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Abstract 37 

To investigate human glomerular structure under conditions of physiological 38 

perfusion we have analysed fresh and perfusion fixed normal human glomeruli at 39 

physiological hydrostatic and oncotic pressures using serial resin section reconstruction, 40 

confocal, multiphoton and electron microscope imaging.  41 

Afferent and efferent arterioles (21.5±1.2µm and 15.9±1.2µm diameter), 42 

recognised from vascular origins, lead into previously undescribed wider regions 43 

(43.2±2.8 µm and 38.4±4.9 µm diameter) we have termed vascular chambers (VCs) 44 

embedded in the mesangium of the vascular pole. Afferent VC(AVC) volume was 1.6 45 

fold greater than Efferent VC(EVC) volume. From the AVC long non-branching high 46 

capacity conduit vessels (n=7) (Con; 15.9±0.7µm diameter) led to the glomerular edge 47 

where branching was more frequent. Conduit vessels have fewer podocytes than filtration 48 

capillaries. VCs were confirmed in fixed and unfixed specimens with a layer of banded 49 

collagen identified in AVC walls by multiphoton and electron microscopy. Thirteen 50 

highly branched efferent first order vessels (E1;9.9±0.4µm diam.) converge on the EVC 51 

draining into the efferent arteriole (15.9±1.2µm diam.). Banded collagen was scarce 52 

around EVC.  53 

 This previously undescribed branching topology does not conform to the 54 

branching of minimum energy expenditure (Murray’s law), suggesting even distribution 55 

of pressure/flow to the filtration capillaries is more important than maintaining the 56 

minimum work required for blood flow. We propose that AVCs act as plenum manifolds 57 

possibly aided by vortical flow in distributing and balancing blood flow/pressure to 58 

conduit vessels supplying glomerular lobules. These major adaptations to glomerular 59 

capillary structure could regulate haemodynamic pressure and flow in human glomerular 60 

capillaries. 61 

 62 

Introduction  63 

The control of glomerular blood flow is crucial for maintaining efficient 64 

ultrafiltration across the glomerular filtration barrier (GFB). Glomerular disease is 65 

characterised by molecular and physiological perturbations and altered glomerular 66 

haemodynamics (intraglomerular pressure and hyper-perfusion), however, most of the 67 

models of glomerular haemodynamics in humans are based on experimental animals with 68 

small glomeruli. A few studies have attempted to reconstruct the human glomerular 69 

vascular network; a wax model of a human neonate glomerulus was reconstructed by 70 

Johnston in 1899 (21) and in 1956 plastic glomerular vessels were reconstructed from 71 

wax moulded outlines (6). These and later casting techniques render impressions of the 72 

glomerular surface capillaries with deeper vessels remaining largely hidden. 73 

 More recent computational methods have revealed nodes and branching in rat and 74 

human glomerular vasculature (33, 34, 47, 48, 53). The human reconstructions were 75 

performed on 5µm sections and/or on immersion fixed sources or only on small 76 

glomerular regions and the few studies of the vascular pole of the human glomerulus 77 

have used biopsy or cadaver recovered material (33, 56). To date, only one reconstructive 78 

study has been published using perfusion-fixation of a human transplant kidney but at 79 

elevated hydrostatic pressure (140mm Hg) where the authors chose a stereological 80 

approach for vessel analysis rather than reconstruction (4). 81 
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 Glomerular capillaries operate at relatively high pressure in life which in turn sets 82 

urinary driving pressure in the Bowman’s capsule and tubules producing tubular flow. 83 

For instance, the human glomerular capillary hydrostatic pressure of 60 to 65 mmHg at 84 

the afferent end (43) falls only 2-3mmHg to the efferent end. Countering this filtration 85 

pressure is an afferent plasma colloid osmotic pressure of 25mmHg rising to 32mmHg at 86 

the efferent end (1). As a result of filtration, urinary space hydrostatic pressure is 20-87 

25mmHg (61) pressurizing the proximal convoluted tubule producing flow through to the 88 

collecting duct and the renal hilus. Thus, the function and structure of the whole nephron 89 

relies upon the glomerular perfusion of an oncotically appropriate fluid at the correct 90 

hydrostatic pressure to raise the right physiological pressures and flows in the tubules. In 91 

biopsy/necropsy kidney specimens the absence of pressure during immersion fixation 92 

results in the collapse of both the glomeruli and tubules. Fixing at the correct 93 

physiological pressures (oncotic and hydrostatic) is therefore essential in investigating the 94 

true ‘functionally inflated’ architecture of the glomerulus. 95 

We have previously shown that 3D ultrastructural reconstruction of animal and 96 

human glomeruli fixed under hydrostatic and oncotic physiological conditions allow the 97 

detailed analysis of the GFB and the identification of novel structural features such as the 98 

subpodocyte space (SPS)(39) One unexpected feature of light microscopic sections from 99 

these resin embedded human glomeruli was the frequency of wide vessel regions at the 100 

vascular pole when compared with rodent vascular poles implying different vascular 101 

structure. No mention of any such difference could be found in any recent study of 102 

human glomerular structure. 103 

The haemodynamic requirements of rat and human glomeruli could shed light on 104 

any differing evolved morphologies. For instance, if glomerular volume is assumed to 105 

estimate perfused glomerular volume, this parameter does not scale in size with the 106 

increase in afferent arteriolar conductivity between rodents and humans. The human 107 

afferent arteriole has a conductivity 13 fold greater than that of the mouse (14000µm
4
 vs 108 

1100µm
4
) but supplies a 23 fold larger glomerular volume [see Footnote 1].  Similarly, it 109 

is 3 times as conductive as that of the rat (4600µm
4
), while supplying a 5 fold larger 110 

glomerular volume.  If human glomerular morphology was simply scaled up from a small 111 

rodent pattern, then afferent arterioles should be closer to 26µm in diameter instead of 112 

21µm. 113 

This study therefore aimed to investigate these novel wide vascular regions of 114 

human glomeruli. How big were these regions? What was the wall structure and 115 

dimensions and were there any other associated features? Did the region constitute a 116 

wider region at the base of the afferent arteriole or a region of a thin walled capillary? 117 

Could these structural differences be involved in compensating for a high glomerular 118 

volume relative to the vascular input in human glomeruli? To address such questions, 119 

human kidneys were perfuse fixed (at physiological hydrostatic and oncotic pressures) 120 

and processed in such a way to reduce any accompanying tissue volume changes. 121 

Glomerular vasculature was observed and reconstructions made from fresh or fixed 122 

human kidney cortex using conventional light microscopy, confocal microscopy, 123 

multiphoton microscopy and transmission electron microscopy. 124 

 125 

 126 

Methods 127 
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Fixation techniques 128 

 Human kidney tissue was sourced (with full ethical approval and consent of next 129 

of kin) from transplant kidneys (n=9) unused for technical reasons (eg poor major vessel 130 

condition, damage at retrieval, tumour in the contralateral kidney). The transport solution 131 

perfused through the kidney was Soltran (Potassium Citrate 0.86% w/v, Sodium Citrate 132 

0.82% w/v, Mannitol 3.38% w/v, Magnesium Sulphate 1.0% w/v; Baxter Healthcare, 133 

UK). Approximately 2-3 litres of the solution was perfused through the kidney 134 

(200ml/minute, 120-140mmHg, 4°C) and then stored on ice. All other chemicals were 135 

sourced from Sigma-Aldrich, UK. 136 

Kidneys were transported in ice-cold flush media. Centimetre diameter fresh 137 

cortical tissue was sampled from one pole for confocal and multiphoton microscopy and 138 

stored in chilled (4ºC) HEPES buffered Ringers solution. Smaller 1mm diameter tissue 139 

pieces were taken from the cut surface and fixed in 2.5% glutaraldehyde in HEPES buffer 140 

to serve as immersion fixed samples for TEM. At 4-10ºC kidneys were debrided of 141 

excess fat preserving the hilar components (renal artery, vein and ureter) and the sampled 142 

polar area of the kidney was clamped off with a large locking forceps. The renal artery 143 

was cannulated and the renal vein was cleared of any debris to allow outflow of perfusion 144 

fluid. 145 

To offset any hyperfiltration and hyperperfusion during fixation normal 146 

hydrostatic and oncotic pressures were re-established by perfusing with an oncotically 147 

balanced (25mmHg oncotic pressure) flush solution (50ml, 20ºC). Colloid osmotic 148 

pressures were measured using a modified Hanson osmometer. The flush solution 149 

temperature was kept low to minimise autolytic/proteolytic activity. The hydrostatic 150 

pressure in the renal artery was set at 100mmHg (similar to human mean arterial 151 

pressure). After the flush bolus, 400ml of fixative was perfused through the kidney at the 152 

same pressures and temperature. Flush solution concentration was (mM); NaCl(132), KCl 153 

(4.6), MgSO4 (1.3), CaCl2 (2), HEPES (5), NaHCO3 (25), D-glucose (5.5), 6.5% (w/v) 154 

Ficoll 400. Fixative was the same as the flush solution but with 1.25% (w/v) 155 

glutaraldehyde. The glycocalyx stain 0.5% lanthanum nitrate and 0.5% dysprosium 156 

chloride was incorporated into the solutions in 2 kidneys.  157 

1mm diameter samples of perfusion fixed kidney were taken from a medial sub-158 

capsular position and together with subcapsular immersion fixed samples were post-fixed 159 

in osmium tetroxide, dehydrated with ethanol and processed into Araldite resin using 160 

standard procedures. 161 

To promote consistency in structural comparisons, measurement and observations 162 

were limited on the glomeruli of the outer (subcapsular) cortex of kidneys in a medial 163 

location half way between the poles (unless otherwise stated). 164 

 165 

Reconstruction of vascular poles from perfusion fixed kidneys 166 

Seven areas of resin embedded kidneys (n=4) which contained a high density of 167 

glomeruli were identified in Toluidine Blue stained sections. These areas were serially 168 

sectioned on a Reichert Ultracut microtome at 1µm thickness (2,095 sections 169 

approximately 300 sections per area). From these serial section runs, 3 or 4 fully 170 

sectioned glomeruli from each kidney were selected that clearly showed a vascular pole. 171 

