesh at each stage for times t = 5ms, t = 10ms, and t = 25ms,
respectively. Figure 4 (d) shows the error and time-step-size evolution. The figure shows that most of
the error accumulation occurs during the first stage, which results in a significant time-step size reduction
during the first 10ms of the simulation. Beyond this point, the time-step size remains unchanged until
the simulation end, when the crack pathway is already traced. This simulation demonstrates that using an
error-based time-adaptive approach delivers reliable results where the final phase-field path is symmetric.

5.2. Crack branching with space-and-time adaptivity. In this numerical experiment, we use our space-
and-time adaptive scheme to simulate the problem that Figure 2 shows. The initial regular mesh has 4, 096
elements with a mesh size of 45mm, setting the localization length to ` = 5mm while we set the maximum
tolerance for the time integrator to tolmax = 5× 10−3. Figure 5 (a) shows the time evolution of the number
of elements (blue) and the minimum mesh size (red). The final mesh has a minimum element size of 0.95mm
with a total number of elements of 115, 653, fewer than half the number we used in the previous example.
Figure 5 (b) shows the temporal evolution of the error in time E (tn+1) (blue) and the time-step size ∆tn+1

(red). We divide the evolution into four well-defined stages. The first stage represents the elastic regime,
where a coarse mesh can appropriately describe the evolution. The second stage contains the crack onset,
where the algorithm refines the mesh to capture the tip notch evolution, wherein we need a smaller element
size. We introduce a refinement cut-off in this case to avoid unnecessarily small elements. The third stage
represents a single branch propagation, where the element number increases faster, while the time-step
size also decreases considerably. The fourth stage depicts the crack branching and the propagation of two
fractures. In this last stage, the algorithm deploys the maximum number of elements.
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(a) Element number & mesh size evolution
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(b) Error E (tn+1) & time-step size ∆t evolution

Figure 5. Space-and-time adaptivity
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Figure 6. Crack tip velocity. time adaptivity versus space-and-time adaptivity

Figure 6 compares the crack tip velocity between the time adaptive example presented in the previous
section and the space-and-time adaptive case. The figures show similar results with four well-defined sec-
tions: elastic regime, crack nucleation, and propagation of one branch and two branches. Also, the crack
propagation is around the 60% of the Rayleigh velocity of the solid body.

Furthermore, Figure 7 shows a snapshot timeline of the simulation results, with the phase field and the
computed mesh in each case. For time t = 3ms, Figures 7 (c) and (d) show the crack nucleation, while at
t = 10ms, Figures 7 (e) and (f) show the crack branching. Finally, Figures 7 (g) to (j) show the final stages
of the problem, where two cracks propagate producing a symmetric crack profile by properly resolving the
dynamics locally at the crack tips.

5.3. Dissipation analysis and initial mesh sensitivity. We now focus on the bias induced by the initial
mesh. We analyze this influence by comparing structured versus unstructured meshes. We consider a cubic
degradation function in this case, inducing the fracture with a traction force σ (t) = 8 kN . We compare the
dissipated energy for both mesh types, where we compute this energy following [39], that is,

(68) D =

∫
B0

Gc
2

(
1

`
(1− ϕ)

2
+ `‖∇ϕ‖2

)
dB0.

Figure 8 (a) shows the evolution for an unstructured mesh, starting with 2, 464 elements. By construction,
this mesh contains highly irregular elements near the notch tip; see, for example, Figure 8 (b). We use the
same numerical and material parameters as above with a cubic degradation function instead of a quadratic
one as in the previous cases.
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(a) Initial mesh, t = 0ms

0.0 1.0Phase Field

(b) Initial phase field, t = 0ms

(c) Mesh snapshot, t = 3ms (d) Phase-field snapshot, t = 3ms

(e) Mesh snapshot, t = 10ms (f) Phase-field snapshot, t = 10ms

(g) Mesh snapshot, t = 15ms (h) Phase-field snapshot, t = 15ms

(i) Final mesh, t = 28ms (j) Final phase-field snapshot, t = 28ms

Figure 7. Space-and-time adaptive simulation of branching fracture (cubic degradation
function): Mesh & phase-field evolution

Figure 8 (a) shows the temporal evolution of the element number and the mesh size for both types of
meshes. In the case of the structured mesh, the refinement starts earlier than in the unstructured one
since the crack tip’s resolution needs to improve to capture the crack onset accurately. The final element
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Notch tip 
detail

(a) Initial mesh (overview) (b) Notch tip detail

Figure 8. Unstructured initial mesh

(a) Element number & mesh size evolution (b) Free fracture energy evolution

Figure 9. Structured versus unstructured (highly irregular) meshes

numbers are 195, 273 for the unstructured mesh and 166, 529 for the structured one. We force the refinement
procedure to have at least five elements to reproduce the phase-field interface in both cases.