The afferent arterioles of each of the 14 glomeruli were identified by tracing to a larger 172 

artery and/or the efferent arteriole traced to a peritubular position.   173 
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Digital micrographs (1,834) of serial sections of glomeruli (n=14) were made 174 

using a x40 objective on a Nikon E400 microscope. Digital images were repositioned, 175 

aligned, calibrated and measured using Image J software (NIH opensource ImageJ 1.46r 176 

& 1.47o) and compiled into image stacks. Topological maps were made of the route and 177 

diameter of the blood vessels coursing through the afferent and efferent parts of the 178 

vascular pole.  179 

 180 

Resin section thickness calibration and glomerular diameter 181 

 Measurement and reconstruction in the sectioning direction is reliant upon the 182 

precision of the ultramicrotome mechanism controlling section thickness. To test the 183 

accuracy of the ultramicrotome, glomeruli were assumed to be spherical and of similar 184 

diameter in all directions. Glomerular diameter was measured in the sectioning direction 185 

(z) as well as in the section plane (x,y). An ellipse was fitted over the largest glomerular 186 

profile of a section image (x,y) and maximum and minimum diameters measured from 187 

this, the results were pooled (194.4±5.1µm n=28). In the image stacks of a glomerulus 188 

the first and last sections to contain the edge of glomerular blood vessels were found and 189 

the number of intervening sections counted (202.4±5.0 n=14). Assuming 1µm section 190 

thickness there was no significant difference between the estimates of glomerular 191 

diameter from either method (t-test; P=0.325) and no correction was needed for section 192 

thickness or measurements of length in the sectioning direction (z). 193 

The glomerular diameters (2rx 2ry 2rz) measured during the calibration of section 194 

thickness were used to calculate glomerular volume (VG = 1.33 π rx ry rz). 195 

 196 

Glomerular and vascular orientation in resin section reconstruction 197 

  Vascular pole recognition was most easily achieved in 1µm serial resin sections 198 

where the section plane was par-axial with the vascular pole - urinary pole axis of the 199 

glomerulus, as a result reconstructed glomeruli were sectioned close to a paraxial plane. 200 

The true diameters of any vessel profile was measured by searching the sequential images 201 

for the appropriate vessel section and measuring vessel width (x,y). Section depth 202 

diameter was taken from the limits of vessel walls in the sectioning direction (z). Vessel 203 

lengths (between branch points for example) through the image stack were measured on 204 

section if possible or by triangulating through the stack using sectioning depth and 205 

horizontal ‘on section’ distance. 206 

The three diameters of VCs (x,y and z) used to calculate the means in table 1 and 207 

2 were further used to calculate afferent and efferent vascular chamber volume (VAVC = 208 

1.33 π rAVC rAVC rAVC ; VEVC = 1.33 π rEVC rEVC rEVC). 209 

Bends between arterioles and VCs were assessed in resin section image stacks of 210 

10 glomeruli by assessing the afferent and efferent arteriole axis vector and measuring 211 

the change in angle into the VC axis vector (Fig.3A). This included measurements on 212 

section and in the sectioning direction and triangulation in vessels moving at angles to the 213 

section plane.   214 

 215 

Afferent first order (conduit) vessel ballooning in resin sections 216 

 Any ballooning or hyperinflation of first order afferent (conduit) vessels was 217 

estimated initially by comparing conduit diameters in areas of potentially high transmural 218 

pressure gradient (conduit vessels with large areas of GFB, 0-60% mesangial cover) with 219 
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conduit diameters in areas of potentially low transmural pressure gradient (conduit 220 

vessels with 80-100% mesangial cover). These data were further dissected in each 221 

conduit vessel by subdividing the initial 0-60% mesangial cover group into 4 groups and 222 

using the 80-100% mesangial cover group as a baseline to calculate the fold change in 223 

diameter. 224 

 225 

Podocyte cell body coverage of conduit vessels 226 

Podocyte cell body (PCB) coverage on the urinary side of conduit vessels was 227 

estimated by measuring length of GFB in a vessel image covered by a visible podocyte 228 

cytoplasmic region and the accompanying areas where no cell body was apparent. This 229 

was compared with similar measurements from filtration capillaries. 230 

 231 

VC recognition in single resin sections 232 

To test whether evidence of VCs could be seen in single sections of glomeruli 233 

(being the more common way of looking at human biopsy glomeruli) the occurrence of 234 

widened vasculature at the vascular poles was assessed in single sections of renal cortex. 235 

In an additional 13 resin-embedded human kidneys, immersion and perfusion fixed single 236 

cortical sections (1µm thick) were stained with Toluidine Blue. Glomerular sections 237 

showing vascular poles were assessed for the frequency of vascular widening around the 238 

poles. Width was assessed by placing an ellipse around widened vascular profiles and 239 

taking the minimum diameter to eliminate oblique vascular diameter measurements. 240 

 241 

Confocal and multiphoton light microscopy on fresh kidney slices 242 

 Aqueous fresh and fixed kidney was observed using confocal and multiphoton 243 

microscope techniques. 244 

 A Nikon confocal microscope (Nikon Eclipse Ti) was set to image fixation 245 

induced autofluorescence (FIA). Millimetre and sub millimetre thick fixed renal cortical 246 

slices were washed in HEPES Ringer solution and the autofluorescent signal (FIA) at 247 

488nm wavelength was used to image and obtain z stacks from glomerular vascular poles 248 

of up to 100µm depth from the cut surface. 249 

 Using a multiphoton microscope, two fresh and two fixed unstained slices of renal 250 

cortex, were imaged as previously described (2). Two imaging modes were applied, 251 

fibrous collagen was visualised using second harmonic generation (SHG) and elastin 252 

from its intrinsic two photon fluorescence (TPF) along with any background 253 

fluorescence. TPF and SHG images were obtained using a modified confocal microscope 254 

(FluoView IX71 and F300, Olympus). Signal was produced using the 800 nm output of a 255 

mode-locked Ti:sapphire laser (Mira 900-D, Coherent Inc) pumped by a 532 nm solid 256 

state laser (Verdi V10, Coherent Inc.). The pulsed laser had a pulse width of 100 fs and a 257 

repetition rate of 76 MHz. The light was focused on to the sample using a 60X 1.2 NA 258 

water immersion objective (UPlanS Apo; Olympus). Signal was collected in the epi-259 

direction using the objective lens and separated from the laser fundamental using a long 260 

pass dichroic mirror (670dcxr; Chroma Technologies). The signal was then passed 261 

through two filters (for TPF: CG-BG-39 and F70-500-3-PFU; and for SHG: CG-BG-39 262 

and F10-400-5-QBL; CVI Laser) before being focused on a photomultiplier tube (R3896, 263 

Hamamatsu). Each 1024×1024 pixel image took 29 seconds to acquire, meaning a stack 264 



 7 

of 100 images, each separated in the z-direction by 1 μm, took approximately 50 minutes 265 

to complete. 266 

  267 

Electron  microscopy 268 

  From 1µm Resin sections of renal cortex showing identifiable VCs, further 269 

sections were cut at 70-100nm thickness and stained with 10% Phosphotungstic acid (10 270 

minutes). Sections were viewed and digital images taken on a Tecnai T12 (FEI UK Ltd).  271 

 272 

Calculation of vascular resistance  273 

The resistance to flow along the terminal part of the arterioles will change as 274 

blood enters AVCs and conduits, and exits EVCs. Assessing such resistances may give a 275 

better understanding of how blood flow will be affected by VCs and conduits, a correlate 276 

of total conduit resistance per unit length (RCon) was derived from the Poiseuille equation 277 

(see Appendix 1)  278 

 279 

 RCon =    1          Eq.1    280 

   rCon
4. nCon 281 

 282 

Where  rCon  is the mean conduit vessel radius and nCon is the number of conduit 283 

vessels merging from an AVC. RCon  provides a value that scales proportionately with 284 

total vascular resistance per unit length. Similarly a correlate of first order efferent (E1) 285 

resistance per unit length (RE1) was estimated from 1/rE1
4 nE1 and arteriole resistance per 286 

unit length (RAA, REA) was calculated from 1/rAA
4  

and 1/rEA
4
.  287 

 288 

Statistics 289 

 Data were represented throughout as either mean ± standard error of the mean or 290 

as median (interquartile range). Excel was used for collating data and initial statistics, 291 

Prism software (Graphpad Software Inc.) was used for statistical analysis generating 292 

histograms, correlations, parametric and non-parametric tests.  293 

 294 

Results 295 

 296 

Glomerular structure from resin serial section image stacks  297 

Glomerular Arterioles 298 

 Assigning afferent and efferent labels to arterioles was accomplished by tracing 299 

the origin of these vessels in the serial section image stacks. Branches of cortical radial or 300 

interlobular arteries (38, 58) were traced to the afferent arterioles (Fig.1) and efferent 301 

vessels showed a characteristic peritubular branching course on emerging from 302 

glomeruli.  303 

 Afferent and efferent arteriole wall thickness were significantly different 304 

(6.6±0.3µm, 3.0±0.1µm respectively, paired t-test p<0.0001 n=7) as were afferent and 305 

efferent luminal diameter (23.2±1.8µm, 17.6±2.0µm respectively, paired t-test p=0.02 306 

n=7). Wall thickness being a better predictor of arteriole type than luminal diameter. No 307 

correlation was found between the afferent (RAA) and efferent (REA) arteriole resistance 308 

measure (Tab.3 R
2
 = 0.033 P=0.53).   309 
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The efferent picture was confused by multiple efferent arterioles in 4 out of 14 310 

glomeruli. Major efferent arterioles have been shown in table 2, the extra 1 to 3 minor 311 

efferents were in series or parallel with EVC and were 4.6-8µm diameter with one 312 

11.5µm in series with an efferent VC. No extra afferent arterioles were seen. 313 

  314 

Reconstruction of VCs and 1
st
 order vessels 315 

All 14 glomeruli (4 kidneys) analysed from image stacks of 1µm resin serial 316 

sections showed afferent and efferent widening of the arterioles, resulting in vascular 317 

chambers (VCs) embedded in the mesangium of the vascular pole (Fig.2, see 318 

supplemental video 2a and 2b for full image stacks). Some afferent VCs (AVCs) 319 

protruded into a hilar or juxta-glomerular position (sections 198 & 209, Fig.2B). 320 

Vascular width and connectivity is illustrated in a scale diagram in figure 3A, 321 

(measurements from tables 1&2). To summarize, the 21µm diameter afferent arteriole 322 

(AA) leads into an ellipsoidal afferent vascular chamber (AVC; 49x48x32µm) which 323 

branches into on average 7 first order afferent vessels of 16µm diameter we have termed 324 

conduit vessels (Con; Fig.2A, B, Fig.3A, Tab.1). These vessels had secondary vessels 325 

(A2) emerging at spacings of 32.8µm (median), with 41% of branches intervals between 326 

A2 greater than 40µm with a quarter of these above 100µm (Fig.4A). Conduit branches 327 

into A2 were more frequent distal to the AVC at the glomerular edge (Fig.2B. & 328 

supplemental video 2a and 2b). Conduit vessels coursed through mesangium and then 329 

either through the centre of the glomerulus or peripherally over the glomerular surface 330 

before branching into capillary networks (Fig.2A & B) [Supplementary videos S2c and 331 

S2d (Fig.2B as a reconstructions)]. 332 

At the efferent end of the filtration capillary network first order efferent vessels 333 

(E1) were more numerous (13 v. 7) and narrower than conduits (10µm v. 16µm diameter; 334 

Fig.4B; Tab.1&2). Secondary efferents (E2) merged at 15µm intervals into 13 first order 335 

vessels (E1) (Figs.2A, B & 3A). Only 4% of E2 branch intervals on E1 vessels were 336 

above 40µm - (Fig.4A). E1s converged into an efferent vascular chamber (EVC; 337 

46x43x26µm) in turn disgorging into a 16µm diameter efferent arteriole (EA; Figs.2A, B 338 

& 3A, Tab.2).  339 

In 10 of the 14 glomeruli where the orientation of afferent and efferent arterioles 340 

on entry into the VCs could be easily assessed, the AA bent 60º off its straight track into 341 

the AVC (AA/AVC angle = 120±6˚), similarly, the EA bent 71º off track into EVC 342 

(EA/EVC angle = 109±7º Fig.3A). 343 

 344 

VC and glomerular size 345 

 AVC volume (VAVC = 41±5x10
3
µm

3
) was 1.6 fold greater than EVC volume 346 

(VEVC =28±7 x 10
3
µm

3
), with no correlation between them (R

2
 = 0.164 P=0.152). VAVC 347 

varied over a greater size range (15-70x10
3
 µm

3
) with VEVC more conserved (12 out of 14 348 

between 10-40x10
3
µm

3
). Both VAVC and VEVC correlated significantly with VG (Fig.4C, 349 

D, Tab.4), VG being 100 fold larger than VAVC and 150 fold larger than VEVC 150. This 350 

implies a relationship of both the input the output manifold with the magnitude of the 351 

perfused volume. 352 

 If the glomerular and VC volume (Fig.4C, D) correlation is extrapolated back 353 

from larger glomeruli then a minimal VC volume can be reached where the volume 354 

describes a mere continuation of the attached arteriole (Fig.3B). Accordingly, a 355 
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cylindrical minimum VC volume was calculated using average VC length (L) and 356 

arteriole radius (r), a minimum AVC volume of 1.57x10
4
µm

3
 would occur at a VG of 357 

2.2x10
6
µm

3
 (Fig.4c). Similarly, a minimum EVC volume of 0.75x10

4
µm

3
 would occur at 358 

a VG of 2.9x10
6 

µm
3
(Fig.4D). Translating VG into glomerular diameter, VCs would be 359 

minimal (a continuation of the arteriole) in human glomeruli below 160-180µm diameter 360 

(i.e.VG = 2 - 3x10
6 
µm

3
). 361 

  362 

Conduit podocytes  363 

 In resin section image stacks spanning a conduit vessel, we noted a significant 364 

lack of coverage of podocyte cell bodies (PCB) over the GFB surface (e.g.Fig.2A Con in 365 

sections 312 & 329; Supplemental 2a & 2b). Narrower, shorter first order efferent vessels 366 

(E1) were embedded in mesangium adjacent to the EVC and so had zero podocyte 367 

coverage (e.g.Fig.2B E1 in sections 249, 258 & 266). PCB area coverage was estimated 368 

in GFB conduit regions (n=10, i.e.Fig.2; GFB.Con Fig.3) and small filtration capillary 369 

regions (n=22) from 4 human glomeruli. Conduit vessel PCB area coverage was halved 370 

compared with small filtration capillaries (29±3% v. 55±3%; ttest - P<0.0001; Fig.5B). 371 

 372 

Conduit mesangial support 373 

 Conduit vessels proceed from a central glomerular region with mesangium on all 374 

sides (Fig.3A Mes.Con) to regions with less mesangial attachment and areas of filtration 375 

barrier (Fig.3A GFB.Con). Appendix 2 shows that moving from mesangial supported 376 

regions of conduit to regions where this support is replaced by GFB more than doubles 377 

the hoop stress tending to inflate or expand the vessel wall. To test if the GFB conduit 378 

regions showed any ballooning due to lack of mesangial support, conduit vessel 379 

diameters measured in 13 glomeruli (resin reconstruction method) were the same in high 380 

(80-100% mesangial cover) and low mesangial cover regions overall 381 

(17.7±0.8µm,17.9±0.4µm respectively, paired t-test, n=61, p=0.28). However, after 382 

further division of the low mesangial cover data set, conduit vessels with the lowest 383 

mesangial cover (<15% mesangium, >85% GFB) showed significant inflation of 7% 384 

compared to high mesangial cover regions close to the AVC (paired t-test P=0.04, 385 

Wilcoxon P=0.04; Fig.5A).  386 

 387 

Vascular Resistance and volume relationships 388 

 Since Poiseuille flow conditions do not apply to an ellipsoidal chamber manifold 389 

with many branches, the vascular resistance per unit length could not be calculated for 390 

VCs, therefore their capacity, VAVC or VEVC, was compared with glomerular vessel 391 

resistance parameters. Glomerular volume (VG) was used as a correlate of perfusion 392 

volume and compared with the resistance parameters. 393 

 RAA did not correlate with any of the other R parameters or V values, no 394 

correlation was found between RAA for afferent arterioles and VAVC (R
2
 =  0.014, 395 

P=0.68) or VG which it supplies (R
2
 =  0.065, P=0.38) (Tab.3). From the afferent VC 396 

there was a significant negative correlation between VAVC and RCon (R
2
 = 0.327, 397 

P=0.033; Fig.5C; Tab.3) showing that as the input manifold gets larger the supply 398 

conduits to the filtration capillary regions get proportionally more conductive (wider).  399 

On the efferent side there was no similar correlation between efferent first order 400 

vessels RE1 and VEVC (R
2
 = 0.088, P=0.303) though both of these correlated with VG 401 
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implying a link with perfusion volume. No correlation was found between REA and VEVC 402 

(R
2
 =  0.22, P=0.094) but REA does correlate inversely with VG (R

2
 =  0.47, P=0.007; 403 

Fig.5D, Tab.3) and directly with both first order afferents (RCon) and efferents (RE1). 404 

 Table 3 summarizes the capacity and resistance parameter correlations in the 405 

human glomerulus; strikingly, RAA remains independent of all glomerular parameters but 406 

all other glomerular vascular entities appear fluid dynamically tied together.  407 

 408 

VC in single resin sections. 409 

 Single sections of immersion and perfusion fixed kidney (n=13) revealed 410 

randomly orientated profiles of glomeruli with vascular poles (n=177). There was no 411 

significant difference in the occurrence of vascular widening at the vascular poles 412 

between immersion and perfusion fixed glomeruli or between juxta medullary (JM) and 413 

subcapsular (SC) glomeruli (Fig.6A). Analysis of all glomeruli together where no 414 

descrimination was made in glomerular position (JMSC) in 8 immersion fixed tissues 415 

revealed vascular widening in 53±5% of vascular pole sections. Overall frequency was 416 

60±4% for vascular widening in single sections of glomerular vascular poles.  417 

 The widened vascular regions found at SC vascular poles were 28.5±3µm and 418 

30.7±2.1µm (minimal diameter) after immersion or perfusion fixation respectively and 419 

represented randomly oriented sections of presumably both vascular chambers. This lack 420 

of collapse shows that VCs appear to remain open even when the vascular pressure is 421 

reduced during fixation. The full morphology of JM vascular chambers remains to be 422 

investigated with serial sections. 423 

 424 

VC imaged by confocal and multiphoton microscopy 425 

 Using a combination of fixation induced autofluorescence (FIA), two photon 426 

fluorescence (TPF) and second harmonic generation (SHG) modes, AVC could be seen 427 

with attached wide conduit vessels and AA in both fixed and fresh kidney slices (Fig.7). 428 

EVC was more difficult to observe with narrower blood vessels (E1) emerging from 429 

them. Measurements of recognised structures show similar dimensions using these 430 

optical sectioning methods and resin section reconstruction methods (Tab.4).   431 

In addition to morphology SHG can detect collagen without the need for fixation 432 

or labelling. Coherent emission in SHG mode in unfixed glomeruli revealed a signal 433 

consistent with banded collagen which when overlaid with co-registered TPF images was 434 

positioned in the AVC walls (Fig.7, Supplemental video S3). The collagen sheath 435 

extended throughout the AVC and a short distance along the attached conduit vessel 436 

walls. A similar banded collagen signal was also seen in fixed tissues. TPF imaging 437 

showed fresh glomeruli with extensive vessel collapse in the filtration networks but VCs 438 

appeared resistant to collapse as was found with resin section reconstruction and resin 439 

single sections.  440 

 441 

VC wall appearance under electron microscopy 442 

 No visible sign of collagen fibres could be seen in the 1µm light microscopy resin 443 

sections. Electron microscopy sections of AVC showed regions of banded collagen fibres 444 

in the surrounding mesangial matrix. The banding was sparse and poorly stained 445 