Furthermore, Figure 8 (b) shows the free fracture energy evolution for both meshes. Although the struc-
tured mesh starts propagating the fracture after the unstructured one, the dissipation velocity is higher for
the structured mesh. Our method shows is irreversible, that is,

(69) D (tn+1) ≥ 0,

implying that the system has a free fracture energy at time tn+1 that is lower or equal than one at the
previous time step.

Figure 10 shows the snapshot sequence of both initial meshes, while Figure 11 shows the phase-field
evolution for both cases. The final mesh and phase-field configuration for both cases are almost identical,
demonstrating the method’s robustness even when starting from highly irregular meshes.
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(a) Unstructured mesh, t = 130ms (b) Structured mesh for t = 130ms

(c) Unstructured mesh, t = 140ms (d) Structured mesh, t = 140ms

(e) Unstructured mesh, t = 160ms (f) Structured mesh, t = 160ms

(g) Unstructured mesh, t = 173ms (h) Structured mesh, t = 173ms

Figure 10. Space-and-time adaptive simulation of branching fracture (cubic degradation
function): Mesh evolution
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(a) Unstructured mesh, t = 130ms (b) Structured mesh, t = 130ms

(c) Unstructured mesh, t = 140ms (d) Structured mesh, t = 140ms

(e) Unstructured mesh, t = 160ms (f) Structured mesh, t = 160ms

(g) Unstructured mesh, t = 173ms (h) Structured mesh, t = 173ms

Figure 11. Space-and-time adaptive simulation of branching fracture (cubic degradation
function): Phase-field evolution
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6. Conclusions

We present a space-and-time adaptive method for dynamic fracture problems based on Eulerian-Lagrangian
formulations. First, we describe a thermodynamically consistent fracture model based on phase-field theory,
which allows us to formulate from an energetic point of view. Then, we describe a staggered solution scheme
that uses second-order generalized-α time marching methods for first- and second-order time derivatives.
Furthermore, we detail a time adaptive method that estimates the temporal error using backward difference
formulas from previously computed time steps and the generalized-alpha methods’ updates. This strategy
results in a simple equation that calculates the truncation error based on previous solutions of the equilib-
rium equations; this truncation error via a weighted truncation estimate allows us to design an error-based
time adaptive process. We combine this time adaptive method with an adaptive mesh method based on a
residual minimization based on the phase-field equation to deliver a fully automatic space-and-time adaptive
strategy for dynamic fracture simulation. We use a bubble-enriched finite element space to estimate the
residual error in a proper norm. The general algorithm we propose solves all equations in the proposed
residual-minimization scheme at each time step. We detail important algebraic aspects and the refinement
criteria we consider for this class of dynamic fracture branching problems.

We use three challenging dynamic fracture propagation problems to demonstrate the efficiency and ro-
bustness of our method. First, we study the robustness of our temporal error estimation for time adaptivity
in a notched plate subject traction that induces a dynamic cracking process. We use a regular mesh with
262, 144 elements and a mesh size of ` = 5mm. In particular, we compare the two time-adaptive strategies,
one driven by the iteration count, against our error-based approach. Our tests show that the iteration-count
scheme leads to asymmetrical solutions in symmetric problems. Our error-based time-adaptive strategy is
robust and delivers symmetric solutions on the same mesh. The second example solves the same problem
and studies the influence of the adaptive mesh strategy on the simulation solutions for this case. In this case,
we start from a coarse mesh and allow the mesh adaptivity to track the crack path during the fracture’s
dynamic evolution. Our space-and-time adaptive scheme requires a We obtain a final mesh with 115, 653
elements with a mesh size ` = 0.95mm. This final mesh uses less than half the elements the regular mesh
requires. The method significantly reduces overall computational cost while delivering a better resolution of
the crack path and the crack tip dynamics. The last example analyzes the energy dissipation of the adaptive
strategy, showing that the proposed algorithm respects the problem’s irreversible nature. In particular, we
consider a cubic degradation function and study the dynamic crack evolution that structure and unstructured
meshes deliver. We use meshes with a similar number of degrees of freedom. We build the structured mesh
to be regular with smooth element size transitions. In contrast, the unstructured mesh is highly irregular,
the product of automatic mesh generation. Nevertheless, the mesh bias introduced by the initial mesh is
negligible; our formulation deals even with initial meshes that contain almost flat elements. In conclusion,
we show that our method is robust, accurate, and computationally efficient for fracture problems involving
inertial effects in the context of Euler-Lagrangian formulations.
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