(30±1nm band spacing) and width of the fibres (30±2nm) in this partial sheath was 446 

consistent with Collagen I and III (Fig.8a-d). The collagen bundles extended to a depth of 447 
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4µm from the VC surface (Fig.8C; Tab.4). The endothelial lining of AVC contained few 448 

fenestrations together with cellular distortions and membrane blebs (Fig.8C), unlike the 449 

abundant fenestral density of the filtration capillaries.  450 

 451 

 452 

 453 

Discussion 454 

 455 

Vascular chambers  456 

Human glomerular microvascular architecture is not as depicted in current texts.  457 

The vascular layout developed over the last 170 years since William Bowman (5) is of a 458 

single afferent arteriole which branches until filtration capillaries are reached. These 459 

filtration capillaries converge to form a single efferent arteriole conveying blood to the 460 

peri-tubular vasculature.  This classic picture has been built up from biopsies or 461 

necropsies of mammalian kidney. 462 

 463 

In human glomeruli both arterioles exhibit vascular widenings more frequently 464 

associated with low pressure veins (venous sinuses of the brain) or with large arteries 465 

(carotid sinus). However, the glomerular VCs are high pressure arteriolar afferent and 466 

efferent chambers with multiple openings, the closest definition in physical terms is a 467 

plenum manifold (plenum - a chamber containing pressurized fluid to control 468 

distribution; manifold - a pipe or chamber branching into several openings).  469 

Plenums and manifolds in industry stabilize, distribute or balance fluid flow 470 

through multiple inlets and outlets (i.e. inlet and exhaust manifolds on internal 471 

combustion engines). Therefore, our initial hypothesis for glomerular vascular chambers 472 

is that they function to balance the pressure and/or flow through the intervening filtration 473 

regions without the need for conventional branching within the confined space of the 474 

glomerulus. These haemodynamic considerations are not relevant in smaller rodent 475 

glomeruli with smaller perfusion volumes relative to arteriolar conductivity (see 476 

introduction).  477 

These VC manifolds persist in the glomerulus despite pressure changes, VC walls 478 

are resistant to collapse during immersion fixation or when observed fresh at zero 479 

pressure. The VC position at the vascular pole allows mesangial structural support and 480 

Collagen I/III appears to provide (additional) structural integrity. The physiological 481 

significance of this collapse resistance is not yet clear. 482 

Collagen III has been observed in glomeruli of collagen nephropathies (7, 14) 483 

with collagen III in mesangium and/or capillary walls. No report could be found of 484 

Collagen I or III in mesangium of normal glomeruli and this report is the first to find 485 

banded Collagen (I and/or III) in normal glomeruli close to the vascular pole. Banded 486 

collagen has previously been found in kidney cortex, where 30nm fibres showed hybrid 487 

labelling with Collagen I and III (13), however, the identity of VC wall banded collagen 488 

remains to be confirmed by immunohistochemistry.  489 

 490 

 VCs appear to be ubiquitous in the adult kidney. We confined resin section 491 

reconstructions in this study to subcapsular glomeruli to surmount any size difference 492 

between subcapsular and juxtaglomerular glomeruli seen in humans and other species 493 
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(17, 34, 51, 55, 58) Evenso, the resin single section work shows a surprisingly similar 494 

occurrence of vascular widening in 50-60% of vascular pole glomerular profiles (Fig.6), 495 

implying that VCs exist in both cortical locations with similar sized VCs in both juxta-496 

medullary and subcapsular glomeruli.    497 

 498 

Afferent and efferent arterioles  499 

No previous study has measured the diameter of fully opened human glomerular 500 

arterioles perfusion fixed at their operating pressures. Previous human AA diameters vary 501 

from 13-16µm (18) to diabetic biopsy diameters of 29µm for AA and 19µm for EA(44). 502 

Other than biological variability, this range of arteriolar diameter is likely due to: volume 503 

changes in tissue processing, oblique sections of vessel or low pressure fixation 504 

producing collapsed profiles (for example; Tab.4 fresh AA - 13.8µm; Fig.1 in ref.(45)).  505 

These problems appear minimized with the fixation and resin embedding techniques of 506 

this paper.  507 

A correlation between afferent arteriolar diameter and mean glomerular capillary 508 

area has previously been seen as consistent with loss of autoregulation (18). Here a 509 

correlate of AA resistance per unit length (RAA) did not scale with any other glomerular 510 

parameter measured including REA (Tab.3) preserving the independent autoregulatory 511 

control of AA. In contrast EA resistance per unit length (REA) was inversely correlated 512 

with VG (Fig.5D; Tab.3), and correlating remarkably with RCon at the afferent end 513 

(Tab.3). Unlike AA, EA is linked in fluid dynamic terms with the Glomerulus it drains.  514 

 515 

Conduit vessels 516 

The first order afferent vessels or conduits were noted by Bowman in 1842, with 517 

2 to 8 branches which visibly ‘subdivide only once or twice as they advance over the 518 

surface of the ball’ (5). The few buried deep inside the glomerulus unseen by Bowman 519 

may explains the result of 2 to 11 seen in this current study. We also confirm the luminal 520 

width of these first order afferent vessels as being as wide as the efferent arteriole (21). 521 

Conduit vessels show fewer branches than their efferent counterparts but branch 522 

frequency increases at the start of perfusion regions often at some point on the glomerular 523 

periphery (Fig.2). No previous branch data exists for these vessels however, the 524 

interbranch length for all rat glomerular vessels at 26.3±24.9µm(SD) (48) is between the 525 

medians, 32.8µm (conduit afferent) and 15µm (efferent) of the skewed distributions 526 

found here. 527 

Conduit vessels close to the AVC are embedded in mesangium, those distal to the 528 

AVC have a GFB. While detailed conduit ultrastructure remains to be confirmed, no 529 

aberrant GFB capillary morphology has been noted in all our studies of normal human 530 

glomeruli (data not shown). It appears that conduit GFB is similar to filtration capillary 531 

GFB except for the scarcity of podocyte cell bodies on the conduit GFB surface. It 532 

remains to be determined if conduit podocytes are just responding to local conditions or 533 

are a sub-population of conduit podocytes with the extra-long major processes necessary 534 

to cover the GFB area in foot processes. 535 

 The GFB is known to remain intact and expand under excess pressure (25, 27) 536 

and conduit vessels with a 86-100% GFB - or a sparse 0-14% mesangial attachment 537 

around the circumference showed diameter expansion by 7% compared to conduit vessels 538 

surrounded by and embedded in mesangium (Fig. 5A) - not enough GFB expansion to 539 
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explain podocyte cell body free areas on the conduit vessels but below the damaged 540 

‘giant capillary’ inflation levels previously reported (25). Conduit inflation might be 541 

expected considering the reduced podocyte coverage, thin walls and wide diameter and 542 

estimates of wall forces show conduit vessels with a high proportion of GFB and low 543 

mesangial attachment are the most susceptible to hoop stress of all glomerular vessels 544 

(Appendix 2). This marks conduits as a target in hypertensive disease and hoop stress 545 

failure has been observed in rat primary afferents (equivalent to conduits) due to 546 

glomerular hypertension (with marking albuminuria and glomerulosclerosis) (26). 547 

 The subpodocyte space, identified under podocytes (39) should be present under 548 

conduit podocyte cell bodies (awaiting EM confirmation). Incidentally, the light 549 

microscopy derived filtration capillary podocyte cell body (PCB) area coverage of 55% 550 

of the GFB fits well with the electron microscopy derived subpodocyte space coverage of 551 

60% for filtration capillaries found previously (41, 50) suggesting most of human 552 

subpodocyte space is under the podocyte cell body.  553 

 554 

Other evidence for vascular chambers and conduits 555 

 Reconstructed rat glomeruli do not show vascular chambers (48). We confirmed 556 

these findings by reconstructing rat glomeruli with Serial Block Face Scanning Electron 557 

Microscopy (data not shown) and also found no evidence of VC.  558 

 Mammalian arterioles can widen pathologically (32), for instance, mesangiolysis 559 

can remove mesangial support causing glomerular vessel aneurysms (35) but such 560 

features would not be as highly conserved in shape or have an organized collagenous 561 

support as seen in VC found here. Bowman also noted in the larger horse glomerulus that 562 

afferent arterioles dilate on the surface prior to dividing but not in human glomeruli (5) 563 

we show here that human glomerular vascular dilations are subsurface and would have 564 

been invisible to Bowman. The modern conventional description merely reports that the 565 

afferent arteriole branches into the glomerular capillary network (22).  566 

 VCs may not be present in all human glomeruli, during development, glomerular 567 

capillaries arise from one dilated vessel (11) and neonate vascular widening has been 568 

shown prior to the five first order afferent branches (21) although this has been ascribed 569 

to a vessel remnant from the developing nephron (11). Interestingly, the glomerular 570 

diameter increase in children from 112µm (birth) to 167µm (15years) (34) and VC 571 

scaling with VG shows that VCs may not exist in child glomeruli which are below 160-572 

180µm diameter, providing these glomeruli follow the adult glomerular correlation (Fig. 573 

3B & 4C,D). Conduit vessel resistance (RCon) also scales with VG, whether this 574 

correlation continues in smaller (child) glomeruli or whether the primary afferents in 575 

children even constitute ‘conduit’ vessels needs evaluation. 576 

 Renal biopsies do occasionally show evidence of VCs and conduit vessels in 577 

section, a survey of images in biomedical journals reveal light micrographs showing a 578 

15µm conduit vessel and 20µm VC (20), a 30µm diameter VC (52) and VCs at both 579 

efferent and afferent ends (44). However, without the context of a serial section stack 580 

these micrographs remain as widened vascular profiles.  581 

VCs could be artefacts of processing volume changes, however, glomerular 582 

diameters (~200µm) derived here were between immersion fixed (160 - 170µm) (10, 31) 583 

and autopsy diameters (260-270µm) (8) and closely match in vivo ultrasound values of  584 
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200µm (15, 23), suggesting glomerular volume changes during processing were minimal 585 

overall.  586 

Wide profiles at the vascular pole in singles sections can be dismissed as 587 

collapsed vessels. Put simply, an afferent arteriole terminus of 21µm diameter with a 588 

circumference of 66µm could conceivably collapse to a flattened squashed-circle profile 589 

approximately 30µm wide which if sectioned longitudinally would fit exactly with the 590 

28-30µm wide profiles measured, however, 60% of randomly oreinted single sections of 591 

vascular poles all showed these wide vascular regions - far too frequent for the collapse 592 

argument. Additionally, in this study vessel collapse was seen in filtration capillaries in 593 

fresh glomeruli (multiphoton microscope: Supplemental Fig. S3) but with VCs held open. 594 

VCs are not collapse artefacts but stiff walled vascular structures.  595 

 596 

The Murray relationship 597 

 The relationship between branching vessel diameters was derived by Murray on 598 

the principle of minimum work for blood flow (36, 37) where the radius cubed of the 599 

parent vessel equals the sum of the cubes of the daughter vessel radii. The Murray 600 

relationship holds for arteries and venules of rat kidney down to the afferent arterioles 601 

and venules leading away from the tubular networks (42), but it is not known if it 602 

continues into the glomerulus. The Murray relationship in whole human kidney also 603 

remains to be assessed. 604 

 A Murray constant (K) was calculated for each set of vessels leading into and 605 

away from human glomerular VCs in all 14 glomeruli reconstructed from resin sections: 606 

 607 

K = r3 nV         eq.2 608 

 609 

 Where nV is the number of vessels and r is the radius. Using rAA , rAVC , rCon , rE1 , 610 

rEVC, rEA and appropriate n to calculate K, the Murray relationship breaks at the VCs and 611 

the first order vessels (conduit and E1 vessels; Fig.6B), where daughter vessels do not 612 

have the same Murray constant as parent vessels.  613 

 This is an exception to Murray’s Law – a plenum/manifold exception, where flow 614 

distribution from a single arteriole provides a high pressure distributive flow into many 615 

glomerular lobes in a short distance. An estimate of K values for second order afferent 616 

vessels (A2 in 2 glomeruli) showed that K may return to the value predicted by the 617 

afferent arteriolar radius after skipping the VC and conduit vessels (Fig.6B). Other 618 

Murray’s law exceptions occur where a higher surface area is required in the exchange 619 

vessels of an organ, for instance alveolar capillary networks (59).   620 

 The possible mechanisms producing a set of vessels following Murray’s law 621 

includes an endothelial transducer triggering remodelling after a shear force threshold 622 

was exceeded(46). Altering the threshold could induce the vessel diameter changes seen 623 

here. However, the Murray relationship requires laminar flow through vessels and the 624 

haemodynamic flow will be complex from an afferent arteriole into an ellipsoidal 625 

vascular chamber with several outlets. 626 

 627 

VC haemodynamics 628 

If glomerular volume is used as a measure of perfusion capacity, it rises and falls 629 

along with the size of the AVC and the EVC (Fig.4 C&D).  Larger AVCs feed more 630 
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blood to larger glomerular filtration regions and thence to larger EVCs. As the size 631 

increases the resistance of the conduit vessels, E1 and EA (not AA) falls to accommodate 632 

the flow (vessels get wider in proportion to Poiseuille flow) (Fig.5 C&D). All of the 633 

major vessels of the human glomerulus past the afferent arteriole are linked in some way 634 

in terms of flow and capacity (Tab.3). How would flow progress from laminar flow in an 635 

afferent arteriole through the AVC to the conduit vessels? And similarly from efferent E1 636 

vessels through EVC to the efferent arterioles? 637 

A clue to VC flow characteristics comes from the kinks and bends in AAs. One 638 

constant feature of the glomeruli analysed is the bend as the afferent arteriole enters the 639 

AVC. These bends can be readily seen in the glomeruli of figures 1, 2A and 2B 640 

(supplemental videos 2a and 2b) and showed an average 60º deviation from a straight 641 

path. The fluid flow at a bend in a channel is known to induce vortices (49), we 642 

hypothesize that the summation of all bends in an afferent arteriole (i.e. see bend from 643 

interlobular –AA junction in Fig.1) could induce a single major vortex in the AVC 644 

possibly aiding distributive flow centrifugally into conduit vessels.  645 

 If such a vortex with its axis in the midline of the AVC adopts the properties of a 646 

“rigid-body” or “rotational” vortex, then the pressure at the AVC edge at the conduit 647 

vessel openings would depend both on the hydrostatic pressure and the dynamic pressure 648 

(set by the angular momentum of the moving fluid – ½ρω
2, 

where ρ=density; ω = angular 649 

velocity). Crucially however the dynamic pressures within this form of vortex are 650 

uniform  (3). 651 

 We speculate that in health the AVC and the complex (vortical) fluid movement 652 

within it, may ensure a uniform driving pressure into the conduit vessels – maximising a 653 

uniform distribution of flow to each of the glomerular lobules. The loss of this equalising 654 

distributary mechanism through microvascular disease, mesangial proliferation occluding 655 

the AVC, hyperperfusion or immunological injury, could potentially result in localised 656 

hyperfiltration and excess shear stress in some glomerular segments with stasis in others.  657 

This has implications for glomerular disease in which only some perfused regions of the 658 

glomerulus appear to have sustained sclerotic/fibrotic damage (eg FSGS) while adjacent 659 

lobules appear normal.  660 

 The structure of the efferent vascular chamber, with many microvessels 661 

converging on a chamber, lends itself to the development of an irrotational vortex (plug 662 

hole vortex) balancing EVC pressure gradients and promoting balanced removal of blood 663 

from the glomerular tuft (3).  664 

 665 

Conclusion 666 

We show for the first time in human glomeruli that clearly defined afferent 667 

arterioles lead into afferent vascular chambers of ellipsoid shape and structure embedded 668 

in the mesangium of the glomerular vascular pole and ensheathed in collagen fibrils. 669 

These chambers are plenum manifolds with many emergent relatively unbranched wide 670 

blood vessels or conduits conveying blood to the periphery of the glomerulus. Branching 671 

frequency increases at the end of the conduits leading to filtration capillary networks 672 

which lead back to smaller efferent vascular chambers in the mesangium of the vascular 673 

pole and then the efferent arteriole. The conduit vessels are sparsely covered with 674 

podocytes, and conduit fluid resistance scales with the size of the afferent vascular 675 

chambers. Both vascular chambers scale with glomerular capacity suggesting absence of 676 
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vascular chambers in glomeruli below 160µm diameter (the glomeruli of children). 677 

Resistance correlates of first order afferent (conduit) and efferent vessels and efferent 678 

arterioles (but not afferent arterioles) scale together and inversely with glomerular 679 

volume. We propose that all these structures represent a large glomerulus adaptation 680 

allowing even haemodynamic flow distribution and pressure balance across the many 681 

lobes of a human glomerulus. 682 

 683 

 684 

 685 

 686 

 687 

Appendix 1.  688 

 689 

Vascular resistance 690 

The vascular resistance to flow will change as blood flows along AA into AVCs 691 

and conduits and later pools in EVCs before flowing into EA. To better understand how 692 

blood flow is affected by the changing morphology a correlate of vascular resistance 693 

RCon) was derived from the Poiseuille equation using vessel radii and vessel number. For 694 

VCs the flow will be complex and non-laminar in the spheroidal shape and so the 695 

Poiseuille equation could not be used so VC volume was used as a measure of VC 696 

capacity. 697 

 698 

Resistance changes in arterioles and conduit vessels  699 

For conduit vessel resistance (∑RCon) coming out of the afferent VC where RCon3 700 

is the resistance of the 3rd conduit vessel in parallel: 701 

 702 

  1  =  1   + 1   + 1 … 1  eqA1.1 703 

  ∑RCon R Con1 RCon2 RCon3  RConn 704 

 705 

For nCon similar conduit vessel resistances RConX 706 

   1  =  nCon      eqA1.2 707 

   ∑RCon   RConX 708 

 709 

 710 

For fluid of viscosity , the resistance to flow through a tube of length L is inversely 711 

proportional to the 4
th

 power of the radius (Poiseuille’s law), similarly: 712 

 713 

 714 

  RConX =  8 Con LCon      eqA1.3  
715 

     π rCon
4 716 

 717 

Where LCon is conduit vessel length and rCon the mean conduit vessel radius. If the 718 

viscosity of the blood flowing through VC and attached vessels (Con) is assumed not to 719 
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change (low filtration into mesangium in these vessels) then Con with π and 8 can be 720 

combined into a constant kCon: 721 

 722 

  RConX  = kCon LCon         eqA1.4  
723 

    rCon
4 724 

 725 

Combining equation eqA1.2 and eqA1.4: 726 

 727 

   1  =  rCon 
4 nCon     eqA1.5 728 

   ∑RCon   kCon LCon 729 

 730 

Inverting eqA1.5 and dividing by LCon and KCon yields a measure of the total conduit 731 

vessel resistance per unit length (RCon). 732 

 733 

 ∑RCon   =    1  = RCon  eqA1.6 734 

   LCon kCon  rCon 
4 nCon 735 

 736 

1/rCon
4 nCon was used to estimate a correlate of vascular resistance per unit length of all  737 

conduit vessels in parallel (RCon). Similarly, 1st order efferents were assessed using 738 

1/rE1
4 nE1. (RE1). Correlates of afferent and efferent arteriole resistance per unit length 739 

(RAA , REA) were estimated with 1/rAA
4  and 1/rEA

4. 740 

 741 

Appendix 2.  742 

 743 

Vascular wall stress 744 

 The conduit vessel wall morphology appears similar to filtration capillaries 745 

however, conduits are much wider. Greater diameter tubes or vessels of the same wall 746 

thickness are more susceptible to pressure damage or rupture. How might conduit vessel 747 

wall stress compare with other glomerular vessels?  748 

  749 

VC and conduit vessel wall stress 750 

 The effective wall strength and compliance of systemic capillaries is largely due 751 

to basement membrane/basal lamina (40). Assuming that glomerular vascular wall 752 

strength is due to the glomerular basement membrane (GBM, 0.3µm and less than 1/10
th

 753 

of vessel radius) then the Laplace equation (60) can be used to derive the hoop stress (Sh) 754 

of the vascular wall (the force exerted circumferentially trying to pull the wall apart). 755 

For cylindrical conduit vessels: 756 

 757 

ShCon = ∆PCon rCon       eq.A2.1 758 

      tCon 759 

 760 

 Where ∆PCon is the hydrostatic pressure difference across conduit vessel wall of 761 

radius rCon , and effective wall thickness tCon. 762 

The equation for a near spherical VC is half that of an equivalent diameter cylinder:  763 
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 764 

ShVC = ∆PVC rVC       eq.A2.2 765 

      2 tVC 766 

 767 

 Where ∆PVC is the hydrostatic pressure difference across the VC wall of radius 768 

rVC , and effective wall thickness tVC . The effective strength of the arteriolar wall will be 769 

a composite of strengths of this thick multilayered structure, however, the arteriole 770 

smooth muscle wall thins as it transitions into the VC with only endothelium, basal 771 

lamina and collagen sheath surrounded by mesangial matrix.  772 

 773 

Parameters used in Calculations 774 

ShAVC  for afferent VC (AVC):  775 

rAVC  = 22µm [mean of rAVC, rAVC, rAVC; Tab.1], 776 

tAVC = 0.5-4µm [between the first mesangial lamina thickness ~ 0.5µm (see 777 

Fig.8d) and the collagen sheath dispersed over 4µm (Tab.4, Fig.8)] 778 

∆PAVC = 23mmHg  [AVC luminal pressure of 63mmHg (43) minus mesangial 779 

pressure - a high proportion of capillary hydrostatic pressure (9) - likely 40mmHg since 780 

mesangial cells respond to 40mmHg and above (19, 30).  781 

 782 

ShAVC = 8 - 66 kPa  (equation A2.2) [ ≤ 8 kPa if the effective ∆PAVC is lower due to 783 

pressure dissipating gradients and effective tAVC  thicker due to additional mesangial 784 

matrix support (7)] 785 

 786 

ShMC  for mesangial conduit vessel (MC):  787 

The mesangial backed conduit vessels (Fig.3a, Mes.Con) adjacent to AVCs would 788 

share the same mesangial protection and possibly collagen sheath as the AVCs.  789 

rMC = 8µm [Tab.1] 790 

tMC  = 0.5µm to 4µm [Tab.4, Fig.8] 791 

∆PMC = 23mmHg [see above] 792 

 793 

ShMC  = 6 - 48 kPa  (equation A2.1) [ ≤ 6 kPa, ShAVC caveat as above) 794 

 795 

ShGC  for glomerular filtration barrier conduit vessel (GC):  796 

The conduit vessels away from the AVC are connected to mesangium only on a 797 

small part of their circumference the rest being normal GFB and GBM (Fig.3a, GFB 798 

Con)  799 

rGC = 8µm [Tab.1] 800 

tGC  = 0.3µm [GBM thickness] 801 

∆PGC = 38mmHg [luminal P (63mmHg) minus urinary space P (25mmHg)] 802 

 803 

ShGC = 133 kPa  (equation A2.1)  804 

 805 

ShFC  for filtration capillaries (FC):   806 

rFC = 3.5µm 807 

tFC  = 0.3µm [GBM thickness]  808 

∆PFC = 38mmHg [luminal P (63mmHg) minus urinary space P (25mmHg)] 809 
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 810 

ShFC = 58 kPa  (equation A2.1) 811 

 812 

 Subscript 
abbreviation 

∆P r t Sh 
(mmHg) (µm) (µm) (kPa) 

Afferent VC AVC 23 22 0.5-4.0  8-66 

Mesangial conduit  MC 23 8 0.5-4.0  6-48 

GFB conduit  GC 38 8 0.3 133 * 

Filtration Caps. FC 38 3.5 0.3 58 

Table A1. Calculated vascular hoop stress Sh. The peak is in the GFB conduit vessels (*). 813 

 814 

Sh is difficult to estimate in the mesangial backed AVC and mesangial conduit 815 

vessels but our maximum estimate is less than half the value for the GFB Conduit. Sh falls 816 

in the filtration capillaries of the same wall thickness but these are protected by their 817 

small radius. At the efferent end the reduced radii and complete mesangial encasement of 818 

VC and of the short E1 vessels would result in lower Sh of the equivalent efferent vessels 819 

(not shown). 820 

In conclusion, in human glomeruli, GFB conduit walls (GC) mark a peak of hoop 821 

stress caused by the relatively thin wall for the large diameter. While the AVC and the 822 

early conduit vessel are protected by mesangial backing, any mesangial disruption 823 

through immune-mediated damage, cell invasion or proliferation or disruption to the 824 

collagen sheath will change ShAVC and ShMC making AVC and mesangial conduit vessels 825 

vulnerable to pressure changes. 826 
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 986 

 987 

Figure 1. Afferent arteriole and glomerulus connectivity. Selected light micrographs 988 

from a 1µm serial section stack to show the connectivity of an afferent arteriole (25µm 989 

diameter) with a small artery (110µm diameter interlobular or feed artery). Identifying 990 

the root/route of the vessels entering the glomerulus allows identification of afferent and 991 

efferent arterioles. Notice the afferent arteriole goes through a right angle as it enters the 992 

glomerulus. AA – afferent arteriole; GC - glomerular capillary; serial section number at 993 

bottom right. 994 

   995 

Figure 2A&B. Serial resin sections through a glomerulus. Selected light micrographs 996 

from 2 complete 1µm serial section series to show the route blood takes from an afferent 997 

arteriole (AA) into an afferent vascular chamber (AVC) leading into conduit vessels 998 

(Con) of high capacity and few branches. At the other end of the microcirculation many 999 

branching efferent 1
st
 order vessels (E1) drain into a smaller efferent vascular chamber 1000 

(EVC) leading to an efferent arteriole (EA). Serial section numbers at bottom left. Scale 1001 

bar 100µm in micrograph of section 254 or 198 (see Supplemental video S2A and S2B 1002 

for glomerular image stacks of Fig.2A and B respectively, Supplemental S2C and S2D 1003 

for a reconstruction of afferent and efferent parts of Fig.2B) 1004 

 1005 

Figure 3. Scale diagram of glomerular vasculature; the smallest vascular chambers. 1006 

A/ Scale diagram of the Afferent (light grey) and Efferent (white) ends of the glomerular 1007 

vasculature. Diagram shows size and branch relationships between arterioles, VCs and 1008 

1st order vessels (mesangium close to vascular pole - dark grey) (diameters from tab. 1009 

1&2). To illustrate VC volume in relation to attached vessels the length of attached 1010 

vessels accommodating VC volume has been shown - AVC volume would distribute 1011 

along 112µm length (delimited by hoops x, y ) of afferent arteriole (AA) or distribute 1012 

along 31µm length (delimited by hoops x’, y’) of 7 conduit vessels (Con; 3 of 7 shown). 1013 

The EVC volume would fill 138µm length of efferent arteriole (EA; hoops p, q ) or 28µm 1014 

length of 13 1
st
 order vessels (E1; hoops p’, q’, 4 of 13 shown). Scale bar 100µm. A2 1015 

and  E2 – second order vessel examples. Mes.Con - Conduit vessel embedded in 1016 

mesangium. GFB.Con - Conduit vessel with GFB surface and minor mesangial 1017 

attachment. B/ Minimal Vascular Chambers. The upper diagram shows VC as in our 1018 

reconstructions but both VAVC and VEVC decrease as VG decreases (Fig.4c&d). VC 1019 

shrinkage in the radial direction would reduce the diameter and VC volume until it was a 1020 

continuation of the attached arteriole (Fig.4 C&D). 1021 

 1022 

Figure 4. Conduit branching and diameter; VC volume scales with glomerular 1023 

volume. A/ Histogram of branch separation between 2
nd

 order branches (A2 or E2) 1024 

emerging from 1
st
 order vessels (Con or E1). Branch intervals were assessed in 9 1025 

glomeruli, conduit vessels (Con, filled bars) are longer and less branched than 1
st
 order 1026 

efferent vessels (E1, open bars) (Mann Whitney U test medians (32.8, 15µm), 1027 

P<0.0001).  B/ Histogram of 1
st
 order vessel diameter coming off Vascular Chambers. 1028 
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Conduit vessels (filled bars) are significantly wider than Efferent first order vessels (open 1029 

bars), efferent distribution is skewed towards lower values (15.3(12.8-18.9) v. 9.0(7.0-1030 

11.1); median(IQR); Mann Whitney U test, p<0.0001). C/ Afferent VC volume and D/ 1031 

Efferent VC volume scale with glomerular volume to a highly significant level (R
2
 = 1032 

0.517 P=0.004; R
2
 = 0.419 P=0.012 respectively). A minimum possible VAVC and VEVC 1033 

(See Fig.3B) is also plotted to show VG where VCs are a continuation of the attached 1034 

arteriole ( i.e. no VC widening). 1035 

 1036 

Figure 5. Conduit diameter changes with mesangium; conduit podocyte attachment; 1037 

resistance v capacity examples  A/ Conduit diameter changes relative to mesangial 1038 

cover. Conduit vessel diameters adjacent to the afferent VC with mesangial cover of 80-1039 

100% (GFB coverage 0-20%) were compared with diameters of low mesangial covered 1040 

(distal) regions of the same vessel. The fold change in diameter shows a significant 1041 

diameter increase of 7.4% (*) when mesangial cover is minimal (0-14%  i.e. GFB 86-1042 

100%). Paired t-tests and Wilcoxon matched pair test (P=0.04). B/ Histogram of 1043 

podocyte cell body (PCB) area coverage of the filtration barrier of conduit vessels (filled 1044 

bars) and small filtration capillaries (open bars). Conduits have significantly less PCB 1045 

coverage of the GFB than filtration capillaries (ttest - P<0.0001). C/ Conduit resistance 1046 

versus Afferent VC volume. A significant negative correlation exists between a correlate 1047 

of conduit resistance (R’Con) and afferent VC volume (VAVC) (R
2
 = 0.327, P=0.033). D/ 1048 

Efferent arteriole resistance per unit length (R’EA) reduces in line with increasing VG (R
2
 1049 

=  0.47, P=0.007). 1050 

 1051 

 1052 

Figure 6. Vascular widenings in single sections. Murray constant from vascular 1053 

radii A/ Observed occurrence of glomerular vascular widening in single sections. The 1054 

frequency with which widening (implying VC presence) was observed at vascular poles 1055 

in immersion and perfusion fixed glomeruli.  SC - subcapsular glomeruli; JM - juxta-1056 

medullary glomeruli; JMSC - JM and SC glomeruli combined. (n = number of kidneys)  1057 

B/ In 14 glomeruli a Murray constant (K =  r
3
 nV; where r is radius, nV is vessel number; 1058 

see text) was calculated for the afferent and efferent arteriolar tree leading through the 1059 

VCs and thence into the 1
st
 order vessels (Con and E1). In 2 glomeruli K was calculated 1060 

for 2
nd

 order vessels. The Murray relationship of equal K at each vessel level is absent in 1061 

the AVC, EVC and conduit vessels.  1062 

 1063 

Figure 7. Multiphoton imaging of glomeruli. Images obtained by combining two 1064 

photon fluorescence (TPF) signal images with second harmonic generation (SHG) images 1065 

of an unfixed human glomerulus. The capillary walls emit a TPF signal (green) with most 1066 

of the smaller filtration capillaries showing collapse. A banded Collagen signal (SHG 1067 

blue) is located adjacent to a VC wall (intense Bowman’s capsule Collagen has been 1068 

blanked). Section s1 is close to the tissues physical surface; A - arteriole, (optical section 1069 

1µm deep). S31 shows a wide incomplete region of banded collagen around an 1070 

uncollapsed region (VC) connected with A in s1. The banded collagen region has 1071 

disappeared in s37 but offshoots in attached vessels appear in s37 (right of VC) and s52 1072 

(left of VC position). Diameter of field - 200µm. (See supplemental video S3 for full 1073 

section series) 1074 
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 1075 

 1076 

Figure 8. Transmission electron micrographs of Vascular chamber walls. Vascular 1077 

Chamber were imaged using a Tecnai 12 electron microscope, low power (A) shows a 1078 

vascular pole an AVC, conduit vessels (Con) and urinary space (US). (B) Montage of 1079 

micrographs to show the disposition of the banded collagen fibres around the VC walls. 1080 

White dotted lines show the extent  of the mesangial matrix where banded collagen fibres 1081 

were evident. (C) Area C from montage B with matrix rich in banded collagen (BCM) 1082 

and where collagen is absent (M). (D) Area D from montage B with banded collagen 1083 

fibres. 1084 

 1085 

Table 1 & 2. Afferent and efferent vascular diameters.  Diameters of afferent and 1086 

efferent vessels from resin embedded glomeruli (14) from 4 human kidneys. In all cases 1087 

the afferent and efferent arterioles widen to form ellipsoidal chambers with between 2 1088 

and 11 high capacity conduit vessels emerging and conveying fluid away to the filtration 1089 

capillaries. Blood from the filtration capillaries converges into 3 to 22 narrow efferent 1090 

first order vessels which converge into the Efferent VC and thence the efferent arteriole. 1091 

[In the 14 glomeruli analysed, 2 extra wide conduit vessels (19-24µm) were found, 1 1092 

extrawide E1 drainage vessel (20-27µm) but the branching was frequent as in other E1 1093 

vessels]. Vascular chamber dimensions: min.diam.; minimum diameter measured in the 1094 

section plane avoiding oblique vessel sections. max.diam.; maximum diameter measured 1095 

in the section plane avoiding oblique vessel sections. Secn. depth diam; diameter 1096 

measured in the sectioning direction. sem; standard error of the mean 1097 

 1098 

Table 3. Vascular resistance and capacity relationships. Significant correlationships 1099 

(8 out of 21) between 7 variables measured in human glomerular initial vasculature. 1100 

Correlates of vascular resistance for afferent arterioles (RAA), Conduit vessels (RCon), first 1101 

order efferent vessels (RE1) and efferent arterioles (REA) were compared with each other 1102 

and with AVC volume (VAVC) glomerular volume (VG) and EVC volume (VEVC). + 1103 

positive correlation,  – negative correlation; * = P < 0.05, ** = P ≤ 0.01; **** = P ≤ 1104 

0.0001; § higher significance with outlier removed.  1105 

 1106 

 1107 

Table.4. Vascular diameters and wall thicknesses - all experiments. Comparison of 1108 

AA, AVC, Conduit, E1, EVC, and EA measurements from resin section reconstruction 1109 

with the same features in fixed and fresh glomeruli reconstructed from confocal and 1110 

multiphoton microscope z stacks (SHG and TPF). EVC and AVC values have been 1111 

averaged together for all 3 axes. AVC Collagen sheath (AVC Coll) enshrouded AVC and 1112 

some parts of conduit vessels but scant evidence in EVC or E1 (multiphoton microscopy 1113 

only). G and K indicate numbers of glomeruli and kidneys used. * not all quantities were 1114 

observable and measureable.  1115 

 1116 

Supplemental 1117 

Supplemental video legends 1118 

 1119 

Fig. S2a. Image stack for Fig 2a glomerulus. 1120 
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 Video to show the full image stack formed by Image J software from original 1µm 1121 

serial section images. Stills in Fig.2a. Field of view 170 x 200µm approximately. 1122 

 1123 

Fig.S2b, Image stack for Fig 2b glomerulus. 1124 

 Video to show the full image stack formed by Image J software from original 1µm 1125 

serial section images. Stills in Fig.2b. Field of view 190 x 220µm approximately. 1126 

 1127 

Fig. S2c. Reconstruction x derived from Fig. S2b. 1128 

 Red afferent arteriole derived vessels meeting with blue efferent arteriole derived 1129 

vessels at purple points. Rotation around x axis. Not all vessels shown. Scale marks in 1130 

µm. 1131 

 1132 

Fig. S2d. Reconstruction y derived from Fig. S2b. 1133 

 Red afferent arteriole derived vessels meeting with blue efferent arteriole derived 1134 

vessels at purple points. Rotation around y axis. Not all vessels shown. Scale marks in 1135 

µm. 1136 

 1137 

Fig. S3. Reconstruction of an unfixed glomerulus from multiphoton microscope images. 1138 

TPF and SHG modes were used to image the vessel walls (green) and banded collagen 1139 

(blue) respectively. The intense blue signal from the collagen of Bowman’s capsule was 1140 

covered by a circular black mask. The afferent arteriole opens into a VC at the 7 1141 

o’clock position, the banded collagen signal follows the walls of the VC and into the 1142 

conduit vessels. Field width 200µm 1143 

  1144 
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Footnote 1 1145 

[Afferent arteriole conductance estimated from the 4
th

 power of vessel radii (mice, r = 5-1146 

6.5µm,(16, 28, 29); rats, r = 7-9.5µm(12, 24, 54, 57); human, r = 11µm[this article]) 1147 

with human glomerular volume estimated from glomerular diameter (mouse=70µm, 1148 

rat=120µm and human=200µm)] 1149 

 1150 



Figure 1. Afferent arteriole and glomerulus connectivity. Selected light micrographs from a 1µm serial section stack to
show the connectivity of an afferent arteriole (25µm diameter) with a small artery (110µm diameter interlobular or
feed artery). Identifying the root/route of the vessels entering the glomerulus allows identification of afferent and
efferent arterioles. Notice the afferent arteriole goes through a right angle as it enters the glomerulus. AA – afferent
arteriole; GC - glomerular capillary; serial section number at bottom right.
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Figure 2A&B. Serial resin sections through a glomerulus. Selected light micrographs from 2 complete 1µm serial
section series to show the route blood takes from an afferent arteriole (AA) into an afferent vascular chamber (AVC)
leading into conduit vessels (Con) of high capacity and few branches. At the other end of the microcirculation many
branching efferent 1st order vessels (E1) drain into a smaller efferent vascular chamber (EVC) leading to an efferent
arteriole (EA). Serial section numbers at bottom left. Scale bar 100µm in micrograph of section 254 or 198 (see
Supplemental video S2A and S2B for glomerular image stacks of Fig.2A and B respectively, Supplemental S2C and S2D
for a reconstruction of afferent and efferent parts of Fig.2B)
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Figure 3. Scale diagram of glomerular vasculature; the smallest vascular chambers. A/ Scale diagram of the Afferent (light grey) and Efferent (white) ends of the
glomerular vasculature. Diagram shows size and branch relationships between arterioles, VCs and 1st order vessels (mesangium close to vascular pole - dark grey)
(diameters from tab. 1&2). To illustrate VC volume in relation to attached vessels the length of attached vessels accommodating VC volume has been shown - AVC
volume would distribute along 112µm length (delimited by hoops x, y ) of afferent arteriole (AA) or distribute along 31µm length (delimited by hoops x’, y’) of 7 conduit
vessels (Con; 3 of 7 shown). The EVC volume would fill 138µm length of efferent arteriole (EA; hoops p, q ) or 28µm length of 13 1st order vessels (E1; hoops p’, q’, 4 of
13 shown). Scale bar 100µm. A2 and E2 – second order vessel examples. Mes.Con - Conduit vessel embedded in mesangium. GFB.Con - Conduit vessel with GFB surface
and minor mesangial attachment. B/ Minimal Vascular Chambers. The upper diagram shows VC as in our reconstructions but both VAVC and VEVC decrease as VG
decreases (Fig.4c&d). VC shrinkage in the radial direction would reduce the diameter and VC volume until it was a continuation of the attached arteriole (Fig.4 C&D).
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Figure	4.	Conduit	branching	and	diameter;	VC	volume	scales	with	glomerular	volume.	A/	Histogram	of	branch	separation	between	2nd order	branches	(A2	or	E2)	emerging	
from	1st order	vessels	(Con	or	E1).	Branch	intervals	were	assessed	in	9	glomeruli,	conduit	vessels	(Con,	filled	bars)	are	longer	and	less	branched	than	1st order	efferent	vessels	
(E1,	open	bars)	(Mann	Whitney	U	test	medians	(32.8,	15µm),	P<0.0001).	 B/	Histogram	of	1st order	vessel	diameter	coming	off	Vascular	Chambers.	Conduit	vessels	(filled	bars)	
are	significantly	wider	than	Efferent	first	order	vessels	(open	bars),	efferent	distribution	is	skewed	towards	lower	values	(15.3(12.8-18.9)	v.	9.0(7.0-11.1);	median(IQR);	Mann	
Whitney	U	test,	p<0.0001).	C/	Afferent	VC	volume	and D/	Efferent	VC	volume	scale	with	glomerular	volume	to	a	highly	significant	level	(R2 =	0.517	P=0.004;	R2 =	0.419	
P=0.012	respectively).	A	minimum	possible	VAVC and	VEVC (See	Fig.3B)	is	also	plotted	to	show	VG where	VCs	are	a	continuation	of	the	attached	arteriole	(	i.e.	no	VC	widening).

A

c

B

C

Glomerular (VG)	(	x 106 µm3) Glomerular (VG)	(	x 106 µm3)

Af
fe
re
nt
	V
C	

(V
AV

C)
	(	
x
10

4
µm

3 )

Ef
fe
re
nt
	V
C	

(V
EV

C)
	(	
x
10

4
µm

3 )

D



Figure 5. Conduit diameter changes with mesangium; conduit podocyte attachment; resistance v capacity examples A/ Conduit diameter changes relative to mesangial
cover. Conduit vessel diameters adjacent to the afferent VC with mesangial cover of 80-100% (GFB coverage 0-20%) were compared with diameters of low mesangial
covered (distal) regions of the same vessel. The fold change in diameter shows a significant diameter increase of 7.4% (*) when mesangial cover is minimal (0-14% i.e. GFB
86-100%). Paired t-tests and Wilcoxon matched pair test (P=0.04). B/ Histogram of podocyte cell body (PCB) area coverage of the filtration barrier of conduit vessels (filled
bars) and small filtration capillaries (open bars). Conduits have significantly less PCB coverage of the GFB than filtration capillaries (ttest - P<0.0001). C/ Conduit resistance
versus Afferent VC volume. A significant negative correlation exists between a correlate of conduit resistance (R’Con) and afferent VC volume (VAVC) (R2 = 0.327, P=0.033). D/
Efferent arteriole resistance per unit length (R’EA) reduces in line with increasing VG (R2 = 0.47, P=0.007).
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Figure	6. Vascular	widenings	in	single	
sections.	Murray	constant	from	
vascular	radii	A/	Observed	occurrence	
of	glomerular	vascular	widening	in	single	
sections.	The	frequency	with	which	
widening	(implying	VC	presence)	was	
observed	at	vascular	poles	in	immersion	
and	perfusion	fixed	glomeruli.		SC	-
subcapsular glomeruli;	JM	- juxta-
medullary	glomeruli;	JMSC	- JM	and	SC	
glomeruli	combined.	(n	=	number	of	
kidneys)
B/ In	14	glomeruli	a	Murray	constant	(K	
=		r3 nV;	where	r	is	radius,	nV is	vessel	
number;	see	text)	was	calculated	for	the	
afferent	and	efferent	arteriolar	tree	
leading	through	the	VCs	and	thence	into	
the	1st order	vessels	(Con	and	E1).	In	2	
glomeruli	K	was	calculated	for	2nd order	
vessels.	The	Murray	relationship	of	
equal	K	at	each	vessel	level	is	absent	in	
the	AVC,	EVC	and	conduit	vessels.	
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Figure	7.	Multiphoton	imaging	of	glomeruli.	Images	obtained	by	combining	two	photon	fluorescence	(TPF)	signal	images	with	second	
harmonic	generation	(SHG)	images	of	an	unfixed	human	glomerulus.	The	capillary	walls	emit	a	TPF	signal	(green)	with	most	of	the	
smaller	filtration	capillaries	showing	collapse.	A	banded	Collagen	signal	(SHG	blue)	is	located	adjacent	to	a	VC	wall	(intense	Bowman’s	
capsule	Collagen	has	been	blanked).	Section	s1	is	close	to	the	tissues	physical	surface;	A	- arteriole,	(optical	section	1µm	deep).	S31	
shows	a	wide	incomplete	region	of	banded	collagen	around	an	uncollapsed region	(VC)	connected	with	A	in	s1.	The	banded	collagen	
region	has	disappeared	in	s37	but	offshoots	in	attached	vessels	appear	in	s37	(right	of	VC)	and	s52	(left	of	VC	position).	Diameter	of	
field	- 200µm.	(See	supplemental	video	S3	for	full	section	series)
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Figure	8.	Transmission	electron	micrographs	of	Vascular	chamber	walls.	Vascular	Chamber	were	imaged	using	a	Tecnai 12	electron	
microscope,	low	power	(A)	shows	a	vascular	pole	an	AVC,	conduit	vessels	(Con)	and	urinary	space	(US).	(B)	Montage	of	micrographs	to	show	
the	disposition	of	the	banded	collagen	fibres around	the	VC	walls.	White	dotted	lines	show	the	extent		of	the	mesangial	matrix	where	
banded	collagen	fibres were	evident. (C)	Area	C	from	montage	B	with	matrix	rich	in	banded	collagen	(BCM)	and	where	collagen	is	absent	(M).
(D)	Area	D	from	montage	B	with	banded	collagen	fibres.
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Table 1 & 2. Afferent and efferent vascular diameters. Diameters of afferent and efferent vessels from resin
embedded glomeruli (14) from 4 human kidneys. In all cases the afferent and efferent arterioles widen to form
ellipsoidal chambers with between 2 and 11 high capacity conduit vessels emerging and conveying fluid away
to the filtration capillaries. Blood from the filtration capillaries converges into 3 to 22 narrow efferent first
order vessels which converge into the Efferent VC and thence the efferent arteriole. [In the 14 glomeruli
analysed, 2 extra wide conduit vessels (19-24µm) were found, 1 extrawide E1 drainage vessel (20-27µm) but
the branching was frequent as in other E1 vessels]. Vascular chamber dimensions: min.diam.; minimum
diameter measured in the section plane avoiding oblique vessel sections. max.diam.; maximum diameter
measured in the section plane avoiding oblique vessel sections. Secn. depth diam; diameter measured in the
sectioning direction. sem; standard error of the mean

Table 1. Afferent Arteriole Afferent Vascular Chamber Afferent first order vessels
Conduit vesselsAA AVC

diameter
(2 rAA )

min. diam.
(2 r’AVC)

Secn.depth diam.
(2 r’’AVC)

max. diam.
(2 r’’’AVC)

diameter
(2 rCon) nCon

µm µm µm µm µm
mean 21.5

1.2
32.1
1.5

49.4 48.0 15.9
0.7

6.6
sem 3.4 3.6 0.6

Table 2. Efferent Arteriole Efferent Vascular Chamber Efferent first order vessels
E1EA EVC

diameter
(2 rEA )

min. diam.
(2 r’EVC)

Secn.depth diam.
(2 r’’EVC)

max. diam.
(2 r’’’EVC)

diameter
(2 rE1) nE1

µm µm µm µm µm
mean 15.9

1.2
26.2
1.4

45.9 43.1 9.9
0.4

12.6
sem 9.1 4.3 1.4



RAA VAVC RCon VG RE1 VEVC REA

Table 3. Vascular resistance and capacity relationships. Significant correlationships (8 out of 21) between 7 variables measured in human
glomerular initial vasculature. Correlates of vascular resistance for afferent arterioles (RAA), Conduit vessels (RCon), first order efferent vessels
(RE1) and efferent arterioles (REA) were compared with each other and with AVC volume (VAVC) glomerular volume (VG) and EVC volume (VEVC).
+ positive correlation, – negative correlation; * = P < 0.05, ** = P ≤ 0.01; **** = P ≤ 0.0001; § higher significance with outlier removed.

* **§*

****

**§

****§

**

+ +

+

+

-
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Table.4. Vascular diameters and wall thicknesses - all experiments. Comparison of AA, AVC, Conduit, E1, EVC, and
EA measurements from resin section reconstruction with the same features in fixed and fresh glomeruli
reconstructed from confocal and multiphoton microscope z stacks (SHG and TPF). EVC and AVC values have been
averaged together for all 3 axes. AVC Collagen sheath (AVC Coll) enshrouded AVC and some parts of conduit
vessels but scant evidence in EVC or E1 (multiphoton microscopy only). G and K indicate numbers of glomeruli and
kidneys used. * not all quantities were observable and measureable.

AA AA AVC AVC
Coll. Conduit E1 EVC EA EA

Diam. (µm) Wall	t
(µm) Diam. (µm) Wall	t

(µm) Diam. (µm) Diam.
(µm)

Diam.
(µm)

Diam.
(µm)

Wall.	t
(µm)

Fixed	
Resin
Recon.

14G,	4K 21.5±1.2 6.6±0.3 43.2±2.8 * 15.9±0.7 9.9±0.4 38.4±4.9 15.9±1.2 3.0±0.1

Fixed	Aq.
Confocal 4G*,	1K 28.4±1.9 6.3±0.8 35.8±3.5 * 16.0±1.2 8.2 24.2 12.8 *

Fixed	Aq.
Multipho 3G*,	1K * * 50.2±3.7 4.2±0.8 12.8±1.6 6.9 28.1 7.4 *

Fresh	Aq.
Multipho 3G*,	2K 13.8 3.0 35.8±4.1 4.1±1.9 14.4±0.9 * * * *

Fresh	Aq.
Multipho

Isolated1
G*,	1K 23.0 * 54.2 2.5 27.4 * * * *
